1
|
Yang F, Zhang X, Li S, Yu X, Liu S. Immobilization-free and label-free electrochemical DNA biosensing based on target-stimulated release of redox reporter and its catalytic redox recycling. Bioelectrochemistry 2024; 158:108727. [PMID: 38728815 DOI: 10.1016/j.bioelechem.2024.108727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Herein, we demonstrate a simple, homogenous and label-free electrochemical biosensing system for sensitive nucleic acid detection based on target-responsive porous materials and nuclease-triggered target recycling amplification. The Fe(CN)63- reporter was firstly sealed into the pores of Fe3O4 nanoparticles by probe DNA. Target DNA recognition triggered the controllable release of Fe(CN)63- for the redox reaction with the electron mediator of methylene blue enriched in the dodecanethiol assembled electrode and thereby generating electrochemical signal. The exonuclease III (Exo III)-assisted target recycling and the catalytic redox recycling between Fe(CN)63- and methylene blue contributed for the enhanced signal response toward target recognition. The low detection limit toward target was obtained as 478 fM and 1.6 pM, respectively, by square wave voltammetry and cyclic voltammetry methods. It also possessed a well-discrimination ability toward mismatched strands and high tolerance to complex sample matrix. The coupling of bio-gated porous nanoparticles, nuclease-assisted target amplification and catalytic redox recycling afforded the sensing system with well-controllable signal responses, sensitive and selective DNA detection, and good stability, reusability and reproducibility. It thus opens a new avenue toward the development of simple but sensitive electrochemical biosensing platform.
Collapse
Affiliation(s)
- Fangfang Yang
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Xiaolin Zhang
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Shuang Li
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Xiaoxiao Yu
- Shandong Marine Resource and Environment Research Institute, 216 Changjiang Road, Yantai 264006, China.
| | - Shufeng Liu
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China.
| |
Collapse
|
2
|
Moghtaderi S, Mandapati A, Davies G, Wahid KA, Lukong KE. Smart and low-cost fluorometer for identifying breast cancer malignancy based on lipid droplets accumulation. PLoS One 2023; 18:e0294988. [PMID: 38128020 PMCID: PMC10735024 DOI: 10.1371/journal.pone.0294988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
The most common cause of breast cancer-related death is tumor recurrence. To develop more effective treatments, the identification of cancer cell specific malignancy indicators is therefore critical. Lipid droplets are known as an emerging hallmark in aggressive breast tumors. A common technique that can be used for observing molecules in cancer microenvironment is fluorescence microscopy. We describe the design, development and applicability of a smart fluorometer to detect lipid droplet accumulation based on the emitted fluorescence signals from highly malignant (MDA-MB-231) and mildly malignant (MCF7) breast cancer cell lines, that are stained with BODIPY dye. This device uses a visible-range light source as an excitation source and a spectral sensor as the detector. A commercial imaging system was used to examine the fluorescent cancer cell lines before being validated in a preclinical setting with the developed prototype. The outcomes indicate that this low-cost fluorometer can effectively detect the alterations levels of lipid droplets and hence distinguish between "moderately malignant" and "highly malignant" cancer cells. In comparison to prior research that used fluorescence spectroscopy techniques to detect cancer biomarkers, this study revealed enhanced capability in classifying mildly and highly malignant cancer cell lines.
