1
|
B K V, Bagchi S, T R S. Chromium Detection in Water Using Optical Methods: A Study of Reagent and Reagentless Approaches. Crit Rev Anal Chem 2025:1-38. [PMID: 39772948 DOI: 10.1080/10408347.2024.2419896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Water contaminated with chromium (Cr) poses significant risks to public health and the environment, necessitating reliable detection techniques. This review study uniquely provides a comprehensive analysis of optical methods for detecting Cr pollution in water, focusing on both reagent-based and reagentless approaches, as well as various sensing platforms. Unlike existing reviews that primarily focus on electrochemical and colorimetric/fluorimetric methods, this work highlights the untapped potential of optical technologies, such as colorimetry, SPR, UV-Vis spectroscopy, and more, in detecting distinct Cr species, including reagent and reagentless based approaches. The findings demonstrate the high sensitivity and specificity of optical methods. Reagent-based approaches offer exceptional sensitivity but involve complex preparation and potential secondary contamination. In contrast, reagentless methods, while requiring sophisticated calibration, are more environmentally friendly and simpler to implement. Future directions emphasize the development of portable, cost-effective optical devices, improved Cr species differentiation, and integration with real-time data processing and remote sensing for enhanced field monitoring. This study informs researchers and policymakers about the latest advancements in optical detection techniques and their potential to enhance water quality monitoring.
Collapse
Affiliation(s)
- Vinay B K
- Department of Electronics and Communication, Vidyavardhaka College of Engineering, Mysuru, India
| | - Sudeshna Bagchi
- CSIR-Central Scientific Instruments Organization, Chandigarh, India
| | - Suranjan T R
- Department of Electronics and Communication, Vidyavardhaka College of Engineering, Mysuru, India
| |
Collapse
|
2
|
Rusiniak P, Wątor K, Kmiecik E, Vakanjac VR. Method validation and geochemical modelling of chromium speciation in natural waters. Sci Rep 2024; 14:30502. [PMID: 39681623 DOI: 10.1038/s41598-024-77425-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/22/2024] [Indexed: 12/18/2024] Open
Abstract
The study focuses on validating reference methods such as ICP-OES and ICP-MS for detecting ultra-trace levels of chromium in groundwater, where concentrations are typically very low. Additionally, it verifies a hyphenated technique, IC-ICP-MS, for determining naturally occurring Cr(VI) in tested waters. The validation process involved various chromium analysis variants, including isotopes 52Cr and 53Cr in ICP-MS and IC-ICP-MS techniques, along with specific emission lines in the ICP-OES technique. Statistical data processing revealed that the achieved limits of quantification for Cr in different techniques ranged from 0.053 µg/L to 1.3 µg/L, with the associated measurement uncertainty estimated between 14% and 19% (at a coverage factor k = 2, 95%). For speciation analysis, it was possible to quantitatively determine Cr(VI) at concentrations as low as 0.12 µg/L, with the measurement uncertainty ranging between 10% and 14%. The Kruskal-Wallis test indicated that for the 14 water samples analysed, there was no statistically significant difference in the results obtained using different analytical techniques (p > 0.05). The geochemical modelling approach applied enhances the understanding of chromium speciation in water samples, verifying the accuracy of speciation analysis and identifying specific ion forms in which Cr(III) and Cr(VI) occur. In the analysed water samples, the concentration of Cr(VI) ranges between 0.13 and 35 µg/L, with the primary form identified as the oxoanion CrO42-. Importantly, statistical tests demonstrated no statistically significant differences between the total chromium concentration in water and the concentration of Cr(VI), indicating that the entire concentration of total chromium corresponds to Cr(VI) speciation.
