1
|
Han M, Sun Y, Li M, Sui X, Feng J, Wang D. New insight for simultaneous determination of hydroquinone, catechol and resorcinol using electrochemical sensing platform modified with Mo 2C/C nanocomposites. Mikrochim Acta 2025; 192:350. [PMID: 40358629 DOI: 10.1007/s00604-025-07199-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025]
Abstract
Dihydroxybenzenes, including hydroquinone (HQ), catechol (CC) and resorcinol (RS), are important environmental pollutants that poses a serious threat to human health at high concentrations. Accurately and rapidly detecting dihydroxyphenyl groups in actual samples is of great significance for environmental monitoring and protection. Electrochemical sensors, as a fast and convenient analytical tool, have long had bottlenecks such as poor specificity. Here, an electrochemical sensor has been developed with nitrogen-doped Mo₂C/C nanocomposites as the sensing catalyst for simultaneous detection of HQ, CC and RS. The oxidation peak potentials of HQ, CC and RS on Mo2C/C/GCE were -0.05 V, 0.16 V and 0.50 V (vs. Ag/AgCl) respectively, indicating that the electrochemical oxidation processes of the three dihydroxyphenyl isomers were independent and do not interfere with each other. The responses to HQ, CC, and RS exhibit linear relationships within the ranges 0.5 ~ 1000 μM, 1.0 ~ 1000 μM and 2.0 ~ 900 μM, respectively. The corresponding detection limits are 0.13, 0.15 and 0.85 μM (S/N = 3), respectively. Moreover, Mo2C/C/GCE exhibits excellent anti-interference, repeatability, reproducibility, and stability in the simultaneous detection of HQ, CC, and RS, providing clear evidence for the application of Mo2C/C/GCE in analysis of actual water samples.
Collapse
Affiliation(s)
- Mingyang Han
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Jiangsu Province, Zhenjiang, 212003, China
| | - Yuan Sun
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Jiangsu Province, Zhenjiang, 212003, China
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, China
| | - Minyi Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Jiangsu Province, Zhenjiang, 212003, China
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, China
| | - Xinru Sui
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Jiangsu Province, Zhenjiang, 212003, China
| | - Junwen Feng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Jiangsu Province, Zhenjiang, 212003, China
| | - Dongyang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Jiangsu Province, Zhenjiang, 212003, China.
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, China.
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| |
Collapse
|
2
|
Imanzadeh H, Khataee A, Amiri M. Nanoarchitecturing of Mo 2C nanospheres on carbon cloth as an electrochemical sensing platform for determination of caffeic acid in tea samples. Food Chem 2024; 461:140762. [PMID: 39153370 DOI: 10.1016/j.foodchem.2024.140762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
In the present paper, carbon cloth (CC) as a flexible substrate was modified by molybdenum carbide nanospheres (Mo2C NSs @CC) by the drop-coating method to develop a sensitive electrochemical platform for detecting caffeic acid. The uniform Mo2C NSs were prepared via an easy route followed by pyrolyzing the precursor of the Mo-polydopamine (Mo-PDA) NSs. The Mo2C NSs were characterized and analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy/energy dispersive X-ray spectroscopy (FE-SEM/EDS), Raman spectroscopy (RS), and electrochemical methods. CC not only gave a flexible feature to the sensor but also provided a larger surface area for Mo2C NSs. Meanwhile, the excellent conductivity and large electroactive specific surface area of Mo2C NSs exhibited excellent electrocatalytic performance for caffeic acid determination. The developed sensor showed high sensitivity and selectivity, good reproducibility, and long-term stability with a limit of detection (LOD) and a wide linear range of 0.001 μM (S/N = 3) and 0.01-50 μM, respectively. In addition, the Mo2C NSs @CC sensor showed a promising application prospect for the detection of caffeic acid in green and black tea samples, indicating its importance in food safety and the food industry.
Collapse
Affiliation(s)
- Hamideh Imanzadeh
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Plant Sciences and Medicinal Plants, Meshgin-shahr Faculty of Agriculture, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Chemical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Mandana Amiri
- Department of Chemistry, University of Mohaghegh Ardabili, 56199-13131 Ardabil, Iran; Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500, Krems, Austria.