Collapse
Affiliation(s)
- Shiva Moghtaderi
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Aditya Mandapati
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Gerald Davies
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Khan A. Wahid
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kiven Erique Lukong
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
3
|
Wang Y, Liu S, Zhang D, Xiao Q, Huang S. Ultrasensitive electrochemical platform for the p53 gene via molecular beacon-mediated circular strand displacement and terminal deoxynucleotidyl transferase-mediated signal amplification strategy. Analyst 2023; 148:1005-1015. [PMID: 36723078 DOI: 10.1039/d2an01676a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
As an important tumor suppressor gene, the p53 gene is considered to be a typical biomarker for the early diagnosis and prognosis evaluation of severe cancer. Herein, an electrochemical biosensor was proposed for the ultrasensitive detection of the p53 gene based on molecular beacon-mediated circular strand displacement polymerization combined with terminal deoxynucleotide transferase-mediated template-free DNA extension. Firstly, the p53 gene opened the hairpin structure of the molecular beacon, thereby exposing the binding sequence region of the primer DNA. The circular strand displacement polymerization occurred in the presence of the primer DNA and phi29 DNA polymerase, subsequently resulting in the circulation of the p53 gene. With the catalysis of the terminal deoxynucleotide transferase, the 3'-OH terminal sequence of the molecular beacon elongated to produce long single-stranded DNA under the template-free DNA extension. Methylene blue bound with such DNA strands generated a strong differential pulse voltammetry (DPV) signal with a peak potential of -0.28 V. Under the optimal detection conditions, the DPV signal of methylene blue showed good linear relationships with the logarithm value of the p53 gene in two concentration ranges of 0.05 fM to 3 pM and 5 fM to 100 fM, and the detection limit of the p53 gene was as low as 0.018 fM. This electrochemical biosensor possessed high recognition ability for the p53 gene in its analogues and was successfully applied for p53 gene analysis in human serum samples.
Collapse
Affiliation(s)
- Yali Wang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China.
| | - Shuai Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China.
| | - Dongyou Zhang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China.
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China.
| | - Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China.
| |
Collapse
|
4
|
Li H, Pu J, Wang S, Yu R. Fluorescence biosensing of the leukemia gene by combining Target-Programmed controllable signal inspiring engineering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121579. [PMID: 35803107 DOI: 10.1016/j.saa.2022.121579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/15/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Clinical diagnosis urgently requires ultrasensitive, accurate and rapid monitoring of low-abundance biomarkers. A biosensing strategy capable of detecting target genes at the femtomolar scale was designed in this work. In the biosensing strategy, the target can induce the specially designed hairpin probe H1 to self-fold and form a 3' blunt-ended structure. When there are the hybrid double-stranded P1-T1, ligase, polymerase and nickase, the target gene was recycled, and at the same time the system produces a lot of T1 and T2. T1 and T2 can simultaneously trigger HCR, causing the modified fluorophore FAM on the DNA strand to move away from the quencher group BHQ. The amplified fluorescent signal can be captured by a fluorescence instrument. It is exciting for us that three signal amplifications are involved to achieve femtomolar detection of target genes, namely target recycling, dual-triggered HCR of T1 and T2, and HCR. In addition, it still has good detection ability in actual samples simulated by serum. We expect that the sensing strategy proposed in this paper offers great potential for biomarker detection of leukemia for early clinical diagnosis.
Collapse
Affiliation(s)
- Hongbo Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, PR China; College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China; State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China.
| | - Jiamei Pu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China
| | - Suqin Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China
| | - Ruqin Yu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
5
|
Anh NH, Doan MQ, Dinh NX, Huy TQ, Tri DQ, Ngoc Loan LT, Van Hao B, Le AT. Gold nanoparticle-based optical nanosensors for food and health safety monitoring: recent advances and future perspectives. RSC Adv 2022; 12:10950-10988. [PMID: 35425077 PMCID: PMC8988175 DOI: 10.1039/d1ra08311b] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Modern society has been facing serious health-related problems including food safety, diseases and illness. Hence, it is urgent to develop analysis methods for the detection and control of food contaminants, disease biomarkers and pathogens. As the traditional instrumental methods have several disadvantages, including being time consuming, and having high cost and laborious procedures, optical nanosensors have emerged as promising alternative or complementary approaches to those traditional ones. With the advantages of simple preparation, high surface-to-volume ratio, excellent biocompatibility, and especially, unique optical properties, gold nanoparticles (AuNPs) have been demonstrated as excellent transducers for optical sensing systems. Herein, we provide an overview of the synthesis of AuNPs and their excellent optical properties that are ideal for the development of optical nanosensors based on local surface plasmon resonance (LSPR), colorimetry, fluorescence resonance energy transfer (FRET), and surface-enhanced Raman scattering (SERS) phenomena. We also review the sensing strategies and their mechanisms, as well as summarizing the recent advances in the monitoring of food contaminants, disease biomarkers and pathogens using developed AuNP-based optical nanosensors in the past seven years (2015-now). Furthermore, trends and challenges in the application of these nanosensors in the determination of those analytes are discussed to suggest possible directions for future developments.
