1
|
Wei T, Liu N, Yao Y, Huang X, Wang Z, Wu T, Zhang T, Xue Y, Tang M. Low-dose cadmium telluride quantum dots trigger M1 polarization in macrophages through mTOR-mediated transcription factor EB activation. NANOIMPACT 2024; 34:100505. [PMID: 38579989 DOI: 10.1016/j.impact.2024.100505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
The increasing application of quantum dots (QDs) increases interactions with organisms. The inflammatory imbalance is a significant manifestation of immunotoxicity. Macrophages maintain inflammatory homeostasis. Using macrophages differentiated by phorbol 12-myristate 13-acetate-induced THP-1 cells as models, the study found that low-dose (5 μM) cadmium telluride QDs (CdTe-QDs) hindered monocyte-macrophage differentiation. CD11b is a surface marker of macrophage, and the addition of CdTe-QDs during induction resulted in a decrease in CD11b expression. Moreover, exposure of differentiated THP-1 macrophage (dTHP-1) to 5 μM CdTe-QDs led to the initiation of M1 polarization. This was indicated by the increased surface marker CD86 expression, along with elevated level of NF-κB and IL-1β proteins. The potential mechanisms are being explored. The transcription factor EB (TFEB) plays a significant role in immune regulation and serves as a crucial regulator of the autophagic lysosomal pathway. After exposed to CdTe-QDs, TFEB activation-mediated autophagy and M1 polarization were observed to occur simultaneously in dTHP-1. The mTOR signaling pathway contributed to TFEB activation induced by CdTe-QDs. However, mTOR-independent activation of TFEB failed to promote M1 polarization. These results suggest that mTOR-TFEB is an advantageous target to enhance the biocompatibility of CdTe-QDs.
Collapse
Affiliation(s)
- Tingting Wei
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Na Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Yongshuai Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Xiaoquan Huang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Zhihui Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
2
|
Ion D, Niculescu AG, Păduraru DN, Andronic O, Mușat F, Grumezescu AM, Bolocan A. An Up-to-Date Review of Natural Nanoparticles for Cancer Management. Pharmaceutics 2021; 14:18. [PMID: 35056915 PMCID: PMC8779479 DOI: 10.3390/pharmaceutics14010018] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 01/10/2023] Open
Abstract
Cancer represents one of the leading causes of morbidity and mortality worldwide, imposing an urgent need to develop more efficient treatment alternatives. In this respect, much attention has been drawn from conventional cancer treatments to more modern approaches, such as the use of nanotechnology. Extensive research has been done for designing innovative nanoparticles able to specifically target tumor cells and ensure the controlled release of anticancer agents. To avoid the potential toxicity of synthetic materials, natural nanoparticles started to attract increasing scientific interest. In this context, this paper aims to review the most important natural nanoparticles used as active ingredients (e.g., polyphenols, polysaccharides, proteins, and sterol-like compounds) or as carriers (e.g., proteins, polysaccharides, viral nanoparticles, and exosomes) of various anticancer moieties, focusing on their recent applications in treating diverse malignancies.
Collapse
Affiliation(s)
- Daniel Ion
- General Surgery Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.I.); (D.N.P.); (O.A.); (F.M.); (A.B.)
- 3rd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Dan Nicolae Păduraru
- General Surgery Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.I.); (D.N.P.); (O.A.); (F.M.); (A.B.)
- 3rd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Octavian Andronic
- General Surgery Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.I.); (D.N.P.); (O.A.); (F.M.); (A.B.)
- 3rd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Florentina Mușat
- General Surgery Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.I.); (D.N.P.); (O.A.); (F.M.); (A.B.)
- 3rd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Alexandra Bolocan
- General Surgery Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.I.); (D.N.P.); (O.A.); (F.M.); (A.B.)
