1
|
Scroccarello A, Della Pelle F, Fiori S, Del Carlo M, Compagnone D. Flip-PAD integrating laser-scribed platinum-nanozyme for rapid smartphone-based colorimetric determination of ascorbic acid. Anal Chim Acta 2025; 1360:344150. [PMID: 40409899 DOI: 10.1016/j.aca.2025.344150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/28/2025] [Accepted: 05/02/2025] [Indexed: 05/25/2025]
Abstract
BACKGROUND The development of portable easy-to-use devices to selectively determine antioxidants still represents an open issue; antioxidants, in fact, often coexist and have similar redox reactivity. In this framework, ensuring selective colorimetric reactivity in Paper-based Analytical Devices (PAD) for a single antioxidant compound is a challenge, and the selective determination still requires time-consuming and cumbersome methods. RESULTS A disposable paper-based device (Flip-PAD) for the rapid and selective colorimetric determination of ascorbic acid (AA) is proposed. The Flip-PAD is equipped with a platinum nanostructured (L-nPt) catalytic paper realized using a CO2 laser, able to oxidize 3,3',5,5'-tetramethylbenzidine (TMB); the selective inhibition of the reaction by AA gives the analytical signal. The L-nPt paper in the Flip-PAD is coupled with fiberglass loaded with TMB, and assembled in an array format to allow the simultaneous analysis of 5 samples in 1 min; a smartphone camera is used for the RGB signal acquisition. The L-nPt CO2-laser-based synthesis was carefully optimized to maximize the nanozyme (oxidase-mimicking) activity; TMB-catalytic conversion and AA-mediated inhibition were carefully studied via colorimetric, spectroscopic and microscopical analysis. The catalytic conversion of uncolored-TMB in blue-colored TMBox occurs in 1 min, with no additional reagent needed; the AA-induced TMB-catalytic conversion inhibition results in a dye conversion 'switch-off' employed as analytical signal. SIGNIFICANCE AA dose-response signal resulted linear from 31 to 250 mg kg-1 (R2 = 0.992), showing a LOD of 6 mg kg-1; analytical performance resulted constant over 6 weeks (RSD = 4 %). The Flip-PAD exploitability was proved for the AA determination in different foods and pharmaceutical samples, returning accurate (recoveries 92-114 %; relative error -11/+4 %) and reproducible (RSD ≤10 %; n = 3) data. The proposed laser-based approach opens new paths for PADs and nanostructured systems development.
Collapse
Affiliation(s)
- Annalisa Scroccarello
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 6410, Teramo, Italy
| | - Flavio Della Pelle
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 6410, Teramo, Italy.
| | - Selene Fiori
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 6410, Teramo, Italy
| | - Michele Del Carlo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 6410, Teramo, Italy
| | - Dario Compagnone
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 6410, Teramo, Italy.
| |
Collapse
|
2
|
Yang QQ, He SB, Zhang YL, Li M, You XH, Xiao BW, Yang L, Yang ZQ, Deng HH, Chen W. A colorimetric sensing strategy based on chitosan-stabilized platinum nanoparticles for quick detection of α-glucosidase activity and inhibitor screening. Anal Bioanal Chem 2024; 416:6001-6010. [PMID: 38358531 DOI: 10.1007/s00216-024-05198-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
α-Glucosidase (α-Glu) is implicated in the progression and pathogenesis of type II diabetes (T2D). In this study, we developed a rapid colorimetric technique using platinum nanoparticles stabilized by chitosan (Ch-PtNPs) to detect α-Glu activity and its inhibitor. The Ch-PtNPs facilitate the conversion of 3,3',5,5'-tetramethylbenzidine (TMB) into oxidized TMB (oxTMB) in the presence of dissolved O2. The catalytic hydrolysis of 2-O-α-D-glucopyranosyl-L-ascorbic acid (AA-2G) by α-Glu produces ascorbic acid (AA), which reduces oxTMB to TMB, leading to the fading of the blue color. However, the presence of α-Glu inhibitors (AGIs) hinders the generation of AA, allowing Ch-PtNPs to re-oxidize colorless TMB back to blue oxTMB. This unique phenomenon enables the colorimetric detection of α-Glu activity and AGIs. The linear range for α-Glu was found to be 0.1-1.0 U mL-1 and the detection limit was 0.026 U mL-1. Additionally, the half-maximal inhibition value (IC50) for acarbose, an α-Glu inhibitor, was calculated to be 0.4769 mM. Excitingly, this sensing platform successfully detected α-Glu activity in human serum samples and effectively screened AGIs. These promising findings highlight the potential application of the proposed strategy in clinical diabetes diagnosis and drug discovery.
