1
|
Tang S, Huang Y, Zhao S, Hu K. Surface molecularly imprinted-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for highly selective and sensitive direct analysis of paraquat in complicated samples. Talanta 2023; 258:124423. [PMID: 36898307 DOI: 10.1016/j.talanta.2023.124423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023]
Abstract
Herein, a novel surface molecularly imprinted-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (SMI-MALDI-TOF MS) method for direct target paraquat (PQ) analysis in complicated samples is reported. Notably, a captured analyte-imprinted material can be directly detected via MALDI-TOF MS by using imprinted material as nanomatrix. Using this strategy, the molecular specific affinity performance of surface molecularly imprinted polymers (SMIPs) and the high-sensitivity detection capability of MALDI-TOF MS was integrated. The introduction of SMI endowed the nanomatrix with the capacity for rebinding the target analyte and ensuring specificity, prevented the interfering organic matrix, and enhanced the analyzing sensitivity. By using paraquat (PQ) as a template, dopamine as a monomer, and covalent organic frameworks with a carboxyl group (C-COFs) as a substrate, polydopamine (PDA) was decorated on C-COFs via a simple self-assembly procedure to generate an analyte-based surface molecularly imprinted polymer (C-COF@PDA-SMIP), which served the dual function of SMIP capturing the target analytes and high-efficiency ionization. Thus, a reliable MALDI-TOF MS detection PQ with high selectivity and sensitivity as well as an interference-free background was achieved. The synthesis and enrichment conditions of C-COF@PDA-SMIPs were optimized, and its structure and property were characterized. Under optimal experimental conditions, the proposed method achieved highly selective and ultrasensitive detection of PQ from 5 to 500 pg mL-1, and the limit of detection was as low as 0.8 pg mL-1, which is at least three orders of magnitude lower than that achieved without enrichment. In addition, the specificity of the proposed method was superior to that of C-COFs and nonimprinted polymers. Moreover, this method exhibited reproducibility, stability, and high salt tolerance. Lastly, the practical applicability of the method was successfully verified by analyzing complicated samples, such as grass and orange.
Collapse
Affiliation(s)
- Shuiping Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Yong Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Kun Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| |
Collapse
|
2
|
Huang Z, Liu P, Lin X, Xing Y, Zhou Y, Luo Y, Lee HK. Cucurbit(n)uril-functionalized magnetic composite for the dispersive solid-phase extraction of perfluoroalkyl and polyfluoroalkyl substances in environmental samples with determination by ultra-high performance liquid chromatography coupled to Orbitrap high-resolution mass spectrometry. J Chromatogr A 2022; 1674:463151. [DOI: 10.1016/j.chroma.2022.463151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
|
4
|
Chen C, Huang Y, Wu P, Pan J, Guo P, Liu S. In vivo microcapillary sampling coupled with matrix-assisted laser desorption/ionization fourier transform ion cyclotron resonance mass spectrometry for real-time monitoring of paraquat and diquat in living vegetables. Food Chem 2022; 388:132998. [PMID: 35453011 DOI: 10.1016/j.foodchem.2022.132998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 11/26/2022]
Abstract
An in vivo microcapillary sampling (MCS) method coupled with matrix-assisted laser desorption/ionization fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR-MS) analysis was utilized to monitor the real-time bipyridine quaternary ammonium herbicides concentrations and assess their uptake and elimination behaviors in living cabbage plants noninvasively. Under optimized conditions, the proposed method for paraquat (PQ) and diquat (DQ) determination showed wide linear ranges (7.81-500 μg/kg), low limits of detection (0.1-0.9 μg/kg), and good reproducibility. In vivo tracking results demonstrated that different absorption behaviors between PQ and DQ existed in living vegetables and DQ was more easily absorbed. Through decay kinetics model fitting, herbicide half-lives were 1.32 and 1.86 days for PQ and DQ, respectively. To summarize, in vivo MCS method provides valuable information on herbicide risks for agricultural production, which is suitable for temporal, spatial, and longitudinal studies in the same living system and multicompartmental studies in the same organism.
Collapse
Affiliation(s)
- Chao Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Yan Huang
- North China University of Science and Technology Affiliated Hospital, 73 Jianshe South Road, Tangshan 063000, Hebei, China
| | - Peishan Wu
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Jiachuan Pan
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Pengran Guo
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Shuqin Liu
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China.