- 3rd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| |
Collapse
|
3
|
Ouyang Y, Liu Y, Deng Y, He H, Huang J, Ma C, Wang K. Recent advances in biosensor for DNA glycosylase activity detection. Talanta 2021; 239:123144. [PMID: 34923254 DOI: 10.1016/j.talanta.2021.123144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 10/19/2022]
Abstract
Base excision repair (BER) is vital for maintaining the integrity of the genome under oxidative damage. DNA glycosylase initiates the BER pathway recognizes and excises the mismatched substrate base leading to the apurinic/apyrimidinic site generation, and simultaneously breaks the single-strand DNA. As the aberrant activity of DNA glycosylase is associated with numerous diseases, including cancer, immunodeficiency, and atherosclerosis, the detection of DNA glycosylase is significant from bench to bedside. In this review, we summarized novel DNA strategies in the past five years for DNA glycosylase activity detection, which are classified into fluorescence, colorimetric, electrochemical strategies, etc. We also highlight the current limitations and look into the future of DNA glycosylase activity monitoring.
Collapse
Affiliation(s)
- Yuzhen Ouyang
- School of Life Sciences, Central South University, Changsha, 410013, China; Clinical Medicine Eight-year Program, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Yifan Liu
- School of Life Sciences, Central South University, Changsha, 410013, China; Clinical Medicine Eight-year Program, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Yuan Deng
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Hailun He
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China.
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha, 410013, China.
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| |
Collapse
|
4
|
Augustine R, Mamun AA, Hasan A, Salam SA, Chandrasekaran R, Ahmed R, Thakor AS. Imaging cancer cells with nanostructures: Prospects of nanotechnology driven non-invasive cancer diagnosis. Adv Colloid Interface Sci 2021; 294:102457. [PMID: 34144344 DOI: 10.1016/j.cis.2021.102457] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/25/2021] [Accepted: 06/01/2021] [Indexed: 12/17/2022]
Abstract
The application of nanostructured materials in medicine is a rapidly evolving area of research that includes both the diagnosis and treatment of various diseases. Metals, metal oxides and carbon-based nanomaterials have shown much promise in medical technological advancements due to their tunable physical, chemical and biological properties. The nanoscale properties, especially the size, shape, surface chemistry and stability makes them highly desirable for diagnosing and treating various diseases, including cancers. Major applications of nanomaterials in cancer diagnosis include in vivo bioimaging and molecular marker detection, mainly as image contrast agents using modalities such as radio, magnetic resonance, and ultrasound imaging. When a suitable targeting ligand is attached on the nanomaterial surface, it can help pinpoint the disease site during imaging. The application of nanostructured materials in cancer diagnosis can help in the early detection, treatment and patient follow-up . This review aims to gather and present the information regarding the application of nanotechnology in cancer diagnosis. We also discuss the challenges and prospects regarding the application of nanomaterials as cancer diagnostic tools.
Collapse
|
5
|
Fan L, Liu W, Yang B, Zhang Y, Liu X, Wu X, Ning B, Peng Y, Bai J, Guo L. A highly sensitive method for simultaneous detection of hAAG and UDG activity based on multifunctional dsDNA probes mediated exponential rolling circle amplification. Talanta 2021; 232:122429. [PMID: 34074415 DOI: 10.1016/j.talanta.2021.122429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 11/30/2022]
Abstract
DNA glycosylase is an indispensable DNA damage repair enzyme which can recognize and excise the damaged bases in the DNA base excision-repair pathway. The dysregulation of DNA glycosylase activity will give rise to the dysfunction of base excision-repair and lead to abnormalities and diseases. The simultaneous detection of multiple DNA glycosylases can help to fully understand the normal physiological functions of cells, and determine whether the cells are abnormal in pre-disease. Regrettably, the synchronous detection of functionally similar DNA glycosylases is a great challenge. Herein, we developed a multifunctional dsDNA probe mediated exponential rolling circle amplification (E-RCA) method for the simultaneously sensitive detection of human alkyladenine DNA glycosylase (hAAG) and uracil-DNA glycosylase (UDG). The multifunctional dsDNA probe contains the hypoxanthine sites and the uracil sites which can be recognized by hAAG and UDG respectively to generate apyrimidinic (AP) sites in the dsDNA probe. Then the AP sites will be recognized and cut by endonuclease Ⅳ (Endo IV) to release corresponding single-stranded primer probes. Subsequently, two padlock DNA templates are added to initiate E-RCA to generate multitudinous G-quadruplexes and/or double-stranded dumbbell lock structures, which can combine N-methyl mesoporphyrin IX (NMM) and SYBR Green Ⅰ (SGI) for the generation of respective fluorescent signals. The detection limits are obtained as low as 0.0002 U mL-1 and 0.00001 U mL-1 for hAAG and UDG, respectively. Notably, this method can realize the simultaneous detection of two DNA glycosylases without the use of specially labeled probes. Finally, this method is successfully applied to detect hAAG and UDG activities in the lysates of HeLa cells and Endo1617 cells at single-cell level, and to detect the inhibitors of DNA glycosylases.
