1
|
Li Y, Liu W, Jiang X, Liu H, Wang S, Zhang G, Luo X, Zhao Y. A dual-signal triple-readout optical sensing platform for α-glucosidase and β-glucosidase activity monitoring and inhibitor screening based on luminescent covalent organic framework. Anal Chim Acta 2024; 1316:342836. [PMID: 38969426 DOI: 10.1016/j.aca.2024.342836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND As promising biomarkers of diabetes, α-glucosidase (α-Glu) and β-glucosidase (β-Glu) play a crucial role in the diagnosis and management of diseases. However, there is a scarcity of techniques available for simultaneously and sensitively detecting both enzymes. What's more, most of the approaches for detecting α-Glu and β-Glu rely on a single-mode readout, which can be affected by multiple factors leading to inaccurate results. Hence, the simultaneous detection of the activity levels of both enzymes in a single sample utilizing multiple-readout sensing approaches is highly attractive. RESULTS In this work, we constructed a facile sensing platform for the simultaneous determination of α-Glu and β-Glu by utilizing a luminescent covalent organic framework (COF) as a fluorescent indicator. The enzymatic hydrolysis product common to both enzymes, p-nitrophenol (PNP), was found to affect the fluorometric signal through an inner filter effect on COF, enhance the colorimetric response by intensifying the absorption peak at 400 nm, and induce changes in RGB values when analyzed using a smartphone-based color recognition application. By combining fluorometric/colorimetric measurements with smartphone-assisted RGB mode, we achieved sensitive and accurate quantification of α-Glu and β-Glu. The limits of detection for α-Glu were determined to be 0.8, 1.22, and 1.85 U/L, respectively. Similarly, the limits of detection for β-Glu were 0.16, 0.42, and 0.53 U/L, respectively. SIGNIFICANCE Application of the proposed sensing platform to clinical serum samples revealed significant differences in the two enzymes between healthy people and diabetic patients. Additionally, the proposed sensing method was successfully applied for the screening of α-Glu inhibitors and β-Glu inhibitors, demonstrating its viability and prospective applications in the clinical management of diabetes as well as the discovery of antidiabetic medications.
Collapse
Affiliation(s)
- Yue Li
- School of Science, Xihua University, Chengdu, 610039, China
| | - Weiping Liu
- Department of Clinical Laboratory, Zigong First People's Hospital, Zigong, 643000, Sichuan, China
| | - Xinxin Jiang
- School of Science, Xihua University, Chengdu, 610039, China
| | - Hongmei Liu
- School of Science, Xihua University, Chengdu, 610039, China
| | - Sikai Wang
- School of Science, Xihua University, Chengdu, 610039, China
| | - Guoqi Zhang
- School of Science, Xihua University, Chengdu, 610039, China.
| | - Xiaojun Luo
- School of Science, Xihua University, Chengdu, 610039, China.
| | - Yan Zhao
- School of Science, Xihua University, Chengdu, 610039, China; Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
2
|
Iradukunda Y, Kang JY, Zhao XB, Nsanzamahoro S, Fu XK, Liu J, Ding YZ, Ha W, Shi YP. A novel "Turn-on" fluorometric assays triggered reaction for β-glucosidase activity based on quercetin derived silicon nanoparticles and its potential use for cell imaging. Anal Chim Acta 2023; 1280:341880. [PMID: 37858561 DOI: 10.1016/j.aca.2023.341880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
β-Glucosidase (β-Gluco) is an enzyme that is crucial to numerous diseases, including cancer, and in sector of industries, it is used in the manufacturing of food. Measuring its enzymatic activity is critical for biomedical studies and other activities. Herein, we have developed a novel and precise fluorescent sensing method for measuring β-Gluco activity based on the production of yellow-green fluorescent quercetin-silicon nanoparticles (Q-SiNPs) produced from quercetin (QN) as a reducing agent and 3-[2-(2-aminoethyl amino) ethylamino] propyl-trimethoxy silane (AEEA) as a silane molecule. β-Gluco hydrolyzed quercetin-3-O-β-d-glucopyranoside (QO-β-DG) to produce QN, which was then used to produce Q-SiNPs. Reaction parameters, including temperature, time, buffer, pH, and probe concentration, were carefully tuned in this study. Subsequently, the fluorescence intensity was performed, showing good linearity (R2 = 0.989), a broad linear dynamic range between 0.5 and 12 U L-1, and a limit of detection (LOD) as low as 0.428 U L-1, which was proven by fluorescence measurements. Most importantly, various parameters were detected and characterized with or without β-Gluco. The designed probe was successively used to assess β-Gluco activity in human serum and moldy bread. However, the mathematical findings revealed recoveries for human serum ranging from 99.3 to 101.66% and for moldy bread from 100.11 to 102.5%. Additionally, Q-SiNPs were well suited to being incubated in vitro with L929 and SiHa living cells, and after using an Olympus microscope, imaging showed good fluorescence cell images, and their viability evinced minimal cytotoxicity of 77% for L929 and 88% for SiHa. The developed fluorescence biosensor showed promise for general use in diagnostic tests. Therefore, due to this outstanding sensing modality, we anticipate that this research can provide a novel schematic project for creating simple nanostructures with a suitable plan and a green synthetic option for enzyme activity and cell imaging.
