1
|
Vasudevan M, Perumal V, Raja PB, Ibrahim MNM, Lee HL, Gopinath SCB, Ovinis M, Karuppanan S, Ang PC, Arumugam N, Kumar RS. A quadruplet 3-D laser scribed graphene/MoS 2, functionalised N 2-doped graphene quantum dots and lignin-based Ag-nanoparticles for biosensing. Int J Biol Macromol 2023; 253:126620. [PMID: 37683754 DOI: 10.1016/j.ijbiomac.2023.126620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Troponin I is a protein released into the human blood circulation and a commonly used biomarker due to its sensitivity and specificity in diagnosing myocardial injury. When heart injury occurs, elevated troponin Troponin I levels are released into the bloodstream. The biomarker is a strong and reliable indicator of myocardial injury in a person, with immediate treatment required. For electrochemical sensing of Troponin I, a quadruplet 3D laser-scribed graphene/molybdenum disulphide functionalised N2-doped graphene quantum dots hybrid with lignin-based Ag-nanoparticles (3D LSG/MoS2/N-GQDs/L-Ag NPs) was fabricated using a hydrothermal process as an enhanced quadruplet substrate. Hybrid MoS2 nanoflower (H3 NF) and nanosphere (H3 NS) were formed independently by varying MoS2 precursors and were grown on 3D LSG uniformly without severe stacking and restacking issues, and characterized by morphological, physical, and structural analyses with the N-GQDs and Ag NPs evenly distributed on 3D LSG/MoS2 surface by covalent bonding. The selective capture of and specific interaction with Troponin I by the biotinylated aptamer probe on the bio-electrode, resulted in an increment in the charge transfer resistance. The limit of detection, based on impedance spectroscopy, is 100 aM for both H3 NF and H3 NS hybrids, with the H3 NF hybrid biosensor having better analytical performance in terms of linearity, selectivity, repeatability, and stability.
Collapse
Affiliation(s)
- Mugashini Vasudevan
- Centre of Innovative Nanostructures and Nanodevices, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Veeradasan Perumal
- Centre of Innovative Nanostructures and Nanodevices, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Pandian Bothi Raja
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | | | - Hooi-Ling Lee
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Subash C B Gopinath
- Faculty of Chemical Engineering & Technology, 02600 Arau, and Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia; Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, 02600 Arau, Perlis, Malaysia.; Department of Computer Science and Engineering, Faculty of Science and Information Technology, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Mark Ovinis
- School of Engineering and the Built Environment, Faculty of Computing, Engineering and the Built Environment, Birmingham City University, B4 7XG, UK
| | - Saravanan Karuppanan
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Phaik Ching Ang
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Sivaraman N, Duraisamy V, Senthil Kumar SM, Thangamuthu R. N, S dual doped mesoporous carbon assisted simultaneous electrochemical assay of emerging water contaminant hydroquinone and catechol. CHEMOSPHERE 2022; 307:135771. [PMID: 35931262 DOI: 10.1016/j.chemosphere.2022.135771] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/15/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Heteroatom doped mesoporous carbon materials are promising catalysts for the electrochemical sensing application. Herein, we report highly efficient dual heteroatom-doped hexagonal mesoporous carbon (MC) derived from Santa Barbara Amorphous-15 (SBA-15) hard template for the detection of phenolic isomers. The synthesis involves dopamine hydrochloride (DA)/thiophene complex, which helps to attain perfectly retained N and S dual doped mesoporous carbon (NS-MC) framework. NS-MC exhibits higher surface area (951 m2 g-1) as well as higher pore volume (0.12 cm3 g-1) with huge graphitic, pyridinic and thiophenic defective sites which facilitates the well-resolved simultaneous electrochemical detection of phenolic isomers hydroquinone (HQ) and catechol (CC). Our results demonstrate that as-synthesized NS-MC material had a LOD of 0.63 μM and 0.29 μM for HQ and CC, respectively. From the calibration curve, sensitivities of proposed sensor were found to be 9.44, 2.71 μA μM-1 cm-2 and 20.80, 10.02 μA μM-1 cm-2 for HQ and CC, respectively with good linear ranges of 10-45 μM and 45-115 μM for HQ; 2-16 μM and 16-40 μM for CC. The NS-MC modified electrode exhibited good selectivity over various possible interferences. The present investigation reveals that the proposed NS-MC material is a promising metal-free catalyst which boosted to electrochemically detect both HQ and CC, present in the municipal tap as well as natural river stream water samples.
