1
|
Liu Y, Hou S, Chen T, Li Y, Zhang M, Zhou D, Xu H. Micro-matrix cartridge extraction followed by online micro-solid phase extraction based on polystyrene@hydroxypropyl-β-cyclodextrin nanofibers for selective determination of fipronil and its metabolites in soil. Mikrochim Acta 2023; 190:138. [PMID: 36920543 DOI: 10.1007/s00604-023-05714-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023]
Abstract
Micro-matrix cartridge extraction coupled on-line to micro-solid phase extraction-high performance liquid chromatography-mass spectrometry (μ-MCE-online-μ-SPE-HPLC-MS) is presented. Micro-matrix cartridge extraction (μ-MCE) was applied to highly efficient desorption of adsorbed pesticides from contaminated soil with favorable extraction efficiency (100%). Novel polystyrene@hydroxypropyl-β-cyclodextrin (PS@HPCD) electrospun nanofibers with 3D network structure were prepared to selectively capture fipronil and its metabolites. High selectivity was obtained with adsorption efficiency ≥ 86.64% via complexation, hydrophobic affinity, and π-π interactions. PS@HPCD nanofibers exhibited remarkable advantages such as excellent enrichment factors (24-55), superior permeability, and long service life (> 65 times). Under the optimum conditions, wide linear range (0.1-1000 ng g-1), low detection limits (0.0032-0.0067 ng g-1), high recoveries (84-124.5%), favorable repeatability (RSD ≤ 10.4%, n = 5), and reproducibility (RSD ≤ 7.2%, n = 3) were acquired for fipronil and three metabolites. The developed method was applied to the pesticide determination in actual soils and the ISO-certified soil with satisfactory recoveries (96.5%). The method developed provides a green, efficient, and miniaturized method for the determination of trace pesticide residues in soil.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Shenghuai Hou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Tiantian Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yan Li
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Manlin Zhang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Dandan Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Hui Xu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
2
|
Belenguer-Sapiña C, Pellicer-Castell E, El Haskouri J, Simó-Alfonso EF, Amorós P, Mauri-Aucejo AR. A type UVM-7 mesoporous silica with γ-cyclodextrin for the isolation of three veterinary antibiotics (ofloxacin, norfloxacin, and ciprofloxacin) from different fat-rate milk samples. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
3
|
Belenguer-Sapiña C, Pellicer-Castell E, El Haskouri J, Simó-Alfonso EF, Amorós P, Mauri-Aucejo AR. Assessment of migrating endocrine-disrupting chemicals in bottled acidic juice using type UVM-7 mesoporous silica modified with cyclodextrin. Food Chem 2022; 380:132207. [DOI: 10.1016/j.foodchem.2022.132207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/13/2021] [Accepted: 01/17/2022] [Indexed: 12/26/2022]
|
4
|
A β-cyclodextrin sorbent based on hierarchical mesoporous silica for the determination of endocrine-disrupting chemicals in urine samples. J Chromatogr A 2022; 1671:463007. [DOI: 10.1016/j.chroma.2022.463007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/23/2022] [Accepted: 03/27/2022] [Indexed: 12/20/2022]
|
5
|
Belenguer-Sapiña C, Sáez-Hernández R, Pellicer-Castell E, Armenta S, Mauri-Aucejo A. Simultaneous determination of third-generation synthetic cannabinoids in oral fluids using cyclodextrin-silica porous sorbents. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Belenguer-Sapiña C, Pellicer-Castell E, Pottanam Chali S, Ravoo BJ, Amorós P, Simó-Alfonso EF, Mauri-Aucejo AR. Host-guest interactions for extracting antibiotics with a γ-cyclodextrin poly(glycidyl-co-ethylene dimethacrylate) hybrid sorbent. Talanta 2021; 232:122478. [PMID: 34074446 DOI: 10.1016/j.talanta.2021.122478] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/28/2022]
Abstract
A procedure for the solid-phase extraction of antibiotics (enoxacin, ofloxacin, norfloxacin, ciprofloxacin, and sparfloxacin) in water has been developed. The sorbent used is based on a poly(glycidyl-co-ethylene dimethacrylate) network, whose previously modified surface has been functionalized with γ-cyclodextrin through a click-chemistry reaction. The architecture of the material has been characterized by thermogravimetric analysis, N2 adsorption-desorption, Raman spectroscopy, confocal microscopy, and scanning electron microscopy, showing good capability to be used as a filler for extraction cartridges. The optimization of the extraction methodology shows good intra-day and inter-day repeatability of the extraction procedure, with coefficients of variation between 2.5 and 5.1% and the possibility of reusing the material at least five times. The detection limits of the method have been established at the μg L-1 level, confirming the possibility of quantifying trace levels. To end, real groundwater samples have been analyzed and the results are comparable with those obtained with a reference method. The proposed material can be used for assessing the presence of antibiotics in aqueous environments through an extraction procedure taking advantage of the presence of γ-cyclodextrin on its structure.