Collapse
Affiliation(s)
- Qin-Qin Yang
- Experimental Teaching Center, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Shao-Bin He
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Yi-Lin Zhang
- Experimental Teaching Center, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Min Li
- Experimental Teaching Center, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Xiu-Hua You
- Experimental Teaching Center, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Bo-Wen Xiao
- Experimental Teaching Center, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Liu Yang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Zhi-Qiang Yang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Hao-Hua Deng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China.
| | - Wei Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China.
| |
Collapse
|
3
|
Chen Q, Zheng L, Deng X, Zhang M, Han W, Huang Z, Miao C, Weng S. A Fluorescence Biosensor for Tyrosinase Activity Analysis Based on Silicon-Doped Carbon Quantum Dots. Chem Pharm Bull (Tokyo) 2023; 71:812-818. [PMID: 37704432 DOI: 10.1248/cpb.c23-00410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Tyrosinase (TYR) plays a pivotal role in the biosynthesis of melanin, and its activity level holds critical implications for vitiligo, melanoma cancer, and food nutritional value. The sensitive determination of TYR activity is of great significance for both fundamental research and clinical investigations. In this work, we successfully synthesized silicon-doped carbon quantum dots (Si-CQDs) through a one-pot hydrothermal method with trans-aconitic acid as carbon source and N-[3-(trimethoxysilyl)propyl]ethylenediamine as the dopant, exhibiting remarkable fluorescence quantum yield (QY) and photostability. Correspondingly, Si-CQDs were used as a probe to construct a sensitive, rapid, and user-friendly fluorescence method for TYR detection. The method relied on the oxidation of isoprenaline (ISO) by TYR, where Si-CQDs were employed as a highly efficient probe. The testing mechanism was the internal filtering effect (IFE) observed between Si-CQDs and the oxidative system of ISO and TYR. Under the optimized conditions, the fluorescence strategy exhibited a detection range of 0.05-2.0 U/mL for TYR with a limit of detection (LOD) of 0.041 U/mL. Furthermore, we successfully demonstrated the accurate determination of TYR levels in human serum, showcasing the promising potential of this method in various practical scenarios.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Andrology & Sexual Medicine, the First Affiliated Hospital of Fujian Medical University
| | - Lili Zheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University
| | - Xiaoqin Deng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University
| | - Menghan Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University
| | - Wendi Han
- Department of Pharmacy, the First Affiliated Hospital of Fujian Medical University
| | - Zhengjun Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University
| | - Chenfang Miao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University
- Department of Pharmacy, The 900th Hospital of Joint Logistics Team of the PLA, Fuzhou General Clinical Medical College of Fujian Medical University
| | - Shaohuang Weng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University
| |
Collapse
|
4
|
Miao C, Zhou X, Huang X, Huang J, Chen Y, Liu Y, Hu X, Zeng L, Weng S, Chen H. Effectively synthesized functional Si-doped carbon dots with the applications in tyrosinase detection and lysosomal imaging. Anal Chim Acta 2023; 1279:341789. [PMID: 37827683 DOI: 10.1016/j.aca.2023.341789] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023]
Abstract
There has been significant interest in the preparation and versatile applications of carbon dots (CDs) due to their immense potential value in sensors and imaging. In this work, silicon-doped green carbon dots (Si-CDs) with high quantum yield and rich epoxypropyl were effectively synthesized. Given the clinical diagnostic importance of abnormal levels of tyrosinase (TYR), sensitive detection of TYR is significant for clinical research. A fluorescence signal-off strategy with Si-CDs as probe was constructed to determine TYR based on the oxidation of dopamine by TYR. The detection ranges of this method were 0.01-1.5 and 10-30 U/mL with the detection limit of 0.0046 U/mL, the lower limit of quantification (LLOQ) was 0.01 U/mL, and TYR was successfully and accurately monitored in human serum. Additionally, due to the role of lysosomes in cellular regulatory processes, including TYR levels and fluorescence stability characteristics of Si-CDs in acidic conditions, it was envisaged to use Si-CDs as probe to establish real-time monitoring of lysosomes. According to fluorescence colocation analysis, Si-CDs had intrinsic lysosomal targeting ability to HepG2 and L-02 (with Pearson correlation coefficients were 0.90 and 0.91, respectively). The targeting of Si-CDs to lysosomes was due to the acidophilic effect of the epoxypropyl on its surface.
