1
|
Osooli P, Yamini Y, Tabibpour M, Moosavi NS. Functionalized carbon nanotube-polyaniline composite coating for on-line microextraction on a screw coupled with high performance liquid chromatography to determine opium alkaloids. Mikrochim Acta 2023; 190:464. [PMID: 37947885 DOI: 10.1007/s00604-023-06045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
A novel and efficient on-line microextraction on a screw coupled with high-performance liquid chromatography with an ultraviolet-visible detector was developed to extract and determine trace quantities of five opium alkaloids. All detections of the analytes were achieved at 210 nm. The surface of the screw grooves was electrochemically coated with the carbon nanotubes-COOH/polyaniline composite. The surface characterization was assessed by Fourier transform infrared spectroscopy and field emission scanning electron microscopy. The prepared screw was inserted into a cartridge of a guard column, and then the constructed microextraction on a screw device was placed in the loop of a six-port HPLC injection valve. The parameters affecting the extraction efficiency of the analytes were optimized using the one variable-at-a-time method. The effective parameters for the extraction efficiency of the analytes, including sample volume, extraction time, sampling flow rate, desorption solvent type, ionic strength, and pH were investigated and optimized. Under optimal conditions, the detection limits were 3-10 μg L-1, and the linear dynamic ranges were 10-2000 μg L-1 with a coefficient of determination greater than 0.9940. The inter-day and intra-day (n = 3) relative standard deviations were less than 7% and 5%, respectively. The proposed method was simple and reproducible, with an acceptable relative recovery (90-108%) for determining opium alkaloids in water and urine samples.
Collapse
Affiliation(s)
- Payam Osooli
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Yadollah Yamini
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| | - Mahmoud Tabibpour
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Negar Sabahi Moosavi
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| |
Collapse
|
2
|
Li M, Yu J, Wang X, Hao L, Ma L, Wang Q, Liu W, Wang Z, Wang C, Wu Q. N-rich hypercrosslinked porous polymers for highly efficient preconcentration and sensitive detection of chlorophenols. Mikrochim Acta 2023; 190:334. [PMID: 37507625 DOI: 10.1007/s00604-023-05918-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Three novel N-rich hypercrosslinked porous polymers (NHCP1, NHCP2, and NHCP3) were facilely developed using Friedel-Crafts alkylation. NHCP1 with a remarkably large surface area (2066 m2 g-1) showed the best adsorption performance for chlorophenol pollutants. A sensitive and simple method was developed by using NHCP1 as a sorbent for solid-phase extraction to preconcentrate several chlorophenols in honey, water, and peach beverage samples followed by determination using a high-performance liquid chromatography-ultraviolet detector. The detection wavelength was 280 nm. Under the optimized conditions, the linear ranges were 1.67-1000 ng g-1 for honey, 0.170-100 ng mL-1 for water, and 0.330-100 ng mL-1 for peach beverage samples. The detection limits (S/N = 3) were 0.500-2.00 ng g-1, 0.0500-0.100 ng mL-1, and 0.100-0.200 ng mL-1, respectively. Recovery values were 89.3-111% with relative standard deviations <9.4%. The proposed extraction/preconcentration and quantitative analysis method provides an affordable and effective alternative for the preconcentration and determination of low levels of chlorophenols in real samples.
Collapse
Affiliation(s)
- Min Li
- College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Jingtao Yu
- College of Economics and Management, Hebei Agricultural University, Baoding, 071001, China
| | - Xinmeng Wang
- College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Lin Hao
- College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Lequn Ma
- College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Qianqian Wang
- College of Science, Hebei Agricultural University, Baoding, 071001, China
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Weihua Liu
- College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Zhi Wang
- College of Science, Hebei Agricultural University, Baoding, 071001, China
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding, 071001, China.
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding, 071001, China.