Collapse
Affiliation(s)
- Longxing Fan
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Wentao Liu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Boning Yang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Yingchun Zhang
- Nankai University School of Medicine, Nan Kai University, 94 Weijin Road, Tianjin, 300071, PR China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Xiaotao Liu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China
| | - Xinglin Wu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Baoan Ning
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Jialei Bai
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China.
| | - Liangqia Guo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China.
| |
Collapse
|
6
|
Mollarasouli F, Badilli U, Bakirhan NK, Ozkan SA, Ozkan Y. Advanced DNA nanomachines: Strategies and bioapplications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Gao X, Cai Q, Li H, Jie G. Supersandwich Nanowire/Quantum Dots Sensitization Structure-Based Photoelectrochemical “Signal-On” Platform for Ultrasensitive Detection of Thrombin. Anal Chem 2020; 92:6734-6740. [DOI: 10.1021/acs.analchem.0c00849] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaoshan Gao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Qianqian Cai
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Hongkun Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| |
Collapse
|
8
|
Ma L, Liang B, Yang Y, Chen L, Liu Q, Zhang A. hOGG1 promoter methylation, hOGG1 genetic variants and their interactions for risk of coal-borne arsenicosis: A case-control study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 75:103330. [PMID: 32004920 DOI: 10.1016/j.etap.2020.103330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
To identify the effect of hOGG1 methylation, Ser326Cys polymorphism and their interactions on the risk of coal-borne arsenicosis, 113 coal-borne arsenicosis subjects and 55 reference subjects were recruited. Urinary arsenic contents were analyzed with ICP-MS. hOGG1 methylation and Ser326Cys polymorphism was measured by mehtylation-specific PCR and restriction fragment length polymorphism PCR in PBLCs, respectively. The results showed that the prevalence of methylated hOGG1 and variation genotype (326 Ser/Cys & 326 Cys/Cys) were increased with raised levels of urinary arsenic in arsenicosis subjects. Increased prevalence of methylated hOGG1 and variation genotype were associated with raised risk of arsenicosis. Moreover, the results revealed that variant genotype might increase the susceptibility to hOGG1 methylation. The interactions of methylated hOGG1 and variation genotype were also found to contribute to increased risk of arsenicosis. Taken together, hOGG1 hypermethylation, hOGG1 variants and their interactions might be potential biomarkers for evaluating risk of coal-borne arsenicosis.
Collapse
Affiliation(s)
- Lu Ma
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| | - Bing Liang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| | - Yuan Yang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| | - Liyuan Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| | - Qizhan Liu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, PR China.
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| |
Collapse
|
9
|
Saeed S, Iqbal A, Iqbal A. Photoinduced charge carrier dynamics in a ZnSe quantum dot-attached CdTe system. Proc Math Phys Eng Sci 2020; 476:20190616. [PMID: 32269486 DOI: 10.1098/rspa.2019.0616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/30/2020] [Indexed: 11/12/2022] Open
Abstract
A new nanohybrid material is prepared by attaching CdTe nanoneedles (NNs) to surface-modified ZnSe quantum dots (QDs). The NNs and QDs are prepared by a colloidal synthesis method in an aqueous alkaline medium. The surface modification and the attachment of nanostructures are achieved by a bifunctional ligand 3-mercaptopropionic acid (3-MPA). The band gap of the ZnSe QDs is varied by controlling the size of the QDs in order to get the maximum overlap between the absorption band of the CdTe NNs and the emission band of the ZnSe QDs, which is a prerequisite for effective charge/energy transfer. The possibility of photoinduced charge transfer (PCT) and Förster resonance energy transfer (FRET) from the donor (QDs) to the acceptor (NNs) has been assessed. Very fast (less than 800 ps) PCT and FRET from QDs to NNs occur because the emission band of QDs overlaps with the absorption band of NNs. The calculated large value of the overlapping integral, J(λ) ∼4.5 × 1019 M-1 cm-1 nm4, of the donor and the acceptor bands proves the feasibility of energy transfer. These findings suggest that the ZnSe QDs can exchange photoinduced energy with the CdTe NNs effectively over a wide distance in a CdTe-ZnSe nanohybrid.