Collapse
Affiliation(s)
- Narmatha Sivaraman
- Electroorganic and Materials Electrochemistry Division (EMED), CSIR-Central Electrochemical Research Institute, Karaikudi - 630 003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201 002, India
| | - Velu Duraisamy
- Electroorganic and Materials Electrochemistry Division (EMED), CSIR-Central Electrochemical Research Institute, Karaikudi - 630 003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201 002, India
| | - Sakkarapalayam Murugesan Senthil Kumar
- Electroorganic and Materials Electrochemistry Division (EMED), CSIR-Central Electrochemical Research Institute, Karaikudi - 630 003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201 002, India
| | - Rangasamy Thangamuthu
- Electroorganic and Materials Electrochemistry Division (EMED), CSIR-Central Electrochemical Research Institute, Karaikudi - 630 003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201 002, India.
| |
Collapse
|
3
|
Zhang HJ, Zou X, Chen WY, Sun Q, Gao EQ. A Cu-functionalized MOF and multi-walled carbon nanotube composite modified electrode for the simultaneous determination of hydroquinone and catechol. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3961-3969. [PMID: 36173377 DOI: 10.1039/d2ay01230h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Designing MOF-based materials with desired electrochemical activity and high electron conductivity may yield a novel electrochemical sensor that effectively detects various organic pollutants and conducts health monitoring. This study developed a facile and versatile electrochemical sensor for simultaneously monitoring the environmental pollutants hydroquinone (HQ) and catechol (CT). The electrodes are fabricated by modifying a GCE with a Cu-functionalized MOF (UiO-bpydc-Cu) and multi-walled carbon nanotubes (MWCNTs). The Cu-functionalized MOF effectively improved the electronic conductivity by metalating the 2,2'-bipyridyl-derived UiO-bpydc with Cu2+ ions. Moreover, due to the synergic effect, the composite electrode exhibits a significant voltammetric response to HQ's and CT's electro-redox. A rapid and sensitive method of synchronously detecting HQ and CT has been established by differential pulse voltammetry (DPV). The experiments reveal that the linear response ranges were 0.5-565 μM and 1-1350 μM for HQ and CT, respectively, with low detection limits of 0.361 μM and 0.245 μM. The proposed UiO-bpydc-Cu/MWCNTs/GCE electrochemical sensor shows high sensitivity, good anti-interference, reproducibility, and stability. It can also be applied for detecting HQ and CT in actual samples.
