1
|
Junping Z, Zheng W, ZhengFang T, Yue LIJ, PengHang A, Mingli Z, Hongzhi A. Novel electrochemical platform based on C 3N 4-graphene composite for the detection of neuron-specific enolase as a biomarker for lung cancer. Sci Rep 2024; 14:6350. [PMID: 38491108 PMCID: PMC10943129 DOI: 10.1038/s41598-024-56784-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
Lung cancer remains the leading cause of cancer mortality worldwide. Small cell lung cancer (SCLC) accounts for 10-15% of cases and has an overall 5-years survival rate of only 15%. Neuron-specific enolase (NSE) has been identified as a useful biomarker for early SCLC diagnosis and therapeutic monitoring. This work reports an electrochemical immunosensing platform based on a graphene-graphitic carbon nitride (g-C3N4) nanocomposite for ultrasensitive NSE detection. The g-C3N4 nanosheets and graphene nanosheets were synthesized via liquid exfoliation and integrated through self-assembly to form the nanocomposite. This nanocomposite was used to modify screen-printed carbon electrodes followed by covalent immobilization of anti-NSE antibodies. The unique properties of the graphene-g-C3N4 composite facilitated efficient antibody loading while also enhancing electron transfer efficiency and electrochemical response. Systematic optimization of experimental parameters was performed. The immunosensor exhibited a wide linear detection range of 10 pg/mL to 100 ng/mL and low limit of detection of 3 pg/mL for NSE along with excellent selectivity against interferences. Real serum matrix analysis validated the applicability of the developed platform for sensitive and accurate NSE quantifica-tion at clinically relevant levels. This novel graphene-g-C3N4 nanocomposite based electro-chemical immunoassay demonstrates great promise for early diagnosis of SCLC.
Collapse
Affiliation(s)
- Zhang Junping
- Cancer Research Institute, Henan Integrative Medicine Hospital 45000, Zhengzhou, China
| | - Wei Zheng
- Cancer Research Institute, Henan Integrative Medicine Hospital 45000, Zhengzhou, China.
| | - Tang ZhengFang
- The First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450004, China
| | - L I Ji Yue
- The First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450004, China
| | - An PengHang
- The First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450004, China
| | - Zhang Mingli
- Cancer Research Institute, Henan Integrative Medicine Hospital 45000, Zhengzhou, China.
| | - An Hongzhi
- Cancer Research Institute, Henan Integrative Medicine Hospital 45000, Zhengzhou, China.
| |
Collapse
|
2
|
Highly sensitive electrochemiluminescent immunoassay for detecting neuron-specific enolase (NSE) based on polyluminol and glucose oxidase-conjugated glucose-encapsulating liposome. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Wang H, Wang H, Li Y, Wang H, Ren X, Wei Q, Wu D. Construction of a photoelectrochemical immunosensor based on CuInS 2 photocathode and BiVO 4/BiOI/Ag 2S photoanode and sensitive detection of NSE. Biosens Bioelectron 2022; 211:114368. [PMID: 35597146 DOI: 10.1016/j.bios.2022.114368] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 01/10/2023]
Abstract
In this paper, a photoelectrochemical (PEC) immunosensor was constructed to detect neuron-specific enolase (NSE) with ITO/BiVO4/BiOI/Ag2S as photoanode and ITO/CuInS2 as photocathode. Due to its excellent photocurrent response, Ag2S sensitized BiVO4/BiOI composite was selected to provide stable photocurrent in place of the traditional Pt electrode. ITO/CuInS2 electrode was used to immobilize biomolecules, which solved the deficiency of poor anti-interference ability of single photoanode. Under the optimal experimental conditions, the PEC immunosensor had outstanding linear relationship within the range of NSE concentration from 5 pg/mL-200 ng/mL, and the detection limit was 1.2 pg/mL. The constructed PEC immunosensor had two advantages. On the one hand, the PEC immunosensor was built on the photocathode, which had better anti-interference ability because of the separation of light capture and biomolecular recognition process. On the other hand, the introduction of photoanode increased the photocurrent response and reduced the detection limit of target antigen. The PEC immunosensor had good stability, reproducibility and specificity, and provided a broad prospect for the detection of other molecules.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Hanyu Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yuyang Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Huan Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
4
|
Shi H, Li L, Zhang L, Yu J. In situ controllable heterojunction conversion strategy driven by oriented paper-based fluid transfer for human immunoglobulin G detection. Mikrochim Acta 2021; 188:373. [PMID: 34626231 DOI: 10.1007/s00604-021-05017-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
Mercury ions (Hg2+) mediating in situ heterojunction formation strategy based on spatially separated dual working areas was developed to achieve sensitive detection of human immunoglobulin G. To be specific, the complex of antibody, the silicon dioxide, and thymine-rich hairpin DNA were immobilized onto the antigen and antibody-modified electrodes, forming a special sandwich type where T-Hg2+-T structure could accommodate Hg2+. The zinc ions from zinc sulfide (ZnS) photoelectric materials were captured by Hg2+ to convert ZnS to zinc sulfide-mercuric sulfide nanocomposite. Such ion exchange approach with spatially separated working electrodes endowed the sensing platform with lower background interference and high selectivity, which also avoided damage of illumination on biomolecules. In addition, by regulating the ion recognition probe, the protocol could be extended to numerous other fields like clinical diagnosis, environmental monitoring, and public safety.
Collapse
Affiliation(s)
- Huihui Shi
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Li Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, People's Republic of China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
| |
Collapse
|