Collapse
Affiliation(s)
- Piotr Rusiniak
- AGH University of Krakow, Mickiewicza 30 Av., 30-059, Krakow, Poland.
| | - Katarzyna Wątor
- AGH University of Krakow, Mickiewicza 30 Av., 30-059, Krakow, Poland
| | - Ewa Kmiecik
- AGH University of Krakow, Mickiewicza 30 Av., 30-059, Krakow, Poland
| | | |
Collapse
|
3
|
Yuan S. Indirect detection of lead(II), cadmium(II) and mercury(II) on a microfluidic electrophoresis chip. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6736-6745. [PMID: 39263759 DOI: 10.1039/d4ay01174k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Water environments contaminated by heavy metal ions present significant challenges because these pollutants do not degrade naturally, leading to their gradual bioaccumulation in animals and plants, which ultimately poses an insurmountable threat to human health. Therefore, rapid and accurate detection of heavy metal ions in water is of great significance for environmental protection and disease prevention. In this work, we developed a novel method based on microfluidic electrophoresis coupled with indirect chemiluminescence for the immediate detection of Cd(II), Pb(II) and Hg(II) heavy metal ions. The displacement of the Co(II) ions within the chemiluminescence mixture by the above migrating sample cations caused a measurable reduction in the background signal. The results showed that the detection limits of Cd(II), Pb(II) and Hg(II) ions under the best detection conditions were 5.83 × 10-8 M, 5.38 × 10-8 M and 2.09 × 10-8 M, respectively, which were 1-2 orders of magnitude lower than those of the indirect UV method and 1 order of magnitude lower than that of the indirect laser induced detection method. This method can provide a possibility for the rapid detection of multiple heavy metal ions in actual water environments.
Collapse
Affiliation(s)
- Shuai Yuan
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong 266113, China.
- College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
4
|
Hashim NM, Mohd Husani NI, Wardani NI, Alahmad W, Shishov A, Madurani KA, Liao PC, Yahaya N, Mohamad Zain NN. Advancements in effervescent-assisted dispersive micro-solid phase extraction for the analysis of emerging pollutants. Anal Chim Acta 2024; 1325:342891. [PMID: 39244296 DOI: 10.1016/j.aca.2024.342891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 09/09/2024]
Abstract
Emerging pollutants pose an increasing threat to the environment and human well-being, requiring substantial progress in analytical methodologies. Dispersive micro-solid phase extraction (μ-dSPE) has proven successful in detecting and measuring these contaminants, particularly in trace quantities. However, challenges persist in achieving a uniform sorbent distribution and efficient separation from the sample matrix. To address these issues, effervescent-assisted dispersive micro-solid phase extraction (EA-μ-dSPE) was developed. This method uses on-site produced carbon dioxide as a dispersing agent, eliminating the need for vortexing or ultrasonication. Due to the sorbent dispersion in the sample solution, the contact surface between the analyte and the sorbent increases, resulting in increased extraction efficiency, reduced extraction time, and promotes of sustainability. Several parameters are critical to the successful execution of this procedure to extract the analytes, including the type and structure of sorbent, composition of dispersing agents, sorbent separation procedure, and type and properties of desorption solvents. The sorbent plays a critical role in successful extraction of emerging pollutants. It is clear that for the extraction of the analyte on the sorbent, proper interaction must be established between the analyte and the sorbent via physical and chemical interactions. This review thoroughly evaluates the underlying principles of the approach, its potential, and the significant advancements that have been documented. It explores the method's capacity to analyse and identify emerging pollutants, emphasising its potential across various sample matrices for enhanced pollutant identification and quantification.