| |
Collapse
|
3
|
Younas R, Jubeen F, Bano N, Andreescu S, Zhang H, Hayat A. Covalent organic frameworks (COFs) as carrier for improved drug delivery and biosensing applications. Biotechnol Bioeng 2024; 121:2017-2049. [PMID: 38665008 DOI: 10.1002/bit.28718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 06/13/2024]
Abstract
Porous organic frameworks (POFs) represent a significant subclass of nanoporous materials in the field of materials science, offering exceptional characteristics for advanced applications. Covalent organic frameworks (COFs), as a novel and intriguing type of porous material, have garnered considerable attention due to their unique design capabilities, diverse nature, and wide-ranging applications. The unique structural features of COFs, such as high surface area, tuneable pore size, and chemical stability, render them highly attractive for various applications, including targeted and controlled drug release, as well as improving the sensitivity and selectivity of electrochemical biosensors. Therefore, it is crucial to comprehend the methods employed in creating COFs with specific properties that can be effectively utilized in biomedical applications. To address this indispensable fact, this review paper commences with a concise summary of the different methods and classifications utilized in synthesizing COFs. Second, it highlights the recent advancements in COFs for drug delivery, including drug carriers as well as the classification of drug delivery systems and biosensing, encompassing drugs, biomacromolecules, small biomolecules and the detection of biomarkers. While exploring the potential of COFs in the biomedical field, it is important to acknowledge the limitations that researchers may encounter, which could impact the practicality of their applications. Third, this paper concludes with a thought-provoking discussion that thoroughly addresses the challenges and opportunities associated with leveraging COFs for biomedical applications. This review paper aims to contribute to the scientific community's understanding of the immense potential of COFs in improving drug delivery systems and enhancing the performance of biosensors in biomedical applications.
Collapse
Affiliation(s)
- Rida Younas
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Shandong, China
- Department of Chemistry, Govt College Women University, Faisalabad, Pakistan
| | - Farhat Jubeen
- Department of Chemistry, Govt College Women University, Faisalabad, Pakistan
| | - Nargis Bano
- Department of Physics and Astronomy College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York, USA
| | - Hongxia Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Shandong, China
| | - Akhtar Hayat
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Shandong, China
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore, Punjab, Pakistan
| |
Collapse
|
4
|
Xu T, Gao H, Rojas OJ, Dai H. Silver Nanoparticle-Embedded Conductive Hydrogels for Electrochemical Sensing of Hydroquinone. Polymers (Basel) 2023; 15:polym15112424. [PMID: 37299223 DOI: 10.3390/polym15112424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
In this work, a conductive hydrogel was successfully synthesized, taking advantage of the high number density of active amino and hydroxyl groups in carboxymethyl chitosan and sodium carboxymethyl cellulose. These biopolymers were effectively coupled via hydrogen bonding with the nitrogen atoms of the heterocyclic rings of conductive polypyrrole. The inclusion of another biobased polymer, sodium lignosulfonate (LS), was effective to achieve highly efficient adsorption and in-situ reduction of silver ions, leading to silver nanoparticles that were embedded in the hydrogel network and used to further improve the electro-catalytic efficiency of the system. Doping of the system in the pre-gelled state led to hydrogels that could be easily attached to the electrodes. The as-prepared silver nanoparticle-embedded conductive hydrogel electrode exhibited excellent electro-catalytic activity towards hydroquinone (HQ) present in a buffer solution. At the optimum conditions, the oxidation current density peak of HQ was linear over the 0.1-100 μM concentration range, with a detection limit as low as 0.12 μM (signal-to-noise of 3). The relative standard deviation of the anodic peak current intensity was 1.37% for eight different electrodes. After one week of storage in a 0.1 M Tris-HCl buffer solution at 4 °C, the anodic peak current intensity was 93.4% of the initial current intensity. In addition, this sensor showed no interference activity, while the addition of 30 μM CC, RS, or 1 mM of different inorganic ions does not have a significant impact on the test results, enabling HQ quantification in actual water samples.
Collapse
Affiliation(s)
- Tingting Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
- Bioproducts Institute, Departments of Chemical and Biological Engineering, Chemistry and Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Huanli Gao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Orlando J Rojas
- Bioproducts Institute, Departments of Chemical and Biological Engineering, Chemistry and Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Hongqi Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
Zuo J, Shen Y, Wang L, Yang Q, Cao Z, Song H, Ye Z, Zhang S. Flexible Electrochemical Sensor Constructed Using an Active Copper Center Instead of Unstable Molybdenum Carbide for Simultaneous Detection of Toxic Catechol and Hydroquinone. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
6
|
Cao K, He F, Yan J, Zhu W, Wang Y, Zhang Y, Zhang B, Yu X, Shen Q, Liu C, Wang Q. MOF-derived Bi@C nanocomposites electrode simultaneous detection of hydroquinone and catechol. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
A bifunctional electrochemical sensor for simultaneous determination of electroactive and non-electroactive analytes: A universal yet very effective platform serving therapeutic drug monitoring. Biosens Bioelectron 2022; 208:114233. [DOI: 10.1016/j.bios.2022.114233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 01/14/2023]
|
8
|
Li Y, Feng Y, Chen S, Li R, Yang Y, Guan JJ, Ye BC. Signal on-off ratiometric electrochemical sensor coupled with a molecularly imprinted polymer for the detection of carbendazim. Mikrochim Acta 2022; 189:250. [PMID: 35680763 DOI: 10.1007/s00604-022-05341-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/14/2022] [Indexed: 12/01/2022]
Abstract
A stable ratiometric electrochemical sensor is introduced for the selective detection of carbendazim (CBD). Specifically, the proposed sensor employs a Co@Mo2C bimetallic nanomaterial as the glassy carbon electrode substrate and a layer of molecularly imprinted polymer (MIP) was in situ fabricated on glassy carbon electrode by electropolymerization, with o-aminophenol as the functional monomer and CBD acting as template. A ratiometric MIP sensor was constructed by adding ferrocene (Fc) internal reference directly to the sample solution. The bimetallic nanomaterials provide a large loading platform for the MIP layer through synergistic effects, amplifying the signal. Excellent CBD binding selectivity is achieved by the templating effect of the three-dimensional (3D) MIP layer. The internal standard is added directly to the electrolyte solution to be tested, allowing the new type of ratiometric electrochemical sensor to avoid the cumbersome steps of other methods and reducing the difficulty and human error of the experimental procedure. Combining a ratiometric strategy with a 3D MIP structure realises the dual-signal detection of CBD. The optimised sensor showed an excellent linear relationship between 0.01 and 1 000 μM, with a correlation coefficient of 0.997 and a detection limit of 3.4 nM (S/N = 3).