Collapse
Affiliation(s)
- Hong-Jing Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
| | - Xin Zou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
| | - Wen-Yi Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
| | - Qian Sun
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
| | - En-Qing Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| |
Collapse
|
4
|
Electrochemical sensor based on the polyoxometalate nanocluster [(NH4)12[Mo36(NO)4O108(H2O)16]·33H2O and molybdenum disulfide nanocomposite materials for simultaneous detection of dihydroxybenzene isomers. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Mehmandoust M, Erk N, Karaman C, Karaman O. An electrochemical molecularly imprinted sensor based on CuBi 2O 4/rGO@MoS 2 nanocomposite and its utilization for highly selective and sensitive for linagliptin assay. CHEMOSPHERE 2022; 291:132807. [PMID: 34762887 DOI: 10.1016/j.chemosphere.2021.132807] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/26/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
The molecularly imprinted polymers (MIP) is an outstanding electrochemical tool that demonstrates good chemical sensitivity and stability. These main advantages, coupled with the material's vast microfabrication flexibility, make molecularly imprinted sensors an attractive sensing device. Herein, it was aimed to develop a state-of-art molecularly imprinted sensor based on CuBi2O4/rGO@MoS2 nanocomposite to be utilized for the detection of linagliptin (LNG), a novel hypoglycemic drug. The electrochemical characterizations of linagliptin on the surface of the modified electrode was examined via cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). Several characterization methods including transmission electron microscope (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), and Energy-dispersive X-ray spectroscopy(EDX), were utilized for electrode characterization. The LNG imprinted voltammetric sensor was developed in 80.0 mM phenol containing 20.0 mM LNG. CuBi2O4/rGO@MoS2 nanocomposite on LNG imprinted screen-printed carbon electrode (SPCE) (MIP/CuBi2O4/rGO@MoS2 nanocomposite/SCPE) exhibited a linear relationship between peak current and LNG concentration in the range 0.07-0.5 nM with a detection limit of 0.057 nM. In the existence of interfering substances, an LNG imprinted electrode was utilized to analyze urine, human plasma, and tablet samples with adequate selectivity. The developed sensor was also illustrated for stability, repeatability, reproducibility, and reusability.
Collapse
Affiliation(s)
- Mohammad Mehmandoust
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey; Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications, and Sustainability Research & Development Group (BIOENAMS R&D Group), 54187, Sakarya, Turkey
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey; Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications, and Sustainability Research & Development Group (BIOENAMS R&D Group), 54187, Sakarya, Turkey.
| | - Ceren Karaman
- Akdeniz University, Vocational School of Technical Sciences, Department of Electricity and Energy, Antalya, 07070, Turkey
| | - Onur Karaman
- Akdeniz University, Vocational School of Health Services, Department of Medical Services and Techniques, Antalya, 07070, Turkey.
| |
Collapse
|
6
|
Nair J.S A, S S, Sandhya KY. Picomolar level electrochemical detection of hydroquinone, catechol and resorcinol simultaneously using a MoS 2 nano-flower decorated graphene. Analyst 2022; 147:2966-2979. [DOI: 10.1039/d2an00531j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Graphene-Molybdenum disulphide nanocomposite was developed for the simultaneous electrochemical detection of dihydroxy benzene isomers attributed to the structural aspects.
Collapse
Affiliation(s)
- Arya Nair J.S
- Department of Chemistry, Indian Institute of Space Science and Technology, Valiyamala, Thiruvananthapuram 695-547, Kerala, India
| | - Saisree. S
- Department of Chemistry, Indian Institute of Space Science and Technology, Valiyamala, Thiruvananthapuram 695-547, Kerala, India
| | - K. Y. Sandhya
- Department of Chemistry, Indian Institute of Space Science and Technology, Valiyamala, Thiruvananthapuram 695-547, Kerala, India
| |
Collapse
|
7
|
Highly sensitive and rapid detection of resorcinol by forming fluorescent azamonardine with dopamine. Anal Biochem 2022; 642:114562. [DOI: 10.1016/j.ab.2022.114562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/02/2022] [Accepted: 01/15/2022] [Indexed: 11/21/2022]
|
8
|