Collapse
Affiliation(s)
- Chenfang Miao
- Department of Pharmacy, The 900th Hospital of Joint Logistics Team of the PLA, Fuzhou General Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China; Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Xin Zhou
- Department of Pharmacy, The 900th Hospital of Joint Logistics Team of the PLA, Fuzhou General Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
| | - Xiaoyang Huang
- Department of Pharmacy, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital South Branch, Fuzhou, 350001, China; Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Jiyue Huang
- Department of Pharmacy, The 900th Hospital of Joint Logistics Team of the PLA, Fuzhou General Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
| | - Yanping Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Yuebin Liu
- Department of Pharmacy, The 900th Hospital of Joint Logistics Team of the PLA, Fuzhou General Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
| | - Xiaomu Hu
- Department of Pharmacy, The 900th Hospital of Joint Logistics Team of the PLA, Fuzhou General Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
| | - Lingjun Zeng
- Department of Pharmacy, The 900th Hospital of Joint Logistics Team of the PLA, Fuzhou General Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
| | - Shaohuang Weng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Huixing Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University Cancer Center, Fuzhou, 350001, China.
| |
Collapse
|
5
|
Ding X, Cai S, Chen X, Wang L, Hong C, Liu G. Fabrication and Electrochemical Study of [(2,2′-bipy/P2Mo18)10] Multilayer Composite Film Modified Electrode for Electrocatalytic Detection of Tyrosinase in Penaeus vannamei. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
6
|
Yuan X, Zhao H, Yuan Y, Chen M, Zhao L, Xiong Z. CuCo 2S 4 nanozyme-based stimulus-responsive hydrogel kit for rapid point-of-care testing of uric acid. Mikrochim Acta 2022; 189:283. [PMID: 35851827 DOI: 10.1007/s00604-022-05381-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/26/2022] [Indexed: 11/29/2022]
Abstract
An efficient analysis platform composed of nanozyme-based hydrogel kit and smartphone was constructed for on-site detection of uric acid (UA) in a rapid and realiable manner. CuCo2S4 nanoparticles (CuCo2S4 NPs) as a peroxidase mimic were successfully prepared and the peroxidase-like activity and catalytic mechanism were studied in detail. The hydrogen peroxide (H2O2) stimulus-responsive nanozyme-based hydrogel kit was manufactured by integrating agarose, CuCo2S4 NPs, and 3,3',5,5'-tetramethylbenzidine (TMB) into the cap of centrifuge tube. H2O2 generated via UA oxidation acts as stimulus signal, which triggers the oxidation of TMB to form blue product (oxTMB) under the catalysis of CuCo2S4 NPs, resulting in the color response of the constructed kit. The color image of the kit was captured by a smartphone built-in camera and converted into color intensity using ImageJ software, thus achieving the quantitative determination of UA. The portable kit possesses high selectivity and was used to monitor UA in human serum with satisfactory results (recovery was in the range 95.8-107.3% and RSD was not greater than 4.6%). The established sensing platform is convenient and reliable, which provides a new strategy for point-of-care testing of UA and has a broad prospect in the fields of chemical sensing and biomedical.