Collapse
Affiliation(s)
- Yangguang Li
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.,Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Yifan Feng
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Shenyan Chen
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Renjie Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Yue Yang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Jing Jing Guan
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi, 832000, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China. .,Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China.
| |
Collapse
|
9
|
An electrochemical sensor based on oxygen-vacancy cobalt–aluminum layered double hydroxides and hydroxylated multiwalled carbon nanotubes for catechol and hydroquinone detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Chen Y, He T, Liao D, Li Q, Song Y, Xue H, Zhang Y. Carbon Aerogels with Nickel@N-doped Carbon Core-shell Nanoclusters as Electrochemical Sensors for Simultaneous Determination of Hydroquinone and Catechol. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Hu C, Huang H, Han S, Yan Y, Xu F, Liao J. Simultaneous analysis of catechol and hydroquinone by polymelamine/CNT with dual-template molecular imprinting technology. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Nair J.S A, S S, Sandhya KY. Picomolar level electrochemical detection of hydroquinone, catechol and resorcinol simultaneously using a MoS 2 nano-flower decorated graphene. Analyst 2022; 147:2966-2979. [DOI: 10.1039/d2an00531j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Graphene-Molybdenum disulphide nanocomposite was developed for the simultaneous electrochemical detection of dihydroxy benzene isomers attributed to the structural aspects.
Collapse
Affiliation(s)
- Arya Nair J.S
- Department of Chemistry, Indian Institute of Space Science and Technology, Valiyamala, Thiruvananthapuram 695-547, Kerala, India
| | - Saisree. S
- Department of Chemistry, Indian Institute of Space Science and Technology, Valiyamala, Thiruvananthapuram 695-547, Kerala, India
| | - K. Y. Sandhya
- Department of Chemistry, Indian Institute of Space Science and Technology, Valiyamala, Thiruvananthapuram 695-547, Kerala, India
| |
Collapse
|
13
|
Rao Q, Hu FX, Gan LY, Guo C, Liu Y, Zhang C, Chen C, Yang HB, Li CM. Boron-Nitrogen-Co-Doping Nanocarbons to Create Rich Electroactive Defects toward Simultaneous Sensing Hydroquinone and Catechol. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Liu J, Liu X, Zhang L, Zhu L, Mei X, Wei J, Li Y. Hand-Held and Integrated Tubular Tip-like Sensing Platform Series: Point-of-care Device for Semi-automated Multiplexed Assay. Anal Chem 2021; 93:15534-15542. [PMID: 34747608 DOI: 10.1021/acs.analchem.1c03717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Currently, most of the electrochemical sensors were prepared based on the planar electrode (PE) and utilized in open circumstance. The accompanying issues include fixed and limited sensing area of PE, insufficient usage of the testing sample, tedious operation, and susceptibility to external environment. Herein, a novel tubular tip-like sensor (TTLS) platform was proposed, where a small tip accommodates all electrodes with a curved surface and also acts as a closed detection chamber. Teaming up with a commercial pipette and potentiostat, the TTLS is able to accomplish the whole assay procedure including sampling, detection, rinsing, and regeneration with a single hand. The electrochemical interface area can be easily tuned to adapting for different scenarios with varied sensitivity request. Moreover, two TTLS-based array systems were derived: one integrates multiple working electrodes in one tip for multicomponent quantification and the other assembles eight independent TTLSs for high-throughput analysis. The admirable sensing performance of the TTLS was fully proved by detecting several liver-related biomarkers in 5 μL of the serum sample. The proposed tubular sensor platform is superior to the traditional electrochemical sensor in the aspects of unique sensing surface, fast and simple operation, good portability, and great compatibility. The TTLS could be used as an ideal analytical tool in point-of-care testing and other fields.