Collapse
Affiliation(s)
- Nguyen Ha Anh
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Mai Quan Doan
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Ngo Xuan Dinh
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Tran Quang Huy
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
- Faculty of Electric and Electronics, Phenikaa University Hanoi 12116 Vietnam
| | - Doan Quang Tri
- Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology (HUST) 1st Dai Co Viet Road Hanoi Vietnam
| | - Le Thi Ngoc Loan
- Faculty of Natural Sciences, Quy Nhon University Quy Nhon 55113 Vietnam
| | - Bui Van Hao
- Faculty of Materials Science and Engineering, Phenikaa University Hanoi 12116
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
- Faculty of Materials Science and Engineering, Phenikaa University Hanoi 12116
| |
Collapse
|
6
|
He S, Li P, Tang L, Chen M, Yang Y, Zeng Z, Xiong W, Wu X, Huang J. Dual-stage amplified fluorescent DNA sensor based on polymerase-Mediated strand displacement reactions. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
7
|
Jin X, Zhang D, Zhang W, Wang Y, Xiao Q, Huang S. Ratiometric electrochemical biosensor for ultrasensitive and highly selective detection of p53 gene based on nicking endonuclease-assisted target recycling and rolling circle amplification. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Controlling surface nanoarchitectures of DNA modified electrodes for improved label-free electrochemical detection of p53 gene. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Liu JL, Ma YC, Yang T, Hu R, Yang YH. A single nucleotide polymorphism electrochemical sensor based on DNA-functionalized Cd-MOFs-74 as cascade signal amplification probes. Mikrochim Acta 2021; 188:266. [PMID: 34291388 DOI: 10.1007/s00604-021-04924-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/02/2021] [Indexed: 12/30/2022]
Abstract
An ultrasensitive electrochemical sensor has been constructed for the detection of single nucleotide polymorphisms (SNPs) based on DNA-functionalized Cd-MOFs-74 as cascade signal amplification probe under enzyme-free conditions. Interestingly, the introduction of an auxiliary probe did not disturb the detection of SNP targets, but could bind more Cd-MOFs-74 signal elements to enhance the different pulse voltammetry electrochemical signal 2~3 times as compared to sensing system without auxiliary probe, which obviously improves the sensitivity of the proposed sensor. Experimental results taking p53 tumor suppressor gene as SNP model demonstrated that the proposed method can be employed to sensitively and selectively detect target p53 gene fragment with a linear response ranging from 0.01 to 30 pmol/L (detection limit of 6.3 fmol/L) under enzyme-free conditions. Utilizing this strategy, the ultrasensitive SNP electrochemical sensor is a promising tool for the determination of SNPs in biomedicine. Graphical Abstract.
Collapse
Affiliation(s)
- Jia Li Liu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650500, People's Republic of China
| | - Yu Chan Ma
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650500, People's Republic of China
| | - Tong Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650500, People's Republic of China.
| | - Rong Hu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650500, People's Republic of China.
| | - Yun Hui Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650500, People's Republic of China.
| |
Collapse
|
10
|
Zhang Z, Mei M, Yao J, Ye T, Quan J, Liu J. An off/on thrombin activated energy driven molecular machine for sensitive detection of human thrombin via non-enzymatic catalyst recycling amplification. Analyst 2021; 145:6868-6874. [PMID: 32820297 DOI: 10.1039/d0an01054e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this article, we report a novel dual on/off thrombin fluorescence aptasensor by combining the energy driven target induced strand displacement reaction and a non-enzyme catalyst recycling DNA machine. Firstly, the specific binding of an aptamer strand and thrombin induce the release of a catalyst which was used as a DNA machine trigger. Subsequently, the catalyst as the trigger initiated the DNA machine through nucleic acid hybridization and branch migration of the DNA machine, resulting in the DNA substrate melting and re-hybridization. In such a working model, the DNA machine achieved cooperative control of the circular strand displacement reaction, realizing catalyst recycling and dual-amplification. The fluorescence signal change of FAM and ROX accumulation had a good linear relationship with the thrombin concentration in the range of 1 fM to 1 nM. On account of catalyst recycling and dual recognition, the detection limit for thrombin was determined to be as low as 0.45 fM (S/N = 3).This biosensor also showed good selectivity for thrombin without being affected by some other proteins, such as PSA, lysozyme etc. Moreover, this assay can be applied to the detection of thrombin in diluted human serum.