Collapse
Affiliation(s)
- Xucan Yuan
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning Province, 110016, People's Republic of China
| | - Hanqing Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning Province, 110016, People's Republic of China
| | - Yue Yuan
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning Province, 110016, People's Republic of China
| | - Mengying Chen
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning Province, 110016, People's Republic of China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning Province, 110016, People's Republic of China.
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning Province, 110016, People's Republic of China.
| |
Collapse
|
7
|
Altuner EE, Ozalp VC, Yilmaz MD, Bekmezci M, Sen F. High-efficiency application of CTS-Co NPs mimicking peroxidase enzyme on TMB(ox). CHEMOSPHERE 2022; 292:133429. [PMID: 34973252 DOI: 10.1016/j.chemosphere.2021.133429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
In this study, analytical studies of Chitosan-Cobalt(II) (CTS-Co(II)) nanoparticles (CTS - Co NPs) by mimicking horseradish peroxidase (HRP) were evaluated. In the applications, it was observed that CTS-Co NPs 3,3' 5,5' tetramethylbenzidine (TMB) oxidized in the presence of hydrogen peroxide (H2O2). The required CTS-Co NPs were synthesized at 50 °C in 30 min and characterized using Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), inductively coupled plasma-optical emission spectroscopy (ICP-OES), and X-ray photon spectroscopy (XPS) was done. CTS-Co NPs were studied to develop a selective TMB biosensor on TMB(ox) substrate. The synthesized CTS-Co NPs formed a catalytic reaction with 30% 0.2 mM H2O2 on 0.2 M TMB substrate. After the catalytic reaction, sensitive signals were obtained from the desired biosensor. Electrochemical measurements were taken as low limit of 10 mg and a high limit of 20 mg for the determination of CTS-Co NPs to TMB(ox). In the microplate study; The sensors were applied on 1.5 μg and 3 μg CTS-Co NPs TMB(ox) substrate, respectively. CTS- Co NPs; for TMB(ox) determination, optical density (OD) measurement was taken as a low limit of 1.5 μg and a high limit of 3 μg. Electrochemical applications of particles and microplate reader results were compared with horseradish peroxidase (HRP) enzyme for sensor properties. According to the data obtained, it was observed that it behaved similarly to the CTS-Co NPs peroxidase enzyme. This work presents innovations for nanoparticle extraction and sensor study from chitosan and other naturally sourced polymers.
Collapse
Affiliation(s)
- Elif Esra Altuner
- Sen Research Group, Department of Biochemistry, Dumlupinar University, 43000, Kutahya, Turkey.
| | - Veli Cengiz Ozalp
- Medical School, Department of Medical Biology, Atilim University, 06830, Ankara, Turkey.
| | - M Deniz Yilmaz
- Department of Bioengineering, Faculty of Engineering and Architecture, Konya Food and Agriculture University, 42080, Konya, Turkey
| | - Muhammed Bekmezci
- Sen Research Group, Department of Biochemistry, Dumlupinar University, 43000, Kutahya, Turkey; Department of Materials Science and Engineering, Faculty of Engineering, Dumlupinar University, Kutahya, Turkey
| | - Fatih Sen
- Sen Research Group, Department of Biochemistry, Dumlupinar University, 43000, Kutahya, Turkey.