Collapse
Affiliation(s)
- Nor Munira Hashim
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Nurina Izzah Mohd Husani
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Niluh Indria Wardani
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Waleed Alahmad
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Andrey Shishov
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, SPbSU, 7/9 Universitetskaya Nab., St. Petersburg, 199034, Russia
| | - Kartika A Madurani
- Laboratory of Instrumentation and Analytical Sciences, Chemistry Department, Faculty of Science and Data Analytics, Institute Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Noorfatimah Yahaya
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Nur Nadhirah Mohamad Zain
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Pulau Pinang, Malaysia.
| |
Collapse
|
5
|
Li Y, Hu J, Li C, Hou X. Magnetic Covalent Organic Framework for Efficient Solid-Phase Extraction of Uranium for on-Site Determination by Portable X-ray Fluorescence Spectrometry. Anal Chem 2024; 96:5757-5762. [PMID: 38569171 DOI: 10.1021/acs.analchem.4c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Uranium plays a pivotal role in the nuclear industry; however, its inadvertent release has raised concerns regarding health and environmental implications. It is crucial for a prompt warning and accurate tracing of uranium contamination in emergency scenarios. In this study, a novel and simple method was proposed that combines magnetic dispersive solid-phase extraction (MDSPE) with portable X-ray fluorescence spectrometry (XRF) for the on-site sampling and determination of trace uranium in real samples. A magnetic covalent organic framework (Fe3O4@COF) composite with excellent chemical stability and a large adsorption capacity of 311 mg/g was synthesized and employed as an efficient adsorbent for the solid-phase extraction of trace uranium. Without the need for a centrifuge or filter requirement, the established method by benchtop wavelength-dispersive X-ray fluorescence spectrometry (WDXRF) exhibits an exceptionally low limit of detection (LOD) of 0.008 μg/L with a sample volume of 50 mL and a fast adsorption time of 15 min, rendering it suitable for environmental monitoring of UO22+. Consequently, this approach, in combination with a hand-held portable XRF instrument with an LOD of 0.1 μg/L, was successfully implemented for the on-site extraction and quality assessment of real water samples, yielding accurate results and satisfactory spike recoveries.
Collapse
Affiliation(s)
- Yuanyu Li
- Key Lab of Green Chemistry and Technology of MOE and College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jing Hu
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Chenghui Li
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiandeng Hou
- Key Lab of Green Chemistry and Technology of MOE and College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
6
|
Yilmaz E, Yavuz E. Use of transition metal dichalcogenides (TMDs) in analytical sample preparation applications. Talanta 2024; 266:125086. [PMID: 37633038 DOI: 10.1016/j.talanta.2023.125086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
Since the discovery of graphene, nano-sized two-dimensional (2D) transition metal dichalcogenides (TMDs) such as MoS2, MoSe2, MoTe2, NbS2, NbSe2, WS2, WSe2, TaS2 and TaSe2, which have been classified as next-generation nanomaterials resembling graphene (G) have complementary basic properties with those of graphene in terms of their practical applications. TMDs are attracting great attention due to their attractive physical, chemical and electronic properties. Despite being overshadowed by graphene in terms of frequency of use, TMDs have been used frequently in many areas in recent years instead of carbon-based materials such as graphene (G), graphene oxide (GO), carbon nanotubes (CNTs) and nanodiamonds (NDs). It is seen that the first and frequent uses of TMDs, which are classified as new generation materials, are in the fields of catalysis, electronic applications, hydrogen production processes and energy storage, but it has been used as an adsorbent in sample preparation techniques in recent years. Similar to graphene, layers of TMDs are held together by weak van der Waals interactions. The sandwiched layers of TMDs provide sufficient and effective interlayer spaces so that foreign molecules, ions and atoms can easily enter these spaces between the layers. Intermolecular interactions increase with the entry of different materials into these spaces, and thus, high activity, adsorption capacity and efficiency are obtained in adsorption-based analytical sample preparation methods. Although there are about 35 research articles using TMDs, which are classified as promising materials in analytical sample preparation techniques, no review studies have been found. This review, which was designed with this awareness, contains important informations on the properties of metal dichalcogenides, their production methods and their use in analytical sample preparation techniques.