Collapse
Affiliation(s)
- Zhang Zhang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | | | | | | | | | | |
Collapse
|
11
|
Hairpin DNA-Mediated isothermal amplification (HDMIA) techniques for nucleic acid testing. Talanta 2021; 226:122146. [PMID: 33676697 DOI: 10.1016/j.talanta.2021.122146] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 01/19/2023]
Abstract
Nucleic acid detection is of great importance in a variety of areas, from life science and clinical diagnosis to environmental monitoring and food safety. Unfortunately, nucleic acid targets are always found in trace amounts and their response signals are difficult to be detected. Amplification mechanisms are then practically needed to either duplicate nucleic acid targets or enhance the detection signals. Polymerase chain reaction (PCR) is one of the most popular and powerful techniques for nucleic acid analysis. But the requirement of costly devices for precise thermo-cycling procedures in PCR has severely hampered the wide applications of PCR. Fortunately, isothermal molecular reactions have emerged as promising alternatives. The past decade has witnessed significant progress in the research of isothermal molecular reactions utilizing hairpin DNA probes (HDPs). Based on the nucleic acid strand interaction mechanisms, the hairpin DNA-mediated isothermal amplification (HDMIA) techniques can be mainly divided into three categories: strand assembly reactions, strand decomposition reactions, and strand creation reactions. In this review, we introduce the basics of HDMIA methods, including the sensing principles, the basic and advanced designs, and their wide applications, especially those benefiting from the utilization of G-quadruplexes and nanomaterials during the past decade. We also discuss the current challenges encountered, highlight the potential solutions, and point out the possible future directions in this prosperous research area.
Collapse
|
12
|
Ibáñez-Redín G, Joshi N, do Nascimento GF, Wilson D, Melendez ME, Carvalho AL, Reis RM, Gonçalves D, Oliveira ON. Determination of p53 biomarker using an electrochemical immunoassay based on layer-by-layer films with NiFe 2O 4 nanoparticles. Mikrochim Acta 2020; 187:619. [PMID: 33083850 DOI: 10.1007/s00604-020-04594-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 10/07/2020] [Indexed: 01/15/2023]
Abstract
A disposable electrochemical immunosensors is presented suitable to detect cancer biomarker p53 using screen-printed carbon electrodes modified with a layer-by-layer (LbL) matrix of carboxylated NiFe2O4 nanoparticles and polyethyleneimine, onto which anti-p53 antibodies were adsorbed. Under optimized conditions, the immunosensors exhibited high surface coverage and high concentration of immobilized antibodies, which allowed for detection of p53 in a wide dynamic range from 1.0 to 10 × 103 pg mL-1, with a limit of detection of 5.0 fg mL-1 at a working potential of 100 mV vs. Ag/AgCl. The immunosensors also exhibited good selectivity with negligible interference upon incubation in complex matrices containing high concentrations of proteins (i.e., fetal bovine serum and cell lysate). The immunosensor performance is among the best reported in the literature for determination of p53, with the additional advantage of being disposable and operating with low-volume solutions.Graphical abstract Schematic representation of immunosensor fabrication depicting the immobilization of specific antibodies against p53 protein onto the surfaces of disposable printed electrodes modified with films of polyethyleneimine and different concentrations of carboxylated magnetic nanoparticles.
Collapse
Affiliation(s)
- Gisela Ibáñez-Redín
- São Carlos Institute of Physics, University of São Paulo, SP, 13560-970, São Carlos, Brazil
| | - Nirav Joshi
- São Carlos Institute of Physics, University of São Paulo, SP, 13560-970, São Carlos, Brazil.
| | | | - Deivy Wilson
- São Carlos Institute of Physics, University of São Paulo, SP, 13560-970, São Carlos, Brazil
| | - Matias E Melendez
- Pelé Little Prince Research Institute, Little Prince Complex, PR, 80250-060, Curitiba, Brazil.,Molecular Oncology Research Center, Barretos Cancer Hospital, SP, 14784-400, Barretos, Brazil
| | - André L Carvalho
- Molecular Oncology Research Center, Barretos Cancer Hospital, SP, 14784-400, Barretos, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, SP, 14784-400, Barretos, Brazil.,Life and eHealth Sciences Research Institute (ICVS), Medical School, University ofMinho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/ Guimarães, Portugal
| | - Débora Gonçalves
- São Carlos Institute of Physics, University of São Paulo, SP, 13560-970, São Carlos, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, SP, 13560-970, São Carlos, Brazil.