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
3
|
|
4
|
A chiral porous organic polymer COP-1 used as stationary phase for HPLC enantioseparation under normal-phase and reversed-phase conditions. Mikrochim Acta 2022; 189:360. [PMID: 36042107 DOI: 10.1007/s00604-022-05448-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/07/2022] [Indexed: 10/14/2022]
Abstract
A spherical chiral porous organic polymer (POPs) COP-1 is synthesized by the Friedel-Crafts alkylation reaction of Boc-3-(4-biphenyl)-L-alanine (BBLA) and 4,4'-bis(chloromethyl)-1,1'-biphenyl (BCMBP), which was used as a novel chiral stationary phase (CSPs) for mixed-mode high-performance liquid chromatography (HPLC) enantioseparation. The racemic compounds were resolved in normal-phase liquid chromatography (NPLC) using n-hexane/isopropanol as mobile phase and reversed-phase liquid chromatography (RPLC) using methanol/water as mobile phase. The COP-1-packed column exhibited excellent separation performance toward various racemic compounds including alcohols, amines, ketones, esters, epoxy compounds, organic acids, and amino acids in NPLC and RPLC modes. The effects of analyte mass and column temperature on the separation efficiency of racemic compounds were investigated. In addition, the chiral resolution ability of the COP-1-packed column not only can be complementary in RPLC/NPLC modes but also exhibit a good chiral recognition complementarity with Chiralpak AD-H column and chiral porous organic cage (POC) NC1-R column. The relative standard deviations (RSD) (n = 5) of the retention time, resolution value, and peak area by repeated separation of 1-(4-chiorophenyl)ethanol are all below 3.0%. The COP-1 column shows high column efficiency (e.g., 17,320 plates m-1 for 1-(4-chlorophenyl)ethanol on COP-1 column in NPLC), high enantioselectivity, and good reproducibility toward various racemates. This work demonstrates that chiral POPs microspheres are promising chiral materials for HPLC enantioseparation.
Collapse
|
5
|
A New Composite of O-aminobenzene Sulfonic Acid Self-Doped Polyaniline and Multi-Walled Carbon Nanotubes as a Fiber Coating for Solid-Phase Microextraction Gas Chromatography. Chromatographia 2022. [DOI: 10.1007/s10337-022-04177-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Li D, Li M, Zhu S, Gao Y, Mu M, Zhang N, Wang Y, Lu M. Porous Hexagonal Boron Nitride as Solid-Phase Microextraction Coating Material for Extraction and Preconcentration of Polycyclic Aromatic Hydrocarbons from Soil Sample. NANOMATERIALS 2022; 12:nano12111860. [PMID: 35683716 PMCID: PMC9182517 DOI: 10.3390/nano12111860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/10/2022]
Abstract
Sample pretreatment plays important role in the analysis and detection of trace pollutants in complex matrices, such as environmental and biological samples. The adsorption materials of sample pretreatment receive considerable attention, which has a significant effect on the sensitivity and selectivity of the analytical method. In this work, the porous hexagonal boron nitride (h-BN) was utilized as a coating material of solid-phase microextraction (SPME) to extract and preconcentrate polycyclic aromatic hydrocarbons (PAHs) prior to separation and detection with GC-FID. Attributed to the multiple interactions including hydrophobicity, hydrogen bonding and strong π–π interaction, the h-BN coating showed excellent extraction performance for PAHs. Under the optimal conditions, the method showed the linear relationship in the range of 0.1–50 ng mL−1 for acenaphthene, 0.05–50 ng mL−1 for pyrene, and 0.02–50 ng mL−1 for fluorene, phenanthrene and anthracene with a correlation coefficient (R2) not lower than 0.9910. The enrichment factors were achieved between 1526 and 4398 for PAHs with h-BN as SPME fiber coating. The detection limits were obtained in the range of 0.004–0.033 ng mL−1, which corresponds to 0.08–0.66 ng g−1 for soil. The method was successfully applied to analysis of real soil samples. The recoveries were determined between 78.0 and 120.0% for two soil samples. The results showed that h-BN material provided a promising alternative in sample pretreatment and analysis.