Collapse
Affiliation(s)
- Erkan Yilmaz
- Technology Research & Application Center (TAUM), Erciyes University, 38039, Kayseri, Turkey; ERNAM-Erciyes University, Nanotechnology Application and Research Center, 38039, Kayseri, Turkey; Erciyes University, Faculty of Pharmacy, Department of Analytical Chemistry, 38039, Kayseri, Turkey; ChemicaMed Chemical Inc., Erciyes University Technology Development Zone, 38039 Kayseri, Turkey.
| | - Emre Yavuz
- Erzincan Binali Yildirim University, Cayirli Vocational School, Department of Medical Services and Technicians, 24503, Erzincan, Turkey.
| |
Collapse
|
7
|
Ren H, Chen S, Chen C, Qiu Y, Luo C, Zhao Q, Yang W. Ruthenium doping in the MoS 2/AB heterostructure for the hydrogen evolution reaction in acidic media. Dalton Trans 2023; 52:4891-4899. [PMID: 36943280 DOI: 10.1039/d3dt00309d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Electrocatalyst design is an important approach to prompt the commercialization of water electrolysis technologies. In this work, a ruthenium doped MoS2/AB heterostructure is synthesized as an electrocatalyst for the hydrogen evolution reaction (HER) through hydrothermal and annealing processes. The physical-chemical characterization studies show that the MoS2/AB heterostructure and the incorporation of Ru effectively induce a phase transition from 2H to 1T-MoS2. The as-prepared Ru-MoS2/AB exhibits an excellent HER performance with a very low overpotential of 13 mV at 10 mA cm-2 and a Tafel slope of 31 mV dec-1 in 0.5 M H2SO4, remarkably higher than those of Pt/C (overpotential of 28 mV at 10 mA cm-2, 41 mV dec-1). Density functional theory calculations suggest that the H absorption on Ru bonding to S exhibits a rather low binding energy (-0.22 eV), indicating the optimum active sites of Ru near S for HER. Significantly, the Ru-MoS2/AB also demonstrates high stability under long-term discharge and elevated temperature conditions. These results suggest that the as-prepared Ru-MoS2/AB can be a promising alternative to Pt/C for water electrolysis, due to its high HER activity, easy synthesis, and good stability.
Collapse
Affiliation(s)
- Haowen Ren
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Shihong Chen
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Chong Chen
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yang Qiu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Chunhui Luo
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Qiang Zhao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Wei Yang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
8
|
Zhang ZY, Xu YH, Chen KY, Zhang MH, Meng CY, Wang XS, Wang MM. Flower-like molybdenum disulfide/cobalt ferrite composite for the extraction of benzotriazole UV stabilizers in environmental samples. Mikrochim Acta 2023; 190:75. [PMID: 36700977 DOI: 10.1007/s00604-023-05658-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023]
Abstract
Benzotriazole UV stabilizers (BUVSs) are a class of emerging contaminants of concern; the development of rapid and convenient monitoring method for these trace-level pollutants in waters is of crucial significance in environmental science. Here, a novel magnetic flower-like molybdenum disulfide/cobalt ferrite nanocomposite (MoS2/CoFe2O4) was synthesized by hydrothermal reaction. Compared with the conventional Fe3O4-based magnetic composites, the proposed material just required a minimum consumption of Co/Fe towards the equivalent of MoS2 while providing superior magnetization performance. Taking advantages of high adsorption capacity, extraordinary stability, and repeatability in construction, MoS2/CoFe2O4 was applied to the extraction to BUVSs. The enrichment factors of three BUVSs were in the range 164-193 when 20 mL of environmental water sample was loaded on 40 mg of the adsorbent. MoS2/CoFe2O4 could be regenerated and recycled at least 10 cycles of adsorption/desorption with recoveries of 80.1-111%. The method of MoS2/CoFe2O4-based extraction coupled with high-performance liquid chromatography-variable wavelength detector was applied to the monitoring of BUVSs in seawater, lake water, and wastewater, which gave detection limits (S/N = 3) of 0.023-0.030 ng·mL-1 and recoveries of 80.1-110%. The intra-day and inter-day precisions (relative standard deviation, RSDs, n = 3) were in the range 1.6-7.5% and 3.2-11.5%, respectively. The approach is an alternative for efficient and sensitive extraction and determination of trace-level environmental pollutants in waters.