Collapse
Affiliation(s)
- Jiang Liu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen 518055, Guangdong, P.R. China.,Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, Guangdong, P.R. China
| | - Xiaoxue Liu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen 518055, Guangdong, P.R. China
| | - Lu Zhang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen 518055, Guangdong, P.R. China
| | - Liang Zhu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen 518055, Guangdong, P.R. China
| | - Xuecui Mei
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen 518055, Guangdong, P.R. China
| | - Jun Wei
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, Guangdong, P.R. China
| | - Yingchun Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen 518055, Guangdong, P.R. China
| |
Collapse
|
15
|
Kokab T, Shah A, Nisar J, Ashiq MN, Khan MA, Khan SB, Bakhsh EM. Phenolic water toxins: redox mechanism and method of their detection in water and wastewater. RSC Adv 2021; 11:35783-35795. [PMID: 35492751 PMCID: PMC9043152 DOI: 10.1039/d1ra05669g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/15/2021] [Indexed: 12/26/2022] Open
Abstract
Phenolic pollutants are highly toxic and persistent in the environment. Their efficient detection is a pressing social demand. In this regard we introduce a novel ultrasensitive electroanalytical platform for the individual and synchronized detection of three phenolic isomers commonly known as hydroquinone (HQ), resorcinol (RC), and catechol (CC). The sensing device consists of a glassy carbon electrode (GCE) modified with functionalized carbon nanotubes (fCNTs) and gold-silver (Au-Ag NPs) bimetallic nanoparticles. The sandwiched scaffold represented as fCNTs/Au-Ag NPs/fCNTs/GCE efficiently senses HQ, RC, and CC with detection limits of 28.6 fM, 36.5 fM and 42.8 fM respectively. The designed sensor is more promising than reported sensors for phenolic toxins in the context of high sensitivity, selectivity, and rapid responsiveness. The designed sensor also shows the qualities of stability, reproducibility, reliability, and selective recognition capacity for target analytes in multiple real water samples. Moreover, computational calculations explain the function of the electrode modifier in facilitating charge transfer between the transducer and analytes.
Collapse
Affiliation(s)
- Tayyaba Kokab
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Afzal Shah
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Jan Nisar
- National Centre of Excellence in Physical Chemistry, University of Peshawar Peshawar 25120 Pakistan
| | - Muhammad Naeem Ashiq
- Institute of Chemical Sciences, Bahauddin Zakaryia University Multan 6100 Pakistan
| | - M Abdullah Khan
- Renewable Energy Advancement Laboratory, Department of Environmental Sciences, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Sher Bahadar Khan
- Department of Chemistry, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Esraa M Bakhsh
- Department of Chemistry, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| |
Collapse
|
16
|
Liu X, Lian J, Fan Y, Liu Z, Li H, Liu Q, Yue K. Si doping and perylene diimide modification contributed to enhancement of peroxidase-like activity of ceria for constructing colorimetric sensing platform of hydroquinone. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Feng Y, Li Y, Tong Y, Cui C, Li X, Ye BC. Simultaneous determination of dihydroxybenzene isomers in cosmetics by synthesis of nitrogen-doped nickel carbide spheres and construction of ultrasensitive electrochemical sensor. Anal Chim Acta 2021; 1176:338768. [PMID: 34399892 DOI: 10.1016/j.aca.2021.338768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 12/29/2022]
Abstract
N-doped nickel carbide spheres (N-NiCSs) were synthesised for the first time by controlling the type of surfactant, surfactant-to-Ni molar ratio, reaction temperature, and reaction time. The morphology, composition, and electrochemical behaviour of the synthesised spheres revealed that the spheres presented a large specific surface area, abundant pores, and good conductivity, with excellent electrocatalytic performance. A glassy carbon electrode-modified with N-NiCSs was used for the simultaneous identification of hydroquinone (HQ), catechol (CC), and resorcinol (RS) utilising differential pulse voltammetry. The oxidation peaks of HQ, CC, and RS were observed at 9.8, 119, and 470 mV, respectively (vs. SCE). Under optimal conditions, the oxidation peak currents of HQ, CC, and RS were linear in the concentration ranges of 0.005-100 μM, 0.05-200 μM, and 5-500 μM, respectively. The detection limits of HQ, CC, and RS were 0.00152 μM, 0.015 μM, and 0.24 μM (S/N = 3), respectively. The sensitivities of HQ, CC, and RS were 4.635, 2.069, and 0.985 μA μM-1 cm-2 (S/N = 3), respectively. The fabricated sensor was successfully used to detect HQ, CC, and RS in hair dye, whitening cream, and local tap water samples. Moreover, the sensor presented a good repeatability, reproducibility, and stability during cosmetic testing and a relatively wide linear range, an ultralow detection limit, and an ultrahigh sensitivity.