| |
Collapse
|
8
|
Elhalmoushy PM, Elsheikh MA, Matar NA, El-Hadidy WF, Kamel MA, Omran GA, Elnaggar YS. Novel Berberine-Loaded Hyalurosomes as A Promising Nanodermatological Treatment for Vitiligo: Biochemical, Biological and Gene Expression Studies. Int J Pharm 2022; 615:121523. [DOI: 10.1016/j.ijpharm.2022.121523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/16/2022] [Accepted: 01/24/2022] [Indexed: 01/16/2023]
|
9
|
Zhuang X, Hu Y, Wang J, Hu J, Wang Q, Yu X. A colorimetric and SERS dual-readout sensor for sensitive detection of tyrosinase activity based on 4-mercaptophenyl boronic acid modified AuNPs. Anal Chim Acta 2021; 1188:339172. [PMID: 34794563 DOI: 10.1016/j.aca.2021.339172] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/17/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
Tyrosinase (TYR) is as a well-known polyphenol oxidase and important biomarker of melanocytic lesions. Thus, developing powerful methods to determine TYR activity is of great value in the early diagnosis of skin disease. Direct surface-enhanced Raman scattering (SERS) detection of biomolecules is usually affected by non-specific interference and complicate structure of the analytes. It is a challenge to develop Raman-active molecules with specific recognition to analytes in complex media. Here, we report a novel colorimetric and surface-enhanced Raman scattering (SERS) dual-readout assay for the determination of TYR using commercially available and economical 4-mercaptophenyl boronic acid (4-MPBA) as a Raman-active and recognition molecule. 4-MPBA provides a unique interactive boronic acid group to the diol group of TYR substrate and exhibits good SERS signal. Also, the introduction of magnetic beads could promptly improve the anti-interference ability of dual-mode sensor. The TYR-incubated tyramine-modified magnetic beads could obviously change the concentration of 4-MPBA-AuNPs in the presence of O2 and ascorbic acid, where the ultraviolet visible (UV-vis) absorption and SERS intensity were directly related to the concentration of TYR added. The dual-mode sensor had a rapid response to TYR within 1 min under optimized conditions and had high selectivity for TYR with a limit of detection at 0.001 U/mL. In addition, the dual-mode strategy showed promising prospects in the determination of TYR activity in serum samples and could be used to screen TYR inhibitors.
Collapse
Affiliation(s)
- Xiumei Zhuang
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yongjun Hu
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Junjie Wang
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Jieyu Hu
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Qi Wang
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Xingxing Yu
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
10
|
Fan YF, Zhu SX, Hou FB, Zhao DF, Pan QS, Xiang YW, Qian XK, Ge GB, Wang P. Spectrophotometric Assays for Sensing Tyrosinase Activity and Their Applications. BIOSENSORS 2021; 11:290. [PMID: 34436092 PMCID: PMC8393227 DOI: 10.3390/bios11080290] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022]
Abstract
Tyrosinase (TYR, E.C. 1.14.18.1), a critical enzyme participating in melanogenesis, catalyzes the first two steps in melanin biosynthesis including the ortho-hydroxylation of L-tyrosine and the oxidation of L-DOPA. Previous pharmacological investigations have revealed that an abnormal level of TYR is tightly associated with various dermatoses, including albinism, age spots, and malignant melanoma. TYR inhibitors can partially block the formation of pigment, which are always used for improving skin tone and treating dermatoses. The practical and reliable assays for monitoring TYR activity levels are very useful for both disease diagnosis and drug discovery. This review comprehensively summarizes structural and enzymatic characteristics, catalytic mechanism and substrate preference of TYR, as well as the recent advances in biochemical assays for sensing TYR activity and their biomedical applications. The design strategies of various TYR substrates, alongside with several lists of all reported biochemical assays for sensing TYR including analytical conditions and kinetic parameters, are presented for the first time. Additionally, the biomedical applications and future perspectives of these optical assays are also highlighted. The information and knowledge presented in this review offer a group of practical and reliable assays and imaging tools for sensing TYR activities in complex biological systems, which strongly facilitates high-throughput screening TYR inhibitors and further investigations on the relevance of TYR to human diseases.