Collapse
Affiliation(s)
- Zi-Yang Zhang
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, CaofeidianHebei, 063210, Tangshan, China
| | - Yi-Heng Xu
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, CaofeidianHebei, 063210, Tangshan, China
| | - Ke-Yan Chen
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, CaofeidianHebei, 063210, Tangshan, China
| | - Mei-Hang Zhang
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, CaofeidianHebei, 063210, Tangshan, China
| | - Chun-Yan Meng
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, CaofeidianHebei, 063210, Tangshan, China
| | - Xue-Sheng Wang
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, CaofeidianHebei, 063210, Tangshan, China
| | - Man-Man Wang
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, CaofeidianHebei, 063210, Tangshan, China.
| |
Collapse
|
9
|
FENG J, SUN M, FENG Y, XIN X, DING Y, SUN M. [Recent advances in the use of graphene for sample preparation]. Se Pu 2022; 40:953-965. [PMID: 36351804 PMCID: PMC9654959 DOI: 10.3724/sp.j.1123.2022.07012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 06/16/2023] Open
Abstract
Sample preparation is playing an increasingly important role in sample analysis. The enrichment efficiency of the target and the removal effect of the sample matrix are strongly dependent on the extraction material. Therefore, the development of efficient extraction materials is an important research focus in the field of sample preparation. Various advanced materials such as nanomaterials, mesoporous materials, ionic liquids, aerogels, carbon materials, metal-organic frameworks, and covalent organic frameworks have been introduced to produce a diverse range of extraction materials for sample preparation. Owing to its unique physical and chemical properties, graphene, an excellent carbon nanomaterial, has attracted significant attention in different areas. Due to their unique advantages of large surface area, large π-electrons, excellent adsorption properties, abundant functional groups, and facile chemical modification, graphene-based materials have displayed excellent extraction performance for diverse analytes. Furthermore, graphene-based extraction materials have been applied to pretreat real samples from different fields. This paper provides an overview of the recent advances in graphene sample preparation from 2020 to date. The manuscript covers the use of graphene, graphene oxide, and the related functionalized materials as sorbents, as well as their specific applications in cartridge solid-phase extraction, dispersive solid-phase extraction, magnetic solid-phase extraction, stir bar sorptive extraction, fiber solid-phase microextraction, and in-tube solid-phase microextraction. To prevent the aggregation of graphene, three-dimensional graphene, porous graphene aerogels, graphene-modified silica, and stainless-steel mesh were developed for cartridge solid-phase extraction. Furthermore, some graphene-based extraction materials were used to develop online solid-phase extraction, which allowed for automatic and high-throughput tests. Graphene nanosheets and their hybrid materials with molybdenum disulfide or zinc oxide nanoparticles have been applied to dispersive solid-phase extraction, and several types of contaminants, including metal ions, bisphenol endocrine disruptors, paraben preservatives, and phthalates, could be captured. By combination with magnetic materials using the coprecipitation method or via chemical post-modification, many magnetic graphene extraction materials have been produced for magnetic solid-phase extraction. The introduction of magnetic graphene not only enhanced the extraction efficiency but also simplified the test process, making it highly suitable for complex samples such as food and biological samples. Similar to magnetic solid-phase extraction, stir bar sorptive extraction is a very simple and efficient extraction method that shows good extraction performance for metal ions and organic pollutants from environmental water, medicines in urine, and organic pollutants in cosmetics. In addition to its excellent applicability to solid-phase extraction, graphene delivered satisfactory performance for solid-phase