Collapse
Affiliation(s)
- Yifan Feng
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Yangguang Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Yanbin Tong
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Can Cui
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Xiang Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Bang-Ce Ye
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China; Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
18
|
Electrochemical activation of copper oxide decorated graphene oxide modified carbon paste electrode surface for the simultaneous determination of hazardous Di-hydroxybenzene isomers. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106503] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
High-sensitive sensor for the simultaneous determination of phenolics based on multi-walled carbon nanotube/NiCoAl hydrotalcite electrode material. Mikrochim Acta 2021; 188:308. [PMID: 34453216 DOI: 10.1007/s00604-021-04948-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
The ternary NiCoAl hydrotalcite (NiCoAl-LDH) was combined with carboxylic multi-walled carbon nanotube (MWCNT) to fabricate a novel electrochemical sensor for simultaneously determining the co-existing trace phenolic substances. The morphology, structure, and electrochemical behavior of the as-prepared materials were characterized by various techniques. Benefitting from the great conductivity of MWCNT and high electrocatalytic activity of NiCoAl-LDH for phenolic substances, the advanced MWCNT/NiCoAl-LDH sensor presented a fast response, high sensitivity, excellent stability, and satisfactory replicability. The sensor offered good linear responses in the ranges1.50~600 μM to hydroquinone (HQ), 5.00~1.03 × 103 μM to catechol (CC), and 6.00 × 10-2~250 μM to bisphenol A (BPA). The detection limits of HQ, CC, and BPA were 0.4, 0.8, and 6. × 10-3 μM (S/N = 3), respectively. In environmental water, the sensor achieved satisfactory recoveries for the simultaneous detection of HQ (98.6~101%), CC (98.0~101%), and BPA (97.5~101%), with relative standard deviations less than 4.4%.
Collapse
|
20
|
Bimetallic MOFs-derived coral-like Ag-Mo 2C/C interwoven nanorods for amperometric detection of hydrogen peroxide. Mikrochim Acta 2021; 188:234. [PMID: 34160693 DOI: 10.1007/s00604-021-04888-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
Coral-like Ag-Mo2C/C-I and blocky Ag-Mo2C/C-II composites were obtained from one-step in situ calcination of [Ag(HL)3(Mo8O26)]n·nH2O [L: N-(pyridin-3-ylmethyl) pyridine-2-amine] under N2/H2 and N2 atmospheres, respectively. The coral-like morphology of Ag-Mo2C/C-I is composed of interwoven nanorods embedded with small particles, and the nano-aggregate of Ag-Mo2C/C-II is formed by cross-linkage of irregular nanoparticles. The above composites are decorated on glassy carbon electrode (GCE) drop by drop to generate two enzyme-free electrochemical sensors (Ag-Mo2C/C/GCE) for amperometric detection of H2O2. In particular, the coral-like Ag-Mo2C/C-I/GCE sensor possesses rapid response (1.2 s), high sensitivity (466.2 μA·mM-1·cm-2), and low detection limit (25 nM) towards trace H2O2 and has wide linear range (0.08 μM~4.67 mM) and good stability. All these sensing performances are superior to Ag-Mo2C/C-II/GCE, indicating that the calcining atmosphere has an important influence on microstructure and electrochemical properties. The excellent electrochemical H2O2 sensing performance of Ag-Mo2C/C-I/GCE sensor is mainly attributed to the synergism of unique microstructure, platinum-like electron structure of Mo2C, strong interaction between Mo and Ag, as well as the increased active sites and conductivity caused by co-doped Ag and carbon. Furthermore, this sensor has been successfully applied to the detection of H2O2 in human serum sample, contact lens solution, and commercial disinfector, demonstrating the potential in related fields of environment and biology. Graphical abstract.