Collapse
Affiliation(s)
- Yu-Fan Fan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| | - Si-Xing Zhu
- Institute of Science, Technology and Humanities, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Fan-Bin Hou
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| | - Dong-Fang Zhao
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| | - Qiu-Sha Pan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| | - Yan-Wei Xiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Xing-Kai Qian
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| | - Guang-Bo Ge
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| | - Ping Wang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| |
Collapse
|
11
|
Morawski FDM, Winiarski JP, de Campos CEM, Parize AL, Jost CL. Sensitive simultaneous voltammetric determination of the herbicides diuron and isoproturon at a platinum/chitosan bio-based sensing platform. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111181. [PMID: 32861008 DOI: 10.1016/j.ecoenv.2020.111181] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Phenylurea herbicides are persistent contaminants, which leads their transport to the surface and ground waters, affecting human and aquatic organisms. Different analytical methods have been reported for the detection of phenylureas; however, several of them are expensive, time-consuming, and require complex pretreatment steps. Here, we show a simple method for the simultaneous electrochemical determination of two phenylurea herbicides by differential pulse adsorptive stripping voltammetry (DPAdSV) using a modified platinum/chitosan electrode. The one-step synthesized platinum/chitosan PtNPs/CS was successfully characterized by TEM, XRPD, and FT-IR, and applied through the sensing platform designated as PtNPs/CS/GCE. This bio-based modified electrode is proposed for the first time for the individual and/or simultaneous electrochemical detection of the phenylurea herbicides diuron and isoproturon compounds extensively used worldwide that present a very similar chemical structure. Electrochemical and interfacial characteristics of the modified electrode were evaluated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). It was found that the oxidation mechanism of diuron and isoproturon occurs in two different pathways, with a peak-to-peak definition of ca. 0.15 V. Under differential pulse adsorptive stripping voltammetry (DPAdSV) optimized conditions, the limit of detection (LOD) was estimated as 7 μg L-1 for isoproturon and 20 μg L-1 for diuron (Ed = +0.8 V; td = 100 s). The proposed method was successfully applied to the determination of both analytes in river water samples, at three different levels, with a recovery range of 90-110%. The employment of the bio-based sensing platform PtNPs/CS/GCE allows a novel and easy analytical method to the multi-component phenylurea herbicides detection.
Collapse
Affiliation(s)
- Franciele de Matos Morawski
- ampere - Laboratório de Plataformas Eletroquímicas - Universidade Federal de Santa Catarina, Departamento de Química, CEP 88040-900, Florianópolis, SC, Brazil
| | - João Paulo Winiarski
- ampere - Laboratório de Plataformas Eletroquímicas - Universidade Federal de Santa Catarina, Departamento de Química, CEP 88040-900, Florianópolis, SC, Brazil
| | | | - Alexandre Luis Parize
- ampere - Laboratório de Plataformas Eletroquímicas - Universidade Federal de Santa Catarina, Departamento de Química, CEP 88040-900, Florianópolis, SC, Brazil
| | - Cristiane Luisa Jost
- ampere - Laboratório de Plataformas Eletroquímicas - Universidade Federal de Santa Catarina, Departamento de Química, CEP 88040-900, Florianópolis, SC, Brazil.
| |
Collapse
|
12
|
Liu H, Liu B, Huang P, Wu Y, Wu FY, Ma L. Colorimetric determination of tyrosinase based on in situ silver metallization catalyzed by gold nanoparticles. Mikrochim Acta 2020; 187:551. [PMID: 32894361 DOI: 10.1007/s00604-020-04463-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022]
Abstract
Gold nanoparticles (AuNPs) catalyze the mild reaction between the weak reducing agent kojic acid (KA) and silver ions (Ag+) to form Au@Ag bimetallic NPs by the combination of the intrinsic catalysis with plasmonic properties This is proposed as a novel optical assay to determine the tyrosinase (TYRase) concentration. The nanoparticles have been characterized by UV-vis spectroscopy, transmission electron microscope (TEM) images, and X-ray photoelectron spectroscopy (XPS). The sensing mechanism is based on the fact that KA binds to TYRase by chelating with dicopper active site of TYRase and the introduction of TYRase restrains the Au@Ag bimetallic NP formation by the precedent binding with KA. A clear color variation from yellow to pink and UV-vis spectral changes are observed at the optimal wavelength of 410 nm. The assay works in the range 0.13~0.73 U mL-1 with a detection limit (LOD) of 0.019 U mL-1. The impact from matrix interfering substances including glucose, uric acid, common oxidases, and amino acids is negligible. The applicability is demonstrated by quantitative determination of TYRase in human serum samples with 74 to 89% recovery and RSD less than 4.0%, which accords with the level for bio-sample analysis. Graphical abstract Schematic presentation of colorimetric assay for tyrosinase (TYRase) based on the inhibition effect on silver deposition onto catalytically active gold nanoparticles (AuNPs) and its application with a smartphone. Tyrosinase (TYRase); silver ions (Ag+); kojic acid (KA); gold nanoparticles (AuNPs); gold-silver core-shell nanoparticles (Au@Ag NPs).