Collapse
Affiliation(s)
| | | | | | | | | | - Ning Zhang
- Correspondence: (N.Z.); (M.L.); Tel./Fax: +86-371-238-815-89 (M.L.)
| | | | - Minghua Lu
- Correspondence: (N.Z.); (M.L.); Tel./Fax: +86-371-238-815-89 (M.L.)
| |
Collapse
|
7
|
Chang N, Kang J, Wang F, Liu H, Wang X, Du X. Hydrothermal in situ growth and application of a novel flower-like phosphorous-doped titanium oxide nanoflakes on titanium alloy substrate for enhanced solid-phase microextraction of polycyclic aromatic hydrocarbons in water samples. Anal Chim Acta 2022; 1208:339808. [DOI: 10.1016/j.aca.2022.339808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 11/27/2022]
|
8
|
Preparation of porous carbon nanomaterials and their application in sample preparation: A review. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116421] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Wang Z, Zhang Y, Chang G, Li J, Yang X, Zhang S, Zang X, Wang C, Wang Z. Triazine-based covalent organic polymer: A promising coating for solid-phase microextraction. J Sep Sci 2021; 44:3608-3617. [PMID: 34329505 DOI: 10.1002/jssc.202100442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 11/08/2022]
Abstract
Advancement of novel coating materials for solid-phase microextraction is highly needed for sample pretreatment. Herein, a triazine-based covalent organic polymer was constructed from the monomers of cyanuric chloride and trans-stilbene via the Friedel-Crafts reaction and thereafter used as a solid-phase microextraction fiber coating for the extraction of polycyclic aromatic hydrocarbons and their nitrated and oxygenated derivatives. The newly-developed solid-phase microextraction method coupled with gas chromatography/flame ionization detection gives enhancement factors of 548-1236 and limits of detection of 0.40-2.81 ng/L for the determination of polycyclic aromatic hydrocarbons and their derivatives. The one fiber precision for five replicate determinations of the analytes and the fiber-to-fiber precision with three parallel prepared fibers, expressed as relative standard deviations, was in the range of 4.6-9.4% and 6.2-10.9%, respectively. The relative recoveries of the analytes for environmental water samples were in the range of 88.6-106.4% with the relative standard deviations ranging from 4.0 to 11.7% (n = 5).
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Ying Zhang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Guifen Chang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Jinqiu Li
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Xiumin Yang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Shuaihua Zhang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Xiaohuan Zang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Chun Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Zhi Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| |
Collapse
|
10
|
Li J, Wang Z, Wang Q, Guo L, Wang C, Wang Z, Zhang S, Wu Q. Construction of hypercrosslinked polymers for high-performance solid phase microextraction of phthalate esters from water samples. J Chromatogr A 2021; 1641:461972. [PMID: 33611110 DOI: 10.1016/j.chroma.2021.461972] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 11/24/2022]
Abstract
Design and synthesis of novel coatings for solid phase microextraction (SPME) is urgently needed for sample pretreatment. In this study, three hypercrosslinked polymers (HCPs) were constructed by the facile Friedel-Crafts alkylation reactions between tetraphenylethylene (TPE) and 1,4-bis(chloromethyl)benzene (BCMB), 4,4'-bis(chloromethyl)-1,1'-biphenyl (BCMBP), and cyanuric chloride (CC), respectively. The newly-synthesized HCPs were employed as SPME coatings for the extraction of phthalate esters (PAEs). Various parameters influencing the SPME efficiencies, including extraction time and temperature, ionic strength, stirring rate, desorption temperature and time were optimized. Under the optimal conditions, low limits of detection (0.003-0.033 μg L - 1), wide linearity (0.01-10 μg L - 1) and good repeatability (4.1-9.3%) were achieved. The HCPs-based SPME method was successfully applied for the determination of eight PAEs in environmental water and bottled water samples with recoveries from 75.3% to 116%. This method provides a good alternative for monitoring trace level of PAEs in water samples.
Collapse
Affiliation(s)
- Jinqiu Li
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhuo Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Qianqian Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Liying Guo
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Shuaihua Zhang
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|