Collapse
Affiliation(s)
- Yves Iradukunda
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jing-Yan Kang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China
| | - Xiao-Bo Zhao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China
| | - Stanislas Nsanzamahoro
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiao-Kang Fu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China
| | - Jia Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China
| | - Yu-Zhu Ding
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China
| | - Wei Ha
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China.
| |
Collapse
|
3
|
Li B, Xiang G, Huang G, Jiang X, He L. Self-exothermic reaction assisted green synthesis of carbon dots for the detection of para-nitrophenol and β-glucosidase activity. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
4
|
Determination of β-glucosidase activity using single-particle enumeration with Au@CeO2 nanoparticles. Mikrochim Acta 2022; 189:480. [DOI: 10.1007/s00604-022-05580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022]
|
5
|
Zhang WY, Tian T, Peng LJ, Zhou HY, Zhang H, Chen H, Yang FQ. A Paper-Based Analytical Device Integrated with Smartphone: Fluorescent and Colorimetric Dual-Mode Detection of β-Glucosidase Activity. BIOSENSORS 2022; 12:893. [PMID: 36291030 PMCID: PMC9599113 DOI: 10.3390/bios12100893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
In this work, indoxyl-glucoside was used as the substrate to develop a cost-effective, paper-based analytical device for the fluorescent and colorimetric dual-mode detection of β-glucosidase activity through a smartphone. The β-glucosidase can hydrolyze the colorless substrate indoxyl-glucoside to release indoxyl, which will be self-oxidized to generate green products in the presence of oxygen. Meanwhile, the green products emit bright blue-green fluorescence under ultraviolet-visible light irradiation at 365 nm. Fluorescent or colorimetric images were obtained by a smartphone, and the red-green-blue channels were analyzed by the Adobe Photoshop to quantify the β-glucosidase activity. Under the optimum conditions, the relative fluorescent and colorimetric signals have a good linear relationship with the activity of β-glucosidase, in the range of 0.01-1.00 U/mL and 0.25-5.00 U/mL, and the limits of detection are 0.005 U/mL and 0.0668 U/mL, respectively. The activities of β-glucosidase in a crude almond sample measured by the fluorescent and colorimetric methods were 23.62 ± 0.53 U/mL and 23.86 ± 0.25 U/mL, respectively. In addition, the spiked recoveries of normal human serum and crude almond samples were between 87.5% and 118.0%. In short, the paper-based device, combined with a smartphone, can provide a simple, environmentally friendly, and low-cost method for the fluorescent and colorimetric dual-mode detection of β-glucosidase activity.