Collapse
|
21
|
Abu Nayem SM, Shaheen Shah S, Sultana N, Abdul Aziz M, Saleh Ahammad AJ. Electrochemical Sensing Platforms of Dihydroxybenzene: Part 2 – Nanomaterials Excluding Carbon Nanotubes and Graphene. CHEM REC 2021; 21:1073-1097. [DOI: 10.1002/tcr.202100044] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/30/2021] [Indexed: 12/18/2022]
Affiliation(s)
- S. M. Abu Nayem
- Department of Chemistry Jagannath University 1100 Dhaka Bangladesh
| | - Syed Shaheen Shah
- Center of Research Excellence in Nanotechnology King Fahd University of Petroleum & Minerals KFUPM Box 5040 31261 Dhahran Saudi Arabia
- Physics Department King Fahd University of Petroleum & Minerals KFUPM Box 5047 31261 Dhahran Saudi Arabia
| | - Nasrin Sultana
- Department of Chemistry Jagannath University 1100 Dhaka Bangladesh
| | - Md. Abdul Aziz
- Center of Research Excellence in Nanotechnology King Fahd University of Petroleum & Minerals KFUPM Box 5040 31261 Dhahran Saudi Arabia
| | | |
Collapse
|
22
|
Abu Nayem SM, Shaheen Shah S, Sultana N, Aziz MA, Saleh Ahammad AJ. Electrochemical Sensing Platforms of Dihydroxybenzene: Part 1 – Carbon Nanotubes, Graphene, and their Derivatives. CHEM REC 2021; 21:1039-1072. [DOI: 10.1002/tcr.202100043] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/07/2021] [Indexed: 12/12/2022]
Affiliation(s)
- S. M. Abu Nayem
- Department of Chemistry Jagannath University Dhaka 1100 Bangladesh 9583794
| | - Syed Shaheen Shah
- Center of Research Excellence in Nanotechnology King Fahd University of Petroleum & Minerals, KFUPM Box 5040 Dhahran 31261 Saudi Arabia
- Physics Department King Fahd University of Petroleum & Minerals, KFUPM Box 5047 Dhahran 31261 Saudi Arabia
| | - Nasrin Sultana
- Department of Chemistry Jagannath University Dhaka 1100 Bangladesh 9583794
| | - Md. Abdul Aziz
- Center of Research Excellence in Nanotechnology King Fahd University of Petroleum & Minerals, KFUPM Box 5040 Dhahran 31261 Saudi Arabia
| | | |
Collapse
|
23
|
Bukhari SAB, Nasir H, Pan L, Tasawar M, Sohail M, Shahbaz M, Gul F, Sitara E. Supramolecular assemblies of carbon nanocoils and tetraphenylporphyrin derivatives for sensing of catechol and hydroquinone in aqueous solution. Sci Rep 2021; 11:5044. [PMID: 33658569 PMCID: PMC7930085 DOI: 10.1038/s41598-021-84294-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/15/2021] [Indexed: 12/22/2022] Open
Abstract
Non-enzymatic electrochemical detection of catechol (CC) and hydroquinone (HQ), the xenobiotic pollutants, was carried out at the surface of novel carbon nanocoils/zinc-tetraphenylporphyrin (CNCs/Zn-TPP) nanocomposite supported on glassy carbon electrode. The synergistic effect of chemoresponsive activity of Zn-TPP and a large surface area and electron transfer ability of CNCs lead to efficient detection of CC and HQ. The nanocomposite was characterized by using FT-IR, UV/vis. spectrophotometer, SEM and energy dispersive X-ray spectroscopy (EDS). Cyclic voltammetry, differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy were used for the electrochemical studies. CNCs/Zn-TPP/GCE nanosensor displayed a limit of detection (LOD), limit of quantification (LOQ) and sensitivity for catechol as 0.9 µM, 3.1 µM and 0.48 µA µM-1 cm-2, respectively in a concentration range of 25-1500 µM. Similarly, a linear trend in the concentration of hydroquinone detection was observed between 25 and 1500 µM with an LOD, LOQ and sensitivity of 1.5 µM, 5.1 µM and 0.35 µA µM-1 cm-2, respectively. DPV of binary mixture pictured well resolved peaks with anodic peak potential difference, ∆Epa(CC-HQ), of 110 mV showing efficient sensing of CC and HQ. The developed nanosensor exhibits stability for up to 30 days, better selectivity and good repeatability for eight measurements (4.5% for CC and 5.4% for HQ).
Collapse
Affiliation(s)
- Syeda Aqsa Batool Bukhari
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad, H-12, Pakistan
| | - Habib Nasir
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad, H-12, Pakistan.
| | - Lujun Pan
- School of Physics, Dalian University of Technology, Dalian, China
| | - Mehroz Tasawar
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad, H-12, Pakistan
| | - Manzar Sohail
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad, H-12, Pakistan
| | - Muhammad Shahbaz
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad, H-12, Pakistan
| | - Fareha Gul
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad, H-12, Pakistan
| | - Effat Sitara
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad, H-12, Pakistan
| |
Collapse
|
24
|
Zhu J, Luo G, Xi X, Wang Y, Selvaraj JN, Wen W, Zhang X, Wang S. Cu 2+-modified hollow carbon nanospheres: an unusual nanozyme with enhanced peroxidase-like activity. Mikrochim Acta 2021; 188:8. [PMID: 33389187 DOI: 10.1007/s00604-020-04690-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/15/2020] [Indexed: 01/30/2023]
Abstract
A Cu2+-modified carboxylated hollow carbon nanospheres (Cu2+-HCNSs-COOH) was designed with enhanced peroxidase-like activity for the detection of hydrogen peroxide (H2O2) and degradation of methylene blue (MB). Hollow polymer nanospheres were fabricated from aniline, pyrrole, Triton-100, and ammonium persulfate via confined interfacial copolymerization reaction, which can be pyrolyzed to create HCNSs with the hollow gap diameter of about 20 nm under high temperature. Combining the synergistic effect of coordination and electrostatic interaction, Cu2+-HCNSs-COOH was constructed by anchoring Cu2+ on the surface of HCNSs-COOH. Furthermore, Cu2+-HCNSs-COOH has higher affinity for 3,3',5,5'-tetramethylbenzidine and H2O2 of 0.20 mM and 0.88 mM, respectively. Based on the rapid response of Cu2+-HCNSs-COOH to H2O2, we constructed a colorimetric sensing platform by detecting the absorbance of the 3,3',5,5'-tetramethylbenzidine-H2O2 system at 652 nm for quantifying H2O2, which holds good linear relationship between 1 and 150 μM and has a detection limit of 0.61 μM. We also investigated the degradation of MB in the presence of Cu2+-HCNSs-COOH and H2O2, which can degrade 80.7% pollutants within 30 min. This research developed an unusual nanozyme for bioassays and water pollution treatment, which broadened the way for the rapid development of clinical diagnostics and water pollution treatment.