| |
Collapse
|
13
|
Kang J, Li Z, Wang G. A novel signal amplification strategy electrochemical immunosensor for ultra-sensitive determination of p53 protein. Bioelectrochemistry 2020; 137:107647. [PMID: 32971485 DOI: 10.1016/j.bioelechem.2020.107647] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/17/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022]
Abstract
In this work, we fabricated a novel sandwich-type electrochemical immunosensor for quantitative and ultra-sensitive determination of tumor suppressor protein p53 by signal amplification strategy. Conductive polymers poly (3, 4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT:PSS) has significantly effect on enhancing charge transfer and markedly increases the sensitivity of electrochemical immunosensing. Gold nanoparticles (AuNPs) as high conductivity nanocarriers were also used to capture monoclonal antibodies (Ab1) due to their large specific surface areas. In addition, pH responsive zeolitic imidazolate framework (ZIF-8) was used to load the redox probe 2, 3-diaminophenazine (DAP) and the secondary antibodies (Ab2) to form a sensitive-type ZIF-8-DAP-Ab2 immunoprobe. After the sandwich-type immunoassay with the free p53 protein, with the release of probe DAP after the electrochemical signal amplificated by PEDOT:PSS and AuNPs, the ultra-sensitive and quantitative determination of p53 protein was realized with working range of 1-120 ng mL-1 and low detection limit of 0.09 ng mL-1. Besides, the fabricated electrochemical immunosensor exhibited good recovery, high sensitivity, reliability, and selectivity.
Collapse
Affiliation(s)
- Jian Kang
- College of Pharmacy & the Key Laboratory for Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou 121001, China; College of Biomedical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining 272067, China
| | - Zaifang Li
- China-Australia Institute for Advanced Materials and Manufacturing (IAMM), Jiaxing University, Jiaxing 314001, China.
| | - Guannan Wang
- College of Pharmacy & the Key Laboratory for Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou 121001, China; College of Biomedical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining 272067, China.
| |
Collapse
|
14
|
Tao Y, Wang W, Fu C, Luo F, Guo L, Qiu B, Lin Z. Sensitive biosensor for p53 DNA sequence based on the photothermal effect of gold nanoparticles and the signal amplification of locked nucleic acid functionalized DNA walkers using a thermometer as readout. Talanta 2020; 220:121398. [PMID: 32928417 DOI: 10.1016/j.talanta.2020.121398] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 01/10/2023]
Abstract
A convenient photothermal biosensor was constructed for p53 DNA sequence detection based on the high discrimination capability of locked nucleic acid and high efficiency of signal amplification strategy of DNA walkers and difference photothermal effect between aggregated and dispersed gold nanoparticles (AuNPs). The presence of target activated the DNA walkers via the high affinity between target and complementary locked nucleic acid in the probe strand, resulting in the hybridization of the walker strand and substrate strand to form a specific enzyme recognition site. Under the cleavage of the endonuclease, single-stranded DNA (ssDNA) was released to the solution. Then the walker strand bound to a new substrate strand, and the next round of cleavage was triggered. The released ssDNA enhanced the stability of AuNPs against salt-induced aggregation. Given difference photothermal effects of the aggregated AuNPs and dispersed AuNPs under the near-infrared laser, the change of the temperature was detected by a common thermometer easily, which had a linear relationship with the target concentration in the range of 2.0-120.0 pM, the detection limit was 1.4 pM (S/N = 3). The proposed photothermal assay has been applied to detect p53 DNA sequence spiked complex samples with satisfying results.
Collapse
Affiliation(s)
- Yingzhou Tao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Weijia Wang
- Zhongshan People's Hospital, Zhongshan, Guangdong, 528403, China
| | - Caili Fu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Fang Luo
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Longhua Guo
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Bin Qiu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Zhenyu Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China.
| |
Collapse
|