Yang M, Guo H, Sun L, Wu N, Wang M, Yang F, Zhang T, Zhang J, Pan Z, Yang W. Simultaneous electrochemical detection of hydroquinone and catechol using MWCNT-COOH/CTF-1 composite modified electrode. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126917] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Electrochemical activation of copper oxide decorated graphene oxide modified carbon paste electrode surface for the simultaneous determination of hazardous Di-hydroxybenzene isomers. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106503] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Lu XY, Zhang SF, Kong FY, Wang ZX, Li HY, Fang HL, Wang W. Facile synthesis of TiO2-ZnO-rGO nanocomposites for highly sensitive simultaneous determination of hydroquinone and catechol. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Abu Nayem SM, Shaheen Shah S, Sultana N, Aziz MA, Saleh Ahammad AJ. Electrochemical Sensing Platforms of Dihydroxybenzene: Part 1 – Carbon Nanotubes, Graphene, and their Derivatives. CHEM REC 2021; 21:1039-1072. [DOI: 10.1002/tcr.202100043] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/07/2021] [Indexed: 12/12/2022]
Affiliation(s)
- S. M. Abu Nayem
- Department of Chemistry Jagannath University Dhaka 1100 Bangladesh 9583794
| | - Syed Shaheen Shah
- Center of Research Excellence in Nanotechnology King Fahd University of Petroleum & Minerals, KFUPM Box 5040 Dhahran 31261 Saudi Arabia
- Physics Department King Fahd University of Petroleum & Minerals, KFUPM Box 5047 Dhahran 31261 Saudi Arabia
| | - Nasrin Sultana
- Department of Chemistry Jagannath University Dhaka 1100 Bangladesh 9583794
| | - Md. Abdul Aziz
- Center of Research Excellence in Nanotechnology King Fahd University of Petroleum & Minerals, KFUPM Box 5040 Dhahran 31261 Saudi Arabia
| | | |
Collapse
|
12
|
Wei L, Huang X, Zhang X, Yang X, Yang J, Yan F, Ya Y. High-performance electrochemical sensing platform based on sodium alginate-derived 3D hierarchically porous carbon for simultaneous determination of dihydroxybenzene isomers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1110-1120. [PMID: 33587733 DOI: 10.1039/d0ay02240c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Three-dimensional hierarchically porous carbon (denoted as SA-900) with a microporous, mesoporous and macroporous structure was facilely fabricated via direct carbonization of sodium alginate. SA-900 was fully characterized by N2 adsorption-desorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction and Raman spectroscopy to confirm its structure. SA-900 was coated onto a glassy carbon electrode surface to construct an ultrasensitive electrochemical sensing platform (SA-900/GCE). Electrochemical behaviors of hydroquinone (HQ), catechol (CC) and resorcinol (RC) on the SA-900/GCE surface were investigated, and it was found that SA-900 possesses excellent electrocatalytic activity towards them. Experimental conditions including carbonization temperature, pH value, SA-900 concentration, accumulation potential and accumulation time were optimized for quantitative assay. Under optimized conditions, linear ranges for simultaneous determination of HQ, CC and RC are 0.05-1.50 μM, 0.05-1.50 μM and 0.50-15.00 μM, respectively. Detection limits for HQ, CC and RC are calculated to be 0.0183 μM, 0.0303 μM and 0.3193 μM (S/N = 3). The SA-900/GCE based electrochemical sensing platform is applied for determining HQ, CC and RC in lake water samples with satisfactory results.
Collapse
Affiliation(s)
- Liang Wei
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Glutathione and cystamine functionalized MoS 2core-shell nanoparticles for enhanced electrochemical detection of doxorubicin. Mikrochim Acta 2021; 188:35. [PMID: 33420619 DOI: 10.1007/s00604-020-04642-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/09/2020] [Indexed: 01/03/2023]
Abstract
Two-dimensional (2D) MoS2core-shell nanoparticles were synthesized using an eco-friendly surface functionalization-agent with L-glutathione and cystamine (L-GSH-MoS2-CYS) using ultrasonic frequency of 20-25 kHz. The novel modified electrode was evaluated for the electrochemical detection of doxorubicin (DOX), through cyclic and differential pulse voltammetric techniques. The electro-catalytic oxidation currents of DOX exhibited a linear relationship in the concentration ranges 0.1-78.3 and 98.3-1218 μM, with a detection limit of 31 nM. A sensitivity of 0.017μA μM-1 cm-2 was acquired at 0.48 V. The fabricated L-GSH-MoS2-CYS modified electrode showed excellent precision, selectivity, repeatability, and reproducibility during the determination of DOX levels in blood serum samples. Thus, the fabricated L-GSH-MoS2-CYS/GCE modified electrode has potential for clinical applications for optimization of chemotherapeutic drugs owing to its selectivity, ease of preparation, and long-term stability. Graphical abstract.