Collapse
Affiliation(s)
- Junlun Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, People's Republic of China
| | - Guan Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, People's Republic of China
| | - Xiaoxue Xi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, People's Republic of China
| | - Yijia Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, People's Republic of China
| | - Jonathan Nimal Selvaraj
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Wei Wen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, People's Republic of China.
| | - Xiuhua Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, People's Republic of China
| | - Shengfu Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, People's Republic of China.
| |
Collapse
|
25
|
Zhang B, She N, Du J, Zhang M, Fang G, Wang S. Nanocomposites based on quasi-networked Au 1.5Pt 1Co 1 ternary alloy nanoparticles and decorated with poly-L-cysteine film for the electrocatalytic application of hydroquinone sensing. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111251. [PMID: 32905935 DOI: 10.1016/j.ecoenv.2020.111251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
A mildly one-pot method is developed for the synthesis of quasi-networked Au1.5Pt1Co1 ternary alloy nanoparticles (TANPs) at room temperature through the co-reduction of AuCl4-, PtCl6- and Co2+ with hydrazine hydrate. Characterizations of XRD, XPS, HRTEM, EDS and SAED successfully reveal the crystal structure, composition, valence and morphology of Au1.5Pt1Co1 TANPs, respectively. The glassy carbon electrode (GCE) modified by Au1.5Pt1Co1 TANPs with good dispersion and multi-density surface defects occupies the optimal electrochemical active surface area (ECSA). After the coated poly-L-cysteine (P-L-Cys) film on the Au1.5Pt1Co1/GCE surface, the morphology, element mapping and surface roughness of the P-L-Cys/Au1.5Pt1Co1/GCE are investigated via FESEM and AFM to verify continuous electrode modification processes. The electrochemical behaviors of the composite electrode for hydroquinone (HQ) are evaluated by cyclic voltammetry (CV) with interfacial properties of adsorption and diffusion. Differential pulse voltammetry (DPV) for HQ electrochemical sensing at 0.10 V (vs. SCE) exhibits two linear response ranges from 0.1 to 30 and 30-200 μM, respectively. A low detection limit (S/N = 3) of 0.045 μM is obtained with a sensitivity of 4.247 μA μM-1·cm-2. The resulting P-L-Cys/Au1.5Pt1Co1/GCE also presents ascendant selectivity, repeatability, reproducibility and stability. In addition, the established method is applied to the assessment of the HQ level in real water samples (mineral water, tap water and lake water) with the satisfactory results of spiked recoveries. The sensor may become a promising tool for the trace analysis of the electroactive substance in food or environmental samples.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Nana She
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jing Du
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Meng Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
26
|
Avan AA, Filik H. Simultaneous electrochemical sensing of dihydroxybenzene isomers at multi-walled carbon nanotubes aerogel/gold nanoparticles modified graphene screen-printed electrode. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Zhao X, Lyu H, Yao X, Xu C, Liu Q, Liu Z, Zhang X, Zhang X. Hydroquinone colorimetric sensing based on platinum deposited on CdS nanorods as peroxidase mimics. Mikrochim Acta 2020; 187:587. [PMID: 33001259 DOI: 10.1007/s00604-020-04451-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/12/2020] [Indexed: 11/25/2022]
Abstract
Pt deposited on CdS nanorods (Pt/CdS) have been prepared via the UV light photoreduction method. The Pt/CdS nanocomposites possess highly significant peroxidase-like activity with the assistance of the colorless substrate 3,3,5,5-tetramethylbenzidine (TMB). In the presence of peroxidase mimic Pt/CdS, TMB is quickly oxidized into a typical blue product (oxTMB, which has an obvious absorption at 652 nm) by H2O2 only in 3 min, which is easily detected visually. The catalytic activity of Pt/CdS originates from the accelerated electron transfer between the reactants. Combining the peroxidase-like activity of Pt/CdS with the blue change of TMB, a fast colorimetric sensing platform for detection of H2O2 has been constructed with a linear range 0.10-1.00 mM and a detection limit of 45.5 μM. The platform developed is further used to detect hydroquinone (HQ) in the range1.0-10 μM with a lower detection limit of 0.165 μM. The colorimetric platform has a potential to detect HQ residue in real water samples with recoveries ranging from 83.56 to 91.76%. Graphical abstract.
