1
|
Zhang X, Qi X, Ouyang J, Zuo Y, Ma Q, Tan H, Guo X, Wu Y. Fluorescent cellulose nanofibrils-based hydrogel incorporating MIL-125-NH 2 for effective adsorption and detection of iodide ion. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134758. [PMID: 38820756 DOI: 10.1016/j.jhazmat.2024.134758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
To remove iodine ion (I-) from wastewater, a novel hydrogel, the fluorescent cellulose nanofibrils-based hydrogel (FCNH), was synthesized to enable both detection and adsorption of I-. The FCNH comprised cellulose nanofibrils (CNs), silver nanoclusters (AgNCs), and MIL-125-NH2. It exhibited an excellent adsorption capacity for I-, with a maximum adsorption capacity of 373.7 mg/g, fitting both the Langmuir and pseudo-second-order models. Additionally, FCNH displayed excellent regeneration properties, retaining 88.0 % of its initial adsorption capacity after six adsorption-desorption cycles. Functioning as a fluorescent sensor, the synthesized FCNH enabled the detection of I- through dynamic quenching, with linear ranges of 5 to 200 mg/L and 0.2 to 1.0 μg/L, and a determination limit of 0.11 μg/L. Analysis of the adsorption and detection mechanisms revealed that FCNH's outstanding performance arose from its 3D porous structure comprising CNs, AgNCs, and MIL-125-NH2. Economic analysis indicated that FCNH was inexpensive compared to commercially available activated carbon. Thus, FCNH demonstrated significant potential as an economical and reusable adsorbent for iodine ion removal.
Collapse
Affiliation(s)
- Xuefeng Zhang
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xinmiao Qi
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jiayu Ouyang
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yingfeng Zuo
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qiang Ma
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Xin Guo
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Yiqiang Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
2
|
Fu M, Li L, Yang D, Tu Y, Yan J. Colorimetric detections of iodide and mercuric ions based on a regulation of an Enzyme-Like activity from gold nanoclusters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121450. [PMID: 35679739 DOI: 10.1016/j.saa.2022.121450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
A simple colorimetric method was developed for sensitive and selective detections of I- and Hg2+. Histidine stabilized gold nanoclusters (His-AuNCs) were synthesized and catalyzed the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to a blue product. As a strong ligand toward gold, iodide (I-) attached to the surface of the His-AuNCs and significantly enhanced the oxidase-like activity of the His-AuNCs. Based on this enhancement, a sensitive colorimetric response toward I- was obtained. Furthermore, the strong interaction between Hg2+ and I- was adopted for an indirect Hg2+ detection. Under the optimal conditions, the platform presented high selectivity for the determinations of I- and Hg2+ in the ranges 0.02-1 µM and 0.05-0.8 µM, with detection limits as 3.3 nM and 8 nM respectively. This colorimetric assay was successfully applied for analysis of real samples.
Collapse
Affiliation(s)
- Meiling Fu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Lan Li
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Deyuan Yang
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Yifeng Tu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Jilin Yan
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China.
| |
Collapse
|
3
|
Rajasekar M, Sree Agash SG, Rajasekar K. Review of photoresponsive and glycoside dendrimers in biomaterials and sensors applications. RSC Adv 2022; 12:35123-35150. [DOI: 10.1039/d2ra06563k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Dendrimers are branched molecules with well-defined lengths, shapes, molecular weights, and monodispersity in comparison to linear polymers.
Collapse
Affiliation(s)
- Mani Rajasekar
- Synthetic Organic and Medicinal Chemistry Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai-600119, Tamil Nadu, India
| | - Saravanan Geetha Sree Agash
- Synthetic Organic and Medicinal Chemistry Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai-600119, Tamil Nadu, India
| | - Kumarasan Rajasekar
- Synthetic Organic and Medicinal Chemistry Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai-600119, Tamil Nadu, India
| |
Collapse
|
4
|
Zheng P, Abdurahman A, Zhang Z, Feng Y, Zhang Y, Ai X, Li F, Zhang M. A simple organic multi-analyte fluorescent prober: One molecule realizes the detection to DNT, TATP and Sarin substitute gas. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124500. [PMID: 33199143 DOI: 10.1016/j.jhazmat.2020.124500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
The detections of explosives and chemical warfare agents (CWAs) are always important for global security. In this study, a simple donor (D)- acceptor (A) type small organic fluorescent triazole-based molecule (T1) is reported. T1 is composed of a central 4H-1, 2, 4-triazole (TAZ) "core" and three external triphenylamine (TPA) groups. Its spin-coating films can realize the multi-analyte fluorescent prober to detect DNT (2, 4-dinitrotoluene), hydrogen peroxide (H2O2, the substitute for triacetone triperoxide (TATP)) and diethylchlorophosphate (DCP, the substitute for Sarin) vapors. Additionally, the combination of the triple sensing mechanism in the different channels affords three distinct sets of output-signal responses, these three hazardous compounds could be identified rapidly with high sensitivity and selectivity: fluorescence turn-off response to DNT, fluorescence turn-on response to H2O2 and fluorometric-colorimetric dual-channel response to DCP. T1 fluorescent probe is highly advantageous for concurrently monitoring various hazardous target substances and simultaneously possessing the desirable sensitivity and selectivity, excellent reusability. Hereby, this study provides a prototype method to build novel multifunctional fluorescent probes to explosives and CWAs.
Collapse
Affiliation(s)
- Ping Zheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Alim Abdurahman
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Zhaoxia Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Yuting Feng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Yimeng Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Xin Ai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Feng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Ming Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
5
|
Zhu M, Wang W, Liu J, Na R, Li Z, Wang Y. A novel pyrene-based fluorescent probe for the rapid and efficient detection of Co2+ in HeLa cells and natural water samples. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
Li W, Hu Y, Song Y, Gu Y, Yang W. New carbazole fluorescent sensor for ultrasensitive and ratiometric sensing of SO2 derivatives and hydrazine. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112269] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|