Collapse
Affiliation(s)
- Hui Liu
- College of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Bowen Liu
- College of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Pengcheng Huang
- College of Chemistry, Nanchang University, Nanchang, 330031, China. .,Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, 330031, China.
| | - Yangyang Wu
- College of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Fang-Ying Wu
- College of Chemistry, Nanchang University, Nanchang, 330031, China. .,Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, 330031, China.
| | - Lihua Ma
- College of Science and Engineering, University of Houston at Clear Lake, 2700 Bay Area Blvd, Houston, TX, 77058, USA
| |
Collapse
|
13
|
He SB, Yang L, Lin XL, Peng HP, Lin Z, Deng HH, Chen W, Hong GL. Sodium Alginate Modified Platinum Nanozymes With Highly Efficient and Robust Oxidase-Like Activity for Antioxidant Capacity and Analysis of Proanthocyanidins. Front Chem 2020; 8:654. [PMID: 32850667 PMCID: PMC7419988 DOI: 10.3389/fchem.2020.00654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 06/23/2020] [Indexed: 01/24/2023] Open
Abstract
Platinum nanozymes exhibiting highly efficient and robust oxidase-like activity are successfully synthesized and modified using sodium alginate (SA-PtNPs). According to a steady-state dynamic assay, Michaelis-Menton constant (Km) is calculated as 11.6 μM, indicating that the affinity of SA-PtNPs toward the substrate, 3, 3′, 5, 5′-tetramethylbenzidine (TMB), is high. It shows in the paper that SA-PtNPs exhibit a significant oxidant effect on substrate-O2 to produce O2•- as an oxidase mimic. Moreover, the oxidase-like activity fluctuated slightly under changes in environmental pH and incubation time, implying that SA can increase the dispersibility and stability of PtNPs. A colorimetric assay for oligomeric proanthocyanidins (OPC) was realized given how few explorations of the former there are. We found that the significant inhibitory effect of OPC on the oxidase-like activity is due to the competitive effect between OPC and TMB for binding to the active site of SA-PtNPs, resulting in a color change. Under optimal conditions, the logarithmic value of the chromogenic difference (ΔA450nm) to OPC concentration was linear (4–32.5 μM, r = 0.999) with a limit of detection (LOD) of 2.0 μM. The antioxidant capacity of OPC obtained by the Soxhlet extraction method from grape seeds was 2.85 U/mg. The recovery from the experiment in which OPC was added to grape seeds ranged from 97.0 to 98.6% (RSDs of 0.5–3.4%), suggesting a high accuracy in OPC detection. These findings are important because OPC is an internationally recognized antioxidant that eliminates free radicals in the human body and, therefore, may prevent a variety of diseases. Thus, we envisage that this Pt nanozyme-based assay may be prevalent for antioxidant capacity evaluation and analytical applications.