Collapse
Affiliation(s)
- Xin Zhao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Haoyuan Lyu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Xiuxiu Yao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Chang Xu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Qingyun Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China.
| | - Zhenxue Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Xianxi Zhang
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, People's Republic of China
| | - Xiao Zhang
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| |
Collapse
|
28
|
A Novel Electrochemical Sensor for Simultaneous Determination of Hydroquinone, Catechol, and Resorcinol Using a Carbon Paste Electrode Modified by Zn‐MOF, Nitrogen‐doped Graphite, and AuNPs. ELECTROANAL 2020. [DOI: 10.1002/elan.202060326] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Review on applications of carbon nanomaterials for simultaneous electrochemical sensing of environmental contaminant dihydroxybenzene isomers. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
30
|
Atta NF, Galal A, El-Gohary ARM. New insight for simultaneous determination of hazardous di-hydroxybenzene isomers at crown ether modified polymer/carbon nanotubes composite sensor. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122038. [PMID: 31968302 DOI: 10.1016/j.jhazmat.2020.122038] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
A new insight is presented in the fabrication of a reliable electrochemical sensor for di-hydroxybenzene isomers; hydroquinone (HQ), catechol (CC), and resorcinol (RC) which have been considered as common pollutants in environment and water samples. The sensor is based on modifying the glassy carbon electrode (GC) with successive layers, multi-walled carbon nanotubes (CNT), poly-hydroquinone (PHQ) and benzo-12-crown-4 (CE); GC/CNT/PHQ/CE. CE is introduced for the first time as a receptor for the di-hydroxybenzene isomers based on host-guest size matching. Other cycling compound with different cavity diameter as β-cyclodextrin (β-CD) (6.0-6.5 Å) was examined displaying lower current responses. CE exhibited "fit" cavity size (1.20-1.50 Å). Thus, the inclusion complexes formed between β-CD and di-hydroxybenzene isomers are less stable. The layered sensor showed highly electro-catalytic activity for simultaneous determination of isomers; HQ, CC and RC in the concentration ranges of 0.03-100 μM, 0.01-100 μM and 0.05-100 μM with low detection limit values of 0.156 nM, 0.118 nM and 0.427 nM, respectively. The practical impact of the sensor was illustrated for determination of di-hydroxybenzene isomers in real water matrices from two different sources. Moreover, anti-interference ability of the layered sensor for determination of di-hydroxybenzene isomers was successfully achieved in presence of common interfering ions and organic pollutants.
Collapse
Affiliation(s)
- Nada F Atta
- Chemistry Department, Faculty of Science, Cairo University, 12613 Giza, Egypt.
| | - Ahmed Galal
- Chemistry Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Asmaa R M El-Gohary
- Chemistry Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| |
Collapse
|
31
|
Huang R, Chen S, Yu J, Jiang X. Self-assembled Ti 3C 2 /MWCNTs nanocomposites modified glassy carbon electrode for electrochemical simultaneous detection of hydroquinone and catechol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109619. [PMID: 31493586 DOI: 10.1016/j.ecoenv.2019.109619] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 05/24/2023]
Abstract
A versatile electrochemical sensor based on titanium carbide (Ti3C2) and multi-walled carbon nanotubes (MWCNTs) nanocomposite was constructed to detection catechol (CT) and hydroquinone (HQ). To prepare this novel nanocomposite, a self-assembled process was conducted by blending two-dimensional (2D) hierarchical Ti3C2 and MWCNTs under ultrasonic-assisted. X-ray diffraction (XRD), High resolution transmission electron microscopy (HR-TEM) and Scanning electron microscopy (SEM) methods as well as electrochemical technique, such as Electrochemical impedance spectroscopy (EIS), Cyclic voltammetry (CV) and Differential pulse voltammetry (DPV) were performed to characterize the Ti3C2-MWCNTs nanocomposite and illuminate the electrochemical oxidation process. Under the optimum conditions, wide linear range from 2 μM to 150 μM for both HQ and CT and low detection limit of 6.6 nM for HQ and 3.9 nM (S/N = 3) for CT have been achieved. Impressively, the sensor possesses superior selectivity, ultra-stability, and good repeatability, which was successfully applied for detecting CT and HQ in real industrial waste water sample with recovery of 96.9%-104.7% and 93.1%-109.9% for HQ and CT, respectively. Hence, Ti3C2 nanosheeets were proved to be a promising platform to construct electrochemical oxidation sensor in environmental analyses and phenolic isomers detection.
Collapse
Affiliation(s)
- Runmin Huang
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Sisi Chen
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jingang Yu
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| | - Xinyu Jiang
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China.
| |
Collapse
|