Collapse
|
14
|
Xu F, Wu M, Ma G, Xu H, Shang W. Copper-molybdenum sulfide/reduced graphene oxide hybrid with three-dimensional wrinkles and pores for enhanced amperometric detection of glucose. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Xin Y, Wang N, Wang C, Gao W, Chen M, Liu N, Duan J, Hou B. Electrochemical detection of hydroquinone and catechol with covalent organic framework modified carbon paste electrode. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114530] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Wu Y, Yang X, Liu S, Xing Y, Peng J, Peng Y, Ni G, Jin X. One-step synthesis of Ni(OH) 2/MWCNT nanocomposites for constructing a nonenzymatic hydroquinone/O 2 fuel cell. RSC Adv 2020; 10:39447-39454. [PMID: 35515406 PMCID: PMC9057427 DOI: 10.1039/d0ra00622j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 10/19/2020] [Indexed: 01/01/2023] Open
Abstract
In this work, a H-type hydroquinone/O2 fuel cell was assembled and shows high energy density in neutral phosphate buffer solution at moderate temperature. The anodic material, Ni(OH)2/MWCNTs, was synthesized by a one-step hydrothermal synthesis method to oxidize hydroquinone. The cathode material, Pt/MWCNTs, was obtained by an electrodeposition method, and shows great oxygen reduction reaction (ORR) activity. The properties and the morphology of Ni(OH)2/MWCNT nanocomposites were characterized by TEM, XPS, EDS-mapping and electrochemical methods, like cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results show that Ni(OH)2/MWCNTs can effectively oxidize hydroquinone and play a dominant role in enhancing the fuel cell performance. The nonenzymatic fuel cell possesses a high power density of 0.24 mW cm-2 at a cell potential of 0.49 V.
Collapse
Affiliation(s)
- Yuan Wu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University Yinchuan 750021 China
- National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Xiaonan Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University Yinchuan 750021 China
- National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Shuhui Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University Yinchuan 750021 China
- National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Yonglei Xing
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University Yinchuan 750021 China
- National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Juan Peng
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University Yinchuan 750021 China
- National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Yage Peng
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University Yinchuan 750021 China
- National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Gang Ni
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University Yinchuan 750021 China
- National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Xiaoyong Jin
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University Yinchuan 750021 China
- National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| |
Collapse
|
17
|
Molybdenum disulfide—gold nanoparticle nanocomposite in field-effect transistor back-gate for enhanced C-reactive protein detection. Mikrochim Acta 2020; 187:588. [DOI: 10.1007/s00604-020-04562-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
|
18
|
Electrochemical Nanozyme Sensor Based on MoS2-COOH-MWCNT Nanohybrid for a New Plant Growth Regulator 5-Nitroguaiacol. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01806-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Manjunatha JG. Poly (Adenine) Modified Graphene-Based Voltammetric Sensor for the Electrochemical Determination of Catechol, Hydroquinone and Resorcinol. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/1874123102014010052] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Objective:
This paper presents the application of Poly (Adenine) Modified Graphene Paste Electrode (PAMGPE) for the analysis of Catechol (CC) with Resorcinol (RC) and Hydroquinone (HQ) by a voltammetric technique.
Methods:
Electropolymerization technique was utilized for the modification of the sensor surface. The electrode surface was characterized by Field Emission Scanning Electron Microscopy (FE-SEM). Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV) were used to study the redox behavior of CC, RC and HQ.
Results:
Oxidation peak current of CC increased linearly with the concentration of CC in the range from 2×10-6- 8×10-6 M and 1×10-5-1.5 ×10-4 M with a detection limit of 2.4×10-7 M. The practical application of the developed sensor was verified as exact for the determination of CC in water sample.