Collapse
Affiliation(s)
- Shomaila Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Azhar Iqbal
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Azhar Iqbal
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
10
|
Fu X, Peng F, Lee J, Yang Q, Zhang F, Xiong M, Kong G, Meng HM, Ke G, Zhang XB. Aptamer-Functionalized DNA Nanostructures for Biological Applications. Top Curr Chem (Cham) 2020; 378:21. [PMID: 32030541 DOI: 10.1007/s41061-020-0283-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/17/2020] [Indexed: 12/31/2022]
Abstract
DNA nanostructures hold great promise for various applications due to their remarkable properties, including programmable assembly, nanometric positional precision, and dynamic structural control. The past few decades have seen the development of various kinds of DNA nanostructures that can be employed as useful tools in fields such as chemistry, materials, biology, and medicine. Aptamers are short single-stranded nucleic acids that bind to specific targets with excellent selectivity and high affinity and play critical roles in molecular recognition. Recently, many attempts have been made to integrate aptamers with DNA nanostructures for a range of biological applications. This review starts with an introduction to the features of aptamer-functionalized DNA nanostructures. The discussion then focuses on recent progress (particularly during the last five years) in the applications of these nanostructures in areas such as biosensing, bioimaging, cancer therapy, and biophysics. Finally, challenges involved in the practical application of aptamer-functionalized DNA nanostructures are discussed, and perspectives on future directions for research into and applications of aptamer-functionalized DNA nanostructures are provided.
Collapse
Affiliation(s)
- Xiaoyi Fu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Fangqi Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jungyeon Lee
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ, 07102, USA
| | - Qi Yang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ, 07102, USA
| | - Fei Zhang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ, 07102, USA
| | - Mengyi Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Gezhi Kong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Hong-Min Meng
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
11
|
Singh R. Nanotechnology based therapeutic application in cancer diagnosis and therapy. 3 Biotech 2019; 9:415. [PMID: 31696020 PMCID: PMC6811486 DOI: 10.1007/s13205-019-1940-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022] Open
Abstract
Due to the lack of early diagnosis, cancer remains as one of the leading cause of human mortality. Inability to translate research into clinical trials and also inability of chemotherapeutics delivery to targeted tumor sites are major drawbacks in cancer therapeutics. With the emergence of nanomedicine, several nanoprobes (conjugated with targeting ligands and chemotherapeutic drugs) are developed. It can interact with biological system and thus sense and monitor the biological events with high efficiency and accuracy along with therapy application. Nanoparticles like gold and iron oxide are frequently used in the computed tomography and magnetic resonance imaging applications, respectively. Moreover, enzymatic activity of gold and iron oxide nanoparticles enables the visible colorimetric diagnostic of cancer cells, whereas, fluorescence property of quantum dots and upconversion nanoparticles helps in in vivo imaging application. Other than this, drug conjugation with nanoparticles also reduces the systemic toxic effect of chemotherapeutic drugs. Due to their several unique intrinsic properties, nanoparticles itself can also be employed as therapeutics in cancer treatment by photothermal therapy (PTT) and photodynamic therapy (PDT). Thus, the main focus of this review is to emphasize on current progress in diagnostic and therapeutic application of nanoprobes in cancer.
Collapse
Affiliation(s)
- Ragini Singh
- School of Agriculture Science, Liaocheng University, No. 1 Hunan Road, Liaocheng, Shandong China
| |
Collapse
|
12
|
A nanocomposite prepared from reduced graphene oxide, gold nanoparticles and poly(2-amino-5-mercapto-1,3,4-thiadiazole) for use in an electrochemical sensor for doxorubicin. Mikrochim Acta 2019; 186:641. [DOI: 10.1007/s00604-019-3761-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 08/14/2019] [Indexed: 12/31/2022]
|
13
|
A ratiometric electrochemical assay for human 8-oxoguanine DNA glycosylase amplified by hybridization chain reaction. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2019.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|