| |
Collapse
|
5
|
Carrasco-Correa EJ, Herrero-Martínez JM, Simó-Alfonso EF, Knopp D, Miró M. 3D printed spinning cup-shaped device for immunoaffinity solid-phase extraction of diclofenac in wastewaters. Mikrochim Acta 2022; 189:173. [PMID: 35366707 PMCID: PMC8976768 DOI: 10.1007/s00604-022-05267-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 11/14/2022]
Abstract
This article reports current research efforts towards designing bespoke microscale extraction approaches exploiting the versatility of 3D printing for fast prototyping of novel geometries of sorptive devices. This is demonstrated via the so-called 3D printed spinning cup-based platform for immunoextraction of emerging contaminants using diclofenac as a model analyte. A new format of rotating cylindrical scaffold (containing a semispherical upper cavity) with enhanced coverage of biorecognition elements, and providing elevated enhancement factors with no need of eluate processing as compared with other microextraction stirring units is proposed. Two distinct synthetic routes capitalized upon modification of the acrylate surface of stereolithographic 3D printed parts with hexamethylenediamine or branched polyethyleneimine chemistries were assayed for covalent binding of monoclonal diclofenac antibody. Under the optimized experimental conditions, a LOD of 108 ng L−1 diclofenac, dynamic linear range of 0.4–1,500 µg L–1, and enrichment factors > 83 (for near-exhaustive extraction) were obtained using liquid chromatography coupled with UV–Vis detection. The feasibility of the antibody-laden device for handling of complex samples was demonstrated with the analysis of raw influent wastewaters with relative recoveries ranging from 102 to 109%. By exploiting stereolithographic 3D printing, up to 36 midget devices were fabricated in a single run with an estimated cost of mere 0.68 euros per 3D print and up to 16 €/device after the incorporation of the monoclonal antibody.
Collapse
|
6
|
FENG J, JI X, LI C, SUN M, HAN S, FENG J, SUN H, FENG Y, SUN M. [Recent advance of new sample preparation materials in the analysis and detection of environmental pollutants]. Se Pu 2021; 39:781-801. [PMID: 34212580 PMCID: PMC9404022 DOI: 10.3724/sp.j.1123.2021.02030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 11/25/2022] Open
Abstract
To successfully analyze complex samples and detect trace targets, sample pretreatment is essential. Efficient sample pretreatment techniques can remove or reduce interference from the sample matrix. It can also enrich analytes, thereby improving analytical accuracy and sensitivity. In recent years, various sample preparation techniques, including SPE, magnetic dispersion SPE, pipette tip SPE, stir bar extraction, fiber SPME, and in-tube SPME, have received increasing attention in environmental analysis and monitoring. The extraction efficiency mainly depends on the type of adsorbent material. Therefore, the development of efficient adsorbents is a crucial step toward sample preparation. This review summarizes and discusses the research advances in extraction materials over recent years. These extraction materials contain inorganic adsorbents, organic adsorbents, and inorganic-organic hybrid materials such as graphene, graphene oxide, carbon nanotubes, inorganic aerogels, organic aerogels, triazinyl-functionalized materials, triazine-based polymers, molecularly imprinted polymers, covalent organic frameworks, metal-organic frameworks, and their derivatives. These materials have been applied to extract different types of pollutants, including metal ions, polycyclic aromatic hydrocarbons, plasticizers, alkanes, phenols, chlorophenols, chlorobenzenes, polybrominated diphenyl ethers, perfluorosulfonic acids, perfluorocarboxylic acids, estrogens, drug residues, and pesticide residues, from environmental samples (such as water and soil samples). These sample preparation materials possess high surface areas, numerous adsorption sites, and allow extraction via various mechanisms, such as π-π, electrostatic, hydrophobic, and hydrophilic interactions, as well as hydrogen and halogen bond formation. Various sample pretreatment techniques based on these extraction materials have been combined with various detection methods, including chromatography, mass spectrometry, atomic absorption spectroscopy, fluorescence spectroscopy, and ion mobility spectroscopy, and have been extensively used for the determination of environmental pollutants. The existing challenges associated with the development of sample preparation techniques are proposed, and prospects for such extraction materials in environmental analysis and monitoring are discussed. Major trends in the field, including the development of efficient extraction materials with high enrichment ability, good selectivity, excellent thermal stability, and chemical stability, are discussed. Green sample pretreatment materials, environmentally friendly synthesis methods, and green sample pretreatment methods are also explored. Rapid sample pretreatment methods that can be conducted within minutes or seconds are of significant interest. Further, online sample pretreatment and automatic analysis methods have attracted increasing attention. Besides, real-time analysis and in situ detection have been important development directions, and are expected to be widely applicable in environmental analysis, biological detection, and other fields. Modern synthesis technology should be introduced to synthesize specific extraction materials. Controllable preparation methods for extraction materials, such as the in situ growth or in situ preparation of extraction coatings, will acquire importance in coming years. It will also be important to adopt high-performance materials from other fields for sample pretreatment. Organic-inorganic hybrid extraction materials can combine the advantages both organic materials and inorganic materials, and mutually compensate for any disadvantages. Extraction materials doped with nanomaterials are also promising. Although existing sample pretreatment techniques are relatively efficient, it is still imperative to develop novel sample preparation methods.
Collapse
Affiliation(s)
- Juanjuan FENG
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiangping JI
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Chunying LI
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Mingxia SUN
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Sen HAN
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jiaqing FENG
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Haili SUN
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yang FENG
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Min SUN
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|