microextraction. Graphene has been used as an extraction coating for the extraction of fibers or tubes by coupling solid-phase microextraction with chromatographic detection, and many kinds of organic pollutants, including polychlorinated biphenyls, phthalates, polycyclic aromatic hydrocarbons, toluene, xylenes, organophosphorus pesticides, phenoxy acid herbicides, and antibiotics, in environmental or biological samples have been successfully determined. The extraction mechanism, including π-π, electrostatic, hydrophobic, hydrophilic, and hydrogen-bonding interactions, is also discussed. Because of the mixed-mode interactions and rich functionalization, graphene-based extraction materials could effectively capture and selectively enrich different types of species. These extraction or microextraction techniques have been coupled with detection methods such as chromatography, mass spectrometry, and atomic absorption spectroscopy and widely used in environmental monitoring, food safety, and biochemical analysis. The future development of graphene in the field of sample pretreatment focuses on the following aspects: 1) functionalization of graphene with specific groups such as affinity groups, chelating groups, and molecularly imprinted sites to achieve unique extraction selectivity; 2) combination of graphene with the advanced materials, including covalent organic frameworks, metal organic frameworks, aerogels, and nanomaterials, thus realizing the complementary advantages between materials, so that the hybrid graphene materials find broad application prospects in sample preparation; 3) combination of electromagnetic materials with graphene to form electromagnetic composites, as well as the use of electromagnetic fields to improve extraction selectivity and efficiency; 4) exploiting the good performance of graphene-based materials to overcome the difficulty encountered in the pretreatment of complex samples; 5) development of more green methods to prepare graphene-based extraction materials or functionalize graphene, in line with the trends in green chemistry; 6) application of more graphene-based materials to online sample preparation for meeting the development trends in the field of analytical chemistry.
Collapse
Affiliation(s)
| | | | | | | | | | - Min SUN
- Tel:(0531)82765475,E-mail:(孙敏)
| |
Collapse
|
10
|
de Oliveira JPJ, Hiranobe CT, Torres GB, Dos Santos RJ, Paim LL. Determination of Cr(VI) in leather residues using graphite/paraffin composite electrodes modified with reduced graphene oxide nanosheets. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155318. [PMID: 35452736 DOI: 10.1016/j.scitotenv.2022.155318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
In this study, we determined the Cr(VI) in samples of tanned leather residues by differential pulse voltammetry (DPV) using graphite/paraffin composite electrodes modified with reduced graphene oxide nanosheets (referred to as GPEs/nsRGO). After the modification, the composite electrodes were characterized by two electrochemical techniques (i.e., cyclic voltammetry, CV, and electrochemical impedance spectroscopy, EIS), scanning electron microscopy, and Raman spectroscopy. The electroanalytical method was applied using the GPEs/nsRGO. An analytical curve was obtained in a Clark-Lubs buffer solution (pH = 1), with a linear concentration range from 25.0 to 392.0 μmol L-1 and a limit of detection (LOD) of 1.01 μmol L-1. The GPEs/nsRGO showed good reproducibility in their manufacturing process and good response repeatability with an RSD of 4.59% over twelve measurements. These composite electrodes showed excellent selectivity, which was demonstrated by analyses in the presence of metal ions (Ca2+, Zn2+, Mg2+, Fe3+, Co2+, Na+, and Cu2+) that did not interfere in the analysis of Cr(VI). The GPEs/nsRGO were applied to the determination of Cr(VI) in real samples of wet-blue leather and leather ash using DPV. This approach was validated using the sample recovery method, where it presented values from 95.6 to 108.2%. The proposed method showed satisfactory results compared to the literature and can be considered a good alternative for the determination of Cr(VI) in aqueous samples.