Collapse
Affiliation(s)
- Shao-Bin He
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Liu Yang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xiu-Ling Lin
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Hua-Ping Peng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Zhen Lin
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Hao-Hua Deng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Wei Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Guo-Lin Hong
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
14
|
He SB, Yang L, Lin XL, Chen LM, Peng HP, Deng HH, Xia XH, Chen W. Heparin-platinum nanozymes with enhanced oxidase-like activity for the colorimetric sensing of isoniazid. Talanta 2020; 211:120707. [DOI: 10.1016/j.talanta.2019.120707] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/25/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022]
|
15
|
Yang W, Li J, Wang M, Sun X, Liu Y, Yang J, Ng DH. A colorimetric strategy for ascorbic acid sensing based on the peroxidase-like activity of core-shell Fe3O4/CoFe-LDH hybrid. Colloids Surf B Biointerfaces 2020; 188:110742. [DOI: 10.1016/j.colsurfb.2019.110742] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/23/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022]
|
16
|
Colorimetric assay of tyrosinase inhibition using melanocyte laden hydrogel fabricated by digital light processing printing. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
A fluorescence signal amplification strategy for modification-free ratiometric determination of tyrosinase in situ based on the use of dual-templated copper nanoclusters. Mikrochim Acta 2020; 187:240. [DOI: 10.1007/s00604-020-4186-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/24/2020] [Indexed: 12/16/2022]
|
18
|
Ouyang X, Wang SY, Liu T, Ren YA, Wang MF, Chen FF, Wang LL. Functional modulation of cytochrome C upon specific binding to DNA nanoribbons. Chem Commun (Camb) 2019; 55:14074-14077. [PMID: 31696869 DOI: 10.1039/c9cc05427h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We discovered that the function of cytochrome C can be modulated by DNA nanoribbons. Meanwhile, the interplay between the DNA nanoribbons and the native cytochrome C and the possible mechanisms are also discussed.
Collapse
Affiliation(s)
- Xiangyuan Ouyang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Key Laboratory of Modern Separation Science in Shaanxi Province, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China.
| | - Si-Yao Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Key Laboratory of Modern Separation Science in Shaanxi Province, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China.
| | - Ting Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Key Laboratory of Modern Separation Science in Shaanxi Province, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China.
| | - Yong-An Ren
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Key Laboratory of Modern Separation Science in Shaanxi Province, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China.
| | - Mei-Fang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Key Laboratory of Modern Separation Science in Shaanxi Province, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China.
| | - Fang-Fang Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Key Laboratory of Modern Separation Science in Shaanxi Province, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China.
| | - Li-Li Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Key Laboratory of Modern Separation Science in Shaanxi Province, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China.
| |
Collapse
|
19
|
Zhuo S, Fang J, Li M, Wang J, Zhu C, Du J. Manganese(II)-doped carbon dots as effective oxidase mimics for sensitive colorimetric determination of ascorbic acid. Mikrochim Acta 2019; 186:745. [DOI: 10.1007/s00604-019-3887-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023]
|
20
|
Natural and Bioinspired Phenolic Compounds as Tyrosinase Inhibitors for the Treatment of Skin Hyperpigmentation: Recent Advances. COSMETICS 2019. [DOI: 10.3390/cosmetics6040057] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
One of the most common approaches for control of skin pigmentation involves the inhibition of tyrosinase, a copper-containing enzyme which catalyzes the key steps of melanogenesis. This review focuses on the tyrosinase inhibition properties of a series of natural and synthetic, bioinspired phenolic compounds that have appeared in the literature in the last five years. Both mushroom and human tyrosinase inhibitors have been considered. Among the first class, flavonoids, in particular chalcones, occupy a prominent role as natural inhibitors, followed by hydroxystilbenes (mainly resveratrol derivatives). A series of more complex phenolic compounds from a variety of sources, first of all belonging to the Moraceae family, have also been described as potent tyrosinase inhibitors. As to the synthetic compounds, hydroxycinnamic acids and chalcones again appear as the most exploited scaffolds. Several inhibition mechanisms have been reported for the described inhibitors, pointing to copper chelating and/or hydrophobic moieties as key structural requirements to achieve good inhibition properties. Emerging trends in the search for novel skin depigmenting agents, including the development of assays that could distinguish between inhibitors and potentially toxic substrates of the enzyme as well as of formulations aimed at improving the bioavailability and hence the effectiveness of well-known inhibitors, have also been addressed.
Collapse
|