Conclusion:
The stability, repeatability, and reproducibility of the developed electrode were studied and established good characteristics. Furthermore, the PAMGPE was examined for the simultaneous determination of CC, RC and HQ.
Collapse
|
20
|
Ross N, Civilized Nqakala N. Electrochemical Determination of Hydrogen Peroxide by a Nonenzymatic Catalytically Enhanced Silver-Iron (III) Oxide/Polyoxometalate/Reduced Graphene Oxide Modified Glassy Carbon Electrode. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1745223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Natasha Ross
- SensorLab, Department of Chemistry, University of Western Cape, Bellville, Cape Town, South Africa
| | - Noniko Civilized Nqakala
- SensorLab, Department of Chemistry, University of Western Cape, Bellville, Cape Town, South Africa
| |
Collapse
|
21
|
Patel BR, Noroozifar M, Kerman K. Prussian blue-doped nanosized polyaniline for electrochemical detection of benzenediol isomers. Anal Bioanal Chem 2020; 412:1769-1784. [PMID: 32043201 DOI: 10.1007/s00216-020-02400-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/17/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022]
Abstract
Simultaneous speciation of benzenediol isomers (BDIs), 1,2-benzenediol (catechol, CC), 1,3-benzenediol (resorcinol, RS), and 1,4-benzenediol (hydroquinone, HQ), was investigated by differential pulse voltammetry (DPV) using a graphite paste electrode (GPE) modified with Prussian blue-polyaniline nanocomposite. The modified GPE showed good stability, sensitivity, and selectivity properties for all the three BDIs. Prussian blue-doped nanosized polyaniline (PBNS-PANI) was synthesized first by using mechanochemical reactions between aniline and ferric chloride hexahydrate as the oxidants and then followed by the addition of potassium hexacyanoferrate(II) in a solid-state and template-free technique. The material was characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). The DPV measurements are performed in phosphate electrolyte solution with pH 4.0 at a potential range of - 0.1 to 1.0 V. The proposed modified electrode displayed a strong, stable, and continuous three well-separated oxidation peaks towards electrooxidation at potentials 0.20, 0.31, and 0.76 V for HQ, CC, and RS, respectively. The calibration curves were linear from 1 to 350.5 μM for both HQ and CC, while for RS, it was from 2 to 350.5 μM. The limit of detection was determined to be 0.18, 0.01, and 0.02 μM for HQ, CC, and RS, respectively. The analytical performance of the PBNS-PANI/GPE has been evaluated for simultaneous determination of HQ, CC, and RS in creek water, commercial hair dye, and skin whitening cream samples with satisfactory recoveries between 90 and 106%. Overall, we demonstrated that the presence of NS-PANI and PB resulted in a large redox-active surface area that enabled a promising analytical platform for simultaneous detection of BDIs. Graphical abstract.
Collapse
Affiliation(s)
- Bhargav R Patel
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Meissam Noroozifar
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.
| |
Collapse
|
22
|
Song KL, Li R, Li K, Yu H. Simultaneous determination of dihydroxybenzene isomers using a three-dimensional over-oxidized polypyrrole–reduced graphene oxide composite film electrode prepared by an electrochemical method. NEW J CHEM 2020. [DOI: 10.1039/d0nj01613f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A 3D-over-oxidized polypyrrole–reduced graphene oxide composite film was prepared by an electrochemical procedure, which showed high electrochemical activity and good selectivity for simultaneous determination of dihydroxybenzene isomers.
Collapse
Affiliation(s)
- Kai-li Song
- College of Chemistry and Chemical Engineering
- Yan'an University
- Yan'an
- China
| | - Rui Li
- College of Chemistry and Chemical Engineering
- Yan'an University
- Yan'an
- China
| | - Kun Li
- College of Chemistry and Chemical Engineering
- Yan'an University
- Yan'an
- China
| | - Hao Yu
- College of Chemistry and Chemical Engineering
- Yan'an University
- Yan'an
- China
- Yan'an Key Laboratory of Analytical Technology and Detection
| |
Collapse
|