Collapse
Affiliation(s)
- João P J de Oliveira
- São Paulo State University (Unesp), Faculty of Engineering and Sciences, Campus Rosana, 1881 dos Barrageiros, Av., 19274-000 Rosana, SP, Brazil; Brazilian Renewable Energies, School of Electrical and Computer Engineering, University of Campinas (Unicamp), Av. Albert Einstein 400, Campinas, SP 13083-852, Brazil
| | - Carlos T Hiranobe
- São Paulo State University (Unesp), Faculty of Engineering and Sciences, Campus Rosana, 1881 dos Barrageiros, Av., 19274-000 Rosana, SP, Brazil
| | - Giovanni B Torres
- Instituto Tecnológico Metropolitano, Programa de Ingeniería de Diseño Industrial, Medellín, Antioquia, Colombia
| | - Renivaldo J Dos Santos
- São Paulo State University (Unesp), Faculty of Engineering and Sciences, Campus Rosana, 1881 dos Barrageiros, Av., 19274-000 Rosana, SP, Brazil
| | - Leonardo L Paim
- São Paulo State University (Unesp), Faculty of Engineering and Sciences, Campus Rosana, 1881 dos Barrageiros, Av., 19274-000 Rosana, SP, Brazil.
| |
Collapse
|
11
|
Bagheri AR, Aramesh N, Gong Z, Cerda V, Lee HK. Two-dimensional materials as a platform in extraction methods: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
12
|
Maulvi FA, Kanani PA, Jadav HJ, Desai BV, Desai DT, Patel HP, Shetty KH, Shah DO, Willcox MD. Timolol-eluting graphene oxide laden silicone contact lens: Control release profile with improved critical lens properties. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Yavarinasab A, Abedini M, Tahmooressi H, Janfaza S, Tasnim N, Hoorfar M. Potentiodynamic Electrochemical Impedance Spectroscopy of Polyaniline-Modified Pencil Graphite Electrodes for Selective Detection of Biochemical Trace Elements. Polymers (Basel) 2021; 14:polym14010031. [PMID: 35012052 PMCID: PMC8747131 DOI: 10.3390/polym14010031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 02/03/2023] Open
Abstract
In this study, we analyzed the application of potentiodynamic electrochemical impedance spectroscopy (PDEIS) for a selective in situ recognition of biological trace elements, i.e., Cr (III), Cu (II), and Fe (III). The electrochemical sensor was developed using the electropolymerization of aniline (Ani) on the surface of the homemade pencil graphite electrodes (PGE) using cyclic voltammetry (CV). The film was overoxidized to diminish the background current. A wide range of potential (V = −0.2 V to 1.0 V) was investigated to study the impedimetric and capacitive behaviour of the PAni/modified PGE. The impedance behaviors of the films were recorded at optimum potentials through electrochemical impedance spectroscopy (EIS) and scrutinized by means of an appropriate equivalent circuit at different voltages and at their corresponding oxidative potentials. The values of the equivalent circuit were used to identify features (charge transfer-resistant and double layer capacitance) that can selectivity distinguish different trace elements with the concentration of 10 μM. The PDEIS spectra represented the highest electron transfer for Cu (II) and Cr (III) in a broad potential range between +0.1 and +0.4 V while the potential V = +0.2 V showed the lowest charge transfer resistance for Fe (III). The results of this paper showed the capability of PDEIS as a complementary tool for conventional CV and EIS measurement for metallic ion sensing.
Collapse
Affiliation(s)
- Adel Yavarinasab
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (A.Y.); (H.T.); (S.J.)
| | - Mostafa Abedini
- Abidi Pharmaceuticals, Research and Development Centre, Tehran 1389776363, Iran;
| | - Hamed Tahmooressi
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (A.Y.); (H.T.); (S.J.)
| | - Sajjad Janfaza
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (A.Y.); (H.T.); (S.J.)