Collapse
Affiliation(s)
- Wei-Yi Zhang
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Tao Tian
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Li-Jing Peng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Hang-Yu Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Hao Zhang
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Hua Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| |
Collapse
|
6
|
Wen R, Zhang Y, Zhou C, Huang M, Tian J, Lu J. Photoelectrochemical aptasensor for kanamycin determination based on exonuclease I-assisted target signal amplification and photoexcited electron transfer strategy. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Liu Z, Liu S, Gao D, Li Y, Tian Y, Bai E. An Optical Sensing Platform for Beta-Glucosidase Activity Using Protein-Inorganic Hybrid Nanoflowers. J Fluoresc 2022; 32:669-680. [PMID: 35040029 DOI: 10.1007/s10895-021-02859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
In this work, a convenient and dual-signal readout optical sensing platform for the sensitively and selectively determination of beta-glucosidase (β-Glu) activity was reported using protein-inorganic hybrid nanoflowers [BSA-Cu3(PO4)2·3H2O] possessing peroxidase-mimicking activity. The nanoflowers (NFs) were facilely synthesized through a self-assembled synthesis strategy at room temperature. The as-prepared NFs could catalytically convert the colorless and non-fluorescent Amplex Red into colored and highly fluorescent resorufin in the presence of hydrogen peroxide via electron transfer process. β-Glu could hydrolyze cyanogenic glycoside, using amygdalin (Amy) as a model, into cyanide ions (CN-), which can subsequently efficiently suppress the catalytic activity of NFs, accompanied with the fluorescence decrease and the color fading. The concentration of CN- was controlled by β-Glu-triggered enzymatic reaction of Amy. Thus, a sensing system was established for fluorescent and visual determination of β-Glu activity. Under the optimum conditions, the present fluorescent and visual bimodal sensing platform exhibited good sensitivity for β-Glu activity assay with a detection limit of 0.33 U·L-1. The sensing platform was further applied to determinate β-Glu in real samples and satisfactory results were attained. Additionally, the optical sensing system can potentially be a promising candidate for β-Glu inhibitors screening.
Collapse
Affiliation(s)
- Ziping Liu
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China.,School of Geographical Sciences, Northeast Normal University, People's Street 5268, Changchun Jilin, 130024, China
| | - Shasha Liu
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China
| | - Decai Gao
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China.
| | - Yanan Li
- Key Laboratory for Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Ye Tian
- Jilin Province Product Quality Supervision Testing Institute, Changchun, 130012, People's Republic of China
| | - Edith Bai
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
8
|
Chen GY, Zhang H, Yang FQ. A simple and portable method for β-Glucosidase activity assay and its inhibitor screening based on a personal glucose meter. Anal Chim Acta 2021; 1142:19-27. [PMID: 33280697 DOI: 10.1016/j.aca.2020.10.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 11/21/2022]
|
9
|
Wang M, Wang M, Zhang F, Su X. A ratiometric fluorescent biosensor for the sensitive determination of α-glucosidase activity and acarbose based on N-doped carbon dots. Analyst 2020; 145:5808-5815. [PMID: 32672281 DOI: 10.1039/d0an01065k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this work, a novel ratiometric fluorescent platform for α-glucosidase (α-glu) and its inhibitor was constructed based on N-doped carbon dots (N-CDs). The α-glucosidase present can catalyze the release of hydroquinone (HQ) from α-arbutin. Then, the generated HQ can be oxidized and copolymerized with polyethyleneimine (PEI) to form a yellowish green fluorescence copolymer (PHQ-PEI) with intense fluorescence emission at 510 nm. When the PHQ-PEI was formed, blue fluorescence of N-CDs at 425 nm was decreased, whereas the fluorescence of PHQ-PEI at 510 nm increased sharply as a result of the fluorescence resonance energy transfer (FRET) effect between N-CDs and PHQ-PEI. However, in the presence of acarbose, the activity of α-glucosidase is inhibited, and α-arbutin cannot be hydrolyzed to hydroquinone, leading to the fluorescence recovery of N-CDs at 425 nm and the fluorescence decrease of PHQ-PEI at 510 nm. The linear range from 0.2 to 1.6 mU mL-1 and 25-150 μmol L-1 was obtained for α-glucosidase and acarbose detection, respectively, and the detection limit (LOD) for α-glucosidase and acarbose was as low as 0.082 mU mL-1 and 14.5 μmol L-1. Thus, a ratiometric fluorescent sensor with good sensitivity and high specificity was established for α-glucosidase assay and satisfactory results were acquired in real sample determination.
Collapse
Affiliation(s)
- Mengjun Wang
- College of Chemistry, Jilin University, Changchun, 130012, PR China.
| | | | | | | |
Collapse
|