1
|
Zhuang L, Gong J, Zhang D, Zhang P, Zhao Y, Sun L, Yang J, Zhang Y, Shen Q. Recent advances in metallic and metal oxide nanoparticle-assisted molecular methods for the detection of Escherichia coli. Analyst 2025; 150:1206-1228. [PMID: 40034047 DOI: 10.1039/d4an01495b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The detection of E. coli is of irreplaceable importance for the maintenance of public health and food safety. In the field of molecular detection, metal and metal oxide nanoparticles have demonstrated significant advantages due to their unique physicochemical properties, and their application in E. coli detection has become a cutting-edge focus of scientific research. This review systematically introduces the innovative applications of these nanoparticles in E. coli detection, including the use of magnetic nanoparticles for efficient enrichment of bacteria and precise purification of nucleic acids, as well as a variety of nanoparticle-assisted immunoassays such as enzyme-linked immunosorbent assays, lateral flow immunoassays, colorimetric methods, and fluorescence strategies. In addition, this paper addresses the application of nanoparticles used in nucleic acid tests, including amplification-free and amplification-based assays. Furthermore, the application of nanoparticles used in electrochemical and optical biosensors in E. coli detection is described, as well as other innovative assays. The advantages and challenges of the aforementioned technologies are subjected to rigorous analysis, and a prospective outlook on the future direction of development is presented. In conclusion, this review not only illustrates the practical utility and extensive potential of metal and metal oxide nanoparticles in E. coli detection, but also serves as a scientific and comprehensive reference for molecular diagnostics in food safety and public health.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China.
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, P. R. China
| | - Di Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, P. R. China
| | - Ping Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, P. R. China
| | - Ying Zhao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China.
| | - Li Sun
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China.
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| |
Collapse
|
2
|
Zhou Y, Du W, Chen Y, Li L, Xiao X, Xu Y, Yang W, Hu X, Wang B, Zhang J, Jiang Q, Wang Y. Pathogen detection via inductively coupled plasma mass spectrometry analysis with nanoparticles. Talanta 2024; 277:126325. [PMID: 38833906 DOI: 10.1016/j.talanta.2024.126325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/24/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024]
Abstract
Infections caused by viruses and bacteria pose a significant threat to global public health, emphasizing the critical importance of timely and precise detection methods. Inductively coupled plasma mass spectrometry (ICP-MS), a contemporary approach for pathogen detection, offers distinct advantages such as high sensitivity, a wide linear range, and multi-index capabilities. This review elucidates the underexplored application of ICP-MS in conjunction with functional nanoparticles (NPs) for the identification of viruses and bacteria. The review commences with an elucidation of the underlying principles, procedures, target pathogens, and NP requirements for this innovative approach. Subsequently, a thorough analysis of the advantages and limitations associated with these techniques is provided. Furthermore, the review delves into a comprehensive examination of the challenges encountered when utilizing NPs and ICP-MS for pathogen detection, culminating in a forward-looking assessment of the potential pathways for advancement in this domain. Thus, this review contributes novel perspectives to the field of pathogen detection in biomedicine by showcasing the promising synergy of ICP-MS and NPs.
Collapse
Affiliation(s)
- Yujie Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China
| | - Wenli Du
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China
| | - Yuzuo Chen
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lei Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China
| | - Xuanyu Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China
| | - Yuanyuan Xu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China
| | - Wenjuan Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xuefeng Hu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Baoning Wang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Qing Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China
| |
Collapse
|
3
|
Zhou Y, Tang Z, Li L, Chen Y, Xu Y, Liu R, Zhang Y, Liu X, Yang W, Wang B, Zhang J, Jiang Q, Wang Y. Highly sensitive detection of Salmonella typhimurium via gold and magnetic nanoparticle-mediated sandwich hybridization coupled with ICP-MS. J Mater Chem B 2024. [PMID: 38954469 DOI: 10.1039/d4tb00291a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Foodborne pathogens including Salmonella typhimurium (S. typhimurium) are responsible for over 600 million global incidences of illness annually, posing a significant threat to public health. Inductively coupled plasma mass spectrometry (ICP-MS), coupled with element labeling strategies, has emerged as a promising platform for multivariate and accurate pathogen detection. However, achieving high specificity and sensitivity remains a critical challenge. Herein, we synthesize clustered magnetic nanoparticles (MNPs) and popcorn-shaped gold nanoparticles (AuNPs) to conjugate capture and report DNA probes for S. typhimurium, respectively. These engineered nanoparticles facilitate the identification of S. typhimurium DNA through a sandwich hybridization technique. ICP-MS quantification of Au within the sandwich-structure complexes allows for precise S. typhimurium detection. The unique morphology of the AuNPs and MNPs increases the available sites for probe attachment, enhancing the efficiency of S. typhimurium DNA capture, broadening the detection range to 101-1010 copies mL-1, and achieving a low detection limit of 1 copy mL-1, and the overall assay time is 70 min. The high specificity of this method is verified by anti-interference assays against ten other pathogens. The recovery was 96.8-102.8% for detecting S. typhimurium DNA in biological samples. As these specially designed nanoparticles may facilitate the attachment of various proteins and nucleic acid probes, they may become an effective platform for detecting multiple pathogens.
Collapse
Affiliation(s)
- Yujie Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Zhihui Tang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lei Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Yuzuo Chen
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuanyuan Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Renjie Liu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yanrong Zhang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoyan Liu
- Department of Orthopedic Surgery, West China Hospital, Sichuan University/West China School of Nursing, Chengdu, Sichuan, 610041, China
| | - Wenjuan Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Baoning Wang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Qing Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China.
| |
Collapse
|
4
|
Liu X, Li J, Wen T, Li Z, Wang X, Li M, Ma P, Song D, Fei Q. Copper ion ratio chemiluminescence probe based on chemiluminescence resonance energy transfer. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
5
|
Yu Q, Chen X, Qi L, Yang H, Wang Y, Zhang M, Huang K, Yuan X. Smartphone readable colorimetry and ICP-MS dual-mode sensing platform for ultrasensitive and label-free detection of Escherichia coli based on filter-assisted separation. Talanta 2022; 251:123760. [DOI: 10.1016/j.talanta.2022.123760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 10/16/2022]
|