| | - Nishat Tasnim
- Faculty of Engineering and Computer Science, University of Victoria, Victoria, BC V8W 2Y2, Canada;
| | - Mina Hoorfar
- Faculty of Engineering and Computer Science, University of Victoria, Victoria, BC V8W 2Y2, Canada;
- Correspondence:
| |
Collapse
|
14
|
Joshi DJ, Koduru JR, Malek NI, Hussain CM, Kailasa SK. Surface modifications and analytical applications of graphene oxide: A review. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116448] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Zhai HM, Ji B, Tian SS, Fang F, Zhao S, Wu ZY. Cr speciation analysis based on electrokinetic sample pretreatment with a paper based analytical device. Talanta 2021; 234:122656. [PMID: 34364465 DOI: 10.1016/j.talanta.2021.122656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/25/2022]
Abstract
This work presents a new method of Cr speciation analysis based on micro sample pretreatment with a paper-based analytical device (PAD). By using electrokinetic separation and stacking on the PAD, Cr (VI) and Cr (III) can be separated and the recovered to achieve speciation analysis without have to be subjected to subtraction treatment. The separation and recovery properties of Cr (VI) and Cr (III) were characterized and optimized by UV-Vis spectrophotometry, with which the LOQ of 19.0 μg L-1 and 28.7 μg L-1, and the recoveries of 88-108% and 90-110%, were obtained for Cr (VI) and Cr (III), respectively. In addition, direct analysis of Cr (VI)/Cr (III) from an electroplating wastewater sample was also demonstrated with this method combined with atomic spectroscopy (GF-AAS and ICP-OES). This sample pretreatment method is fast, cheap and easy to be used. Combined with the high sensitivity and elemental selectivity of atomic spectroscopy and mass spectrometry, this PAD sample pretreatment method could be a compensation to their lack in speciation discrimination, and may play an important role in the speciation analysis of Cr.
Collapse
Affiliation(s)
- Hui-Min Zhai
- Research Center for Analytical Sciences, Chemistry Department, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Bin Ji
- The First Affiliated Hospital of China Medical University, Shenyang, 110819, China
| | - Shan-Shan Tian
- Research Center for Analytical Sciences, Chemistry Department, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Fang Fang
- Research Center for Analytical Sciences, Chemistry Department, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Shuang Zhao
- Research Center for Analytical Sciences, Chemistry Department, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Zhi-Yong Wu
- Research Center for Analytical Sciences, Chemistry Department, College of Sciences, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
16
|
Hagarová I, Nemček L. Application of Metallic Nanoparticles and Their Hybrids as Innovative Sorbents for Separation and Pre-concentration of Trace Elements by Dispersive Micro-Solid Phase Extraction: A Minireview. Front Chem 2021; 9:672755. [PMID: 34017823 PMCID: PMC8129025 DOI: 10.3389/fchem.2021.672755] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
It is indisputable that separation techniques have found their rightful place in current analytical chemistry, considering the growing complexity of analyzed samples and (ultra)trace concentration levels of many studied analytes. Among separation techniques, extraction is one of the most popular ones due to its efficiency, simplicity, low cost and short processing times. Nonetheless, research interests are directed toward the enhancement of performance of these procedures in terms of selectivity. Dispersive solid phase extraction (DSPE) represents a novel alternative to conventional solid phase extraction (SPE) which not only delivers environment-friendly extraction with less solvent consumption, but also significantly improves analytical figures of merit. A miniaturized modification of DSPE, known as dispersive micro-solid phase extraction (DMSPE), is one of the most recent trends and can be applied for the extraction of wide variety of analytes from various liquid matrices. While DSPE procedures generally use sorbents of different origin and sizes, in DMSPE predominantly nanostructured materials are required. The aim of this paper is to provide an overview of recently published original papers on DMSPE procedures in which metallic nanoparticles and hybrid materials containing metallic particles along with other (often carbon-based) constituent(s) at the nanometer level have been utilized for separation and pre-concentration of (ultra)trace elements in liquid samples. The studies included in this review emphasize the great analytical potential of procedures producing reliable results in the analysis of complex liquid matrices, where the detection of target analyte is often complicated by the presence of interfering substances.
Collapse
Affiliation(s)
- Ingrid Hagarová
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Lucia Nemček
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
17
|
Jing W, Wang J, Kuipers B, Bi W, Chen DDY. Recent applications of graphene and graphene-based materials as sorbents in trace analysis. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116212] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|