1
|
Wang L, Wei YP, Liu XP, Chen J, Mao CJ, Jin B. Aggregation-Induced Enhanced Electrochemiluminescence Resonance Energy Transfer Biosensor for Ultrasensitive Detection of Carcinoembryonic Antigen Based on Donor-Acceptor Organic Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39250229 DOI: 10.1021/acs.langmuir.4c02213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Aggregation-induced electrochemiluminescence (AIECL) combines the merits of aggregation-induced emission (AIE) and electrochemiluminescence (ECL), which has become a research hot spot in recent years. Therefore, we synthesized a novel AIE compound (Z)-3-(4-(2-butyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)phenyl)-2-(4-(1,2,2-triphenylvinyl)phenyl)acrylonitrile (TPENI) with a donor-acceptor (D-A) structure, that is, a simple peripheral modification of 4-(2-butyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl) benzaldehyde (NI-CHO) with AIE-active tetraphenylethylene (TPE) to achieve the transition of NI-CHO from aggregation-caused quenching (ACQ) to an AIE molecule. When TPENI was in the aggregated state, the luminescence intensity was significantly enhanced due to the TPE structural unit restricting the free rotation of the intramolecular benzene ring, as well as the π-π stacking interactions of the molecules, which was conducive to the preparation of TPENI NPs as ECL materials. Satisfactorily, we found that the ECL intensity of TPENI NPs was increased by about 4.8-fold compared with that of the molecules dispersed in organic solution, and the stability reached about 1000 s. Based on the excellent ECL properties of TPENI NPs, an "on-off-on" ECL biosensor with a wider detection range (1 fg/mL to 100 ng/mL) and a lower detection limit of 0.20 fg/mL (S/N = 3) was proposed for sensitive analysis of a carcinoembryonic antigen (CEA). Overall, this work provided a new approach to the realization of AIECL and laid the foundation for the application of naphthalimide derivatives in ECL.
Collapse
Affiliation(s)
- Ling Wang
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Yu-Ping Wei
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Xing-Pei Liu
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Jingshuai Chen
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Chang-Jie Mao
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Baokang Jin
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
2
|
Lu Z, Dai S, Liu T, Yang J, Sun M, Wu C, Su G, Wang X, Rao H, Yin H, Zhou X, Ye J, Wang Y. Machine learning-assisted Te-CdS@Mn 3O 4 nano-enzyme induced self-enhanced molecularly imprinted ratiometric electrochemiluminescence sensor with smartphone for portable and visual monitoring of 2,4-D. Biosens Bioelectron 2023; 222:114996. [PMID: 36521203 DOI: 10.1016/j.bios.2022.114996] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/30/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Here, a novel and portable machine learning-assisted smartphone-based visual molecularly imprinted ratiometric electrochemiluminescence (MIRECL) sensing platform was constructed for highly selective sensitive detection of 2,4-Dichlorophenoxyacetic acid (2,4-D) for the first time. Te doped CdS-coated Mn3O4 (Te-CdS@Mn3O4) with catalase-like activity served as cathode-emitter, while luminol as anode luminophore accompanied H2O2 as co-reactant, and Te-CdS@Mn3O4 decorated molecularly imprinted polymers (MIPs) as recognition unit, respectively. Molecular models were constructed and MIP band and binding energies were calculated to elucidate the luminescence mechanism and select the best functional monomers. The peroxidase activity and the large specific surface area of Mn3O4 and the electrochemical effect can significantly improve the ECL intensity and analytical sensitivity of Te-CdS@Mn3O4. 2,4-D-MIPs were fabricated by in-situ electrochemical polymerization, and the rebinding of 2,4-D inhibits the binding of H2O2 to the anode emitter, and with the increase of the cathode impedance, the ECL response of Te-CdS@Mn3O4 decreases significantly. However, the blocked reaction of luminol on the anode surface also reduces the ECL response. Thus, a double-reduced MIRECL sensing system was designed and exhibited remarkable performance in sensitivity and selectivity due to the specific recognition of MIPs and the inherent ratio correction effect. Wider linear range in the range of 1 nM-100 μM with a detection limit of 0.63 nM for 2,4-D detection. Interestingly, a portable and visual smartphone-based MIRECL analysis system was established based on the capture of luminescence images by smartphones, classification and recognition by convolutional neural networks, and color analysis by self-developed software. Therefore, the developed MIRECL sensor is suitable for integration with portable devices for intelligent, convenient, and fast detection of 2,4-D in real samples.