Collapse
Affiliation(s)
- Carolina Belenguer-Sapiña
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Enric Pellicer-Castell
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Sharafudheen Pottanam Chali
- Organic Chemistry Institute and Centre for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Centre for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Pedro Amorós
- Institute of Materials Science (ICMUV), University of Valencia, Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain
| | - Ernesto Francisco Simó-Alfonso
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Adela R Mauri-Aucejo
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
7
|
Cyclodextrins as a Key Piece in Nanostructured Materials: Quantitation and Remediation of Pollutants. NANOMATERIALS 2020; 11:nano11010007. [PMID: 33374502 PMCID: PMC7822197 DOI: 10.3390/nano11010007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022]
Abstract
Separation and pre-concentration of trace pollutants from their matrix by reversible formation of inclusion complexes has turned into a widely studied field, especially for the benefits provided to different areas. Cyclodextrins are non-toxic oligosaccharides that are well known for their host–guest chemistry, low prices, and negligible environmental impact. Therefore, they have been widely used as chiral selectors and delivery systems in the pharmaceutical and food industry over time. However, their use for extraction purposes is hampered by their high solubility in water. This difficulty is being overcome with a variety of investigations in materials science. The setting-up of novel solid sorbents with improved properties thanks to the presence of cyclodextrins at their structure is still an open research area. Some properties they can offer, such as an increased selectivity or a good distribution along the surface of a solid support, which provides better accessibility for guest molecules, are characteristics of great interest. This systematic review reports the most significant uses of cyclodextrins for the adsorption of pollutants in different-origin samples based on the works reported in the literature in the last years. The study has been carried out indistinctly for quantitation and remediation purposes.
Collapse
|
8
|
Belenguer-Sapiña C, Pellicer-Castell E, Amorós P, Simó-Alfonso EF, Mauri-Aucejo AR. A new proposal for the determination of polychlorinated biphenyls in environmental water by using host-guest adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138266. [PMID: 32251885 DOI: 10.1016/j.scitotenv.2020.138266] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Polychlorinated biphenyls (PCBs) are ubiquitous environmental pollutants whose wide industrial use has been banned over the years in most countries due to their persistence and bioaccumulation. In fact, the International Agency for Research on Cancer defined them in 2016 as carcinogenic to humans based on sufficient evidence of an increased risk of cancer, being children and pregnant or lactating women the most vulnerable population subgroups. In this work, a new alternative for the determination of polychlorinated biphenyls (PCB28, PCB52, PCB101, PCB138, PCB153, and PCB180) in water samples has been developed by using a cyclodextrin-containing silica microparticulated material as an adsorbent in solid-phase extraction. Gas chromatography coupled to an electron capture detector has been used in the quantification step. The methodology allows quantifying polychlorinated biphenyls at very trace levels, with limits of detection between 0.2 and 1.7 ng L-1. Other parameters such as the repeatability, with coefficients of variation lower than 11%, were likewise established. To end, real water samples were analyzed, and the results were comparable with those obtained with a reference method. The proposed methodology can be utilized for assessing the presence of these compounds in the environment and can come in handy for evaluation and remediation purposes.
Collapse
Affiliation(s)
- Carolina Belenguer-Sapiña
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Enric Pellicer-Castell
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Pedro Amorós
- Institute of Materials Science (ICMUV), University of Valencia, Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain
| | - Ernesto Francisco Simó-Alfonso
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Adela R Mauri-Aucejo
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
9
|
β-Cyclodextrin-/AuNPs-functionalized covalent organic framework-based magnetic sorbent for solid phase extraction and determination of sulfonamides. Mikrochim Acta 2020; 187:278. [PMID: 32314062 DOI: 10.1007/s00604-020-04257-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 03/31/2020] [Indexed: 10/24/2022]
Abstract
β-Cyclodextrin-functionalized magnetic covalent organic framework (Fe3O4@COF@Au-β-CD) was developed as sorbent for magnetic solid phase extraction of trace sulfonamides in meat samples prior to HPLC-MS/MS analysis. The sorbent was synthesized by loading gold nanoparticles onto a Fe3O4@COF surface and then functionalized by thiolated-β-cyclodextrin immobilization via Au-S bonding formation. The prepared composite material was employed for sulfonamides extraction. The main parameters were optimized to obtain the best extraction efficiency. The experiments of adsorption kinetics were carried out to investigate the adsorption mechanism. Results showed the pseudo-second-order kinetic was better fitted with the adsorption kinetics of sulfonamides. Under optimized conditions, the magnetic solid phase extraction-HPLC method showed good linearity (R2 ≥ 0.9936), and the limits of detection were in the range of 0.8-1.6 μg kg-1. The proposed method was successfully used for quantitation of sulfonamides in real samples. The recoveries ranged from 78.9 to 112.0% with relative standard deviations (RSDs) < 10% (n = 5). The proposed method exhibited great potential for enrichment and determination of sulfonamides in many other food or environment samples. Graphical abstract.
Collapse
|