Collapse
Affiliation(s)
- Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China.
| | - Shijie Dai
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Tao Liu
- College of Information Engineering, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an, 625014, PR China
| | - Jun Yang
- College of Information Engineering, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an, 625014, PR China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Chun Wu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - GeHong Su
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Xinguang Zhou
- Shenzhen NTEK Testing Technology Co., Ltd., Shenzhen, 518000, PR China
| | - Jianshan Ye
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, PR China.
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China.
| |
Collapse
|
3
|
Gong Z, Shao X, Luo J, Sun X, Ma H, Wu D, Fan D, Li Y, Wei Q, Ju H. Cu 2O@PdAg-quenched CdS@CeO 2 heterostructure electrochemiluminescence immunosensor for determination of prostate-specific antigen. Mikrochim Acta 2023; 190:59. [PMID: 36656362 DOI: 10.1007/s00604-023-05635-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/25/2022] [Indexed: 01/20/2023]
Abstract
Based on the resonance energy transfer between CdS@CeO2 and Cu2O@PdAg, a quenching immunosensor for sensitive detection of prostate specific antigen (PSA) was constructed. The CdS@CeO2 heterostructure was obtained by in situ growth of CeO2 particles on the surface of CdS nanorods, and stable cathodic ECL emission was achieved using K2S2O8 as coreactant. Cu2O@PdAg was composed of Cu2O with tetradecahedral structure and bimetallic PdAg nanospheres and has a UV-V is absorption range between 600 and 800 nm. It overlaps with the ECL emission spectrum of CdS@CeO2, realizing the effective quenching of the ECL signal, which provides feasibility for subsequent practical application. The immunosensor exhibited good linearity in the concentration range 10 fg·mL-1 ~ 100 ng·mL-1, with a detection limit of 5.6 fg·mL-1. In sample analysis, the recoveries were 99.8-101%, and the relative standard deviation (RSD) was 0.85-1.6% showing great potential and development value for the sensitive detection of prostate cancer.
Collapse
Affiliation(s)
- Zhengxing Gong
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.,Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Xinrong Shao
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.,Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Jing Luo
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.,Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Xu Sun
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.,Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.,Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Dan Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.,Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Dawei Fan
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China. .,Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Yuyang Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.,Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.,Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Huangxian Ju
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.,Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China
| |
Collapse
|
4
|
Trends in advanced materials for the fabrication of insulin electrochemical immunosensors. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02416-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Lian K, Feng H, Liu S, Wang K, Liu Q, Deng L, Wang G, Chen Y, Liu G. Insulin quantification towards early diagnosis of prediabetes/diabetes. Biosens Bioelectron 2022; 203:114029. [DOI: 10.1016/j.bios.2022.114029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 12/19/2022]
|
6
|
Recent advances in II-VI quantum dots based-signal strategy of electrochemiluminescence sensor. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
7
|
Liu FY, Zhang TK, Zhao YL, Ning HX, Li FS. Electrochemiluminescence of 1,8-Naphthalimide-Modified Carbon Nitride for Cu2+ Detection. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00203-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Yang H, Xu W, Liang X, Yang Y, Zhou Y. Carbon nanotubes in electrochemical, colorimetric, and fluorimetric immunosensors and immunoassays: a review. Mikrochim Acta 2020; 187:206. [DOI: 10.1007/s00604-020-4172-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
|