1
|
Alieva R, Sokolova S, Zhemchuzhina N, Pankin D, Povolotckaia A, Novikov V, Kuznetsov S, Gulyaev A, Moskovskiy M, Zavyalova E. A Surface-Enhanced Raman Spectroscopy-Based Aptasensor for the Detection of Deoxynivalenol and T-2 Mycotoxins. Int J Mol Sci 2024; 25:9534. [PMID: 39273480 PMCID: PMC11394982 DOI: 10.3390/ijms25179534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
The quality of food is one of the emergent points worldwide. Many microorganisms produce toxins that are harmful for human and animal health. In particular, mycotoxins from Fusarium fungi are strictly controlled in cereals. Simple and robust biosensors are necessary for 'in field' control of the crops and processed products. Nucleic acid-based sensors (aptasensors) offer a new era of point-of-care devices with excellent stability and limits of detection for a variety of analytes. Here we report the development of a surface-enhanced Raman spectroscopy (SERS)-based aptasensor for the detection of T-2 and deoxynivalenol in wheat grains. The aptasensor was able to detect as low as 0.17% of pathogen fungi in the wheat grains. The portable devices, inexpensive SERS substrate, and short analysis time encourage further implementation of the aptasensors outside of highly equipped laboratories.
Collapse
Affiliation(s)
- Rugiya Alieva
- Chemistry Department of Lomonosov Moscow State University, Moscow 119991, Russia
| | - Svetlana Sokolova
- Chemistry Department of Lomonosov Moscow State University, Moscow 119991, Russia
| | - Natalia Zhemchuzhina
- All-Russian Research Institute of Phytopathology, Bolshiye Vyazemy 143050, Russia
| | - Dmitrii Pankin
- Center for Optical and Laser Materials Research, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Anastasia Povolotckaia
- Center for Optical and Laser Materials Research, St. Petersburg State University, St. Petersburg 199034, Russia
- Federal Scientific Agroengineering Center VIM, Moscow 109428, Russia
| | - Vasiliy Novikov
- Federal Scientific Agroengineering Center VIM, Moscow 109428, Russia
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia
| | - Sergey Kuznetsov
- Federal Scientific Agroengineering Center VIM, Moscow 109428, Russia
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia
| | - Anatoly Gulyaev
- Federal Scientific Agroengineering Center VIM, Moscow 109428, Russia
| | - Maksim Moskovskiy
- Federal Scientific Agroengineering Center VIM, Moscow 109428, Russia
| | - Elena Zavyalova
- Chemistry Department of Lomonosov Moscow State University, Moscow 119991, Russia
- Federal Scientific Agroengineering Center VIM, Moscow 109428, Russia
| |
Collapse
|
2
|
Gao S, Li Q, Zhang S, Sun X, Zheng X, Qian H, Wu J. One-step high-throughput detection of low-abundance biomarker BDNF using a biolayer interferometry-based 3D aptasensor. Biosens Bioelectron 2022; 215:114566. [PMID: 35863136 DOI: 10.1016/j.bios.2022.114566] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/26/2022] [Accepted: 07/08/2022] [Indexed: 11/15/2022]
Abstract
Although biosensors for signal monitoring have been extensively developed, their application in one-step high-throughput detection of low-abundance disease biomarkers remains challenging. This study presents a 3D aptasensor based on a biolayer interferometry (BLI) technique, followed by the sensitive and rapid detection of the specific biomarker brain-derived neurotrophic factor (BDNF) for early screening of glaucoma, an irreversible disease that causes blindness. The developed 3D aptasensor enabled one-step batch conversion of the low-abundance biomarker BDNF binding into optical interference signal, which was mainly attributed to the following factors: (1) A dimeric aptamer with extremely high targeting affinity was constructed as a biorecognition molecule, (2) highly sensitive 3D matrix sensors were integrated as signal transduction elements, and (3) the BLI Octet system with automated, high-throughput, and real-time online monitoring capabilities was used for reporting. The 3D aptasensor exhibited a broad detection window from 0.41 to 250 ng/mL BDNF, with a limit of detection of 0.2 ng/mL. Furthermore, detection of BDNF in glaucoma patient serum using the aptasensor showed good agreement with ELISA findings as well as the clinical diagnosis of the patient, demonstrating the feasibility of the system as a screening tool for glaucoma. This one-step high-throughput screening approach provides a valuable solution for the early diagnosis of glaucoma and may reduce the risk of blindness in visually impaired people.
Collapse
Affiliation(s)
- Shunxiang Gao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Qian Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China
| | - Shenghai Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China
| | - Xinghuai Sun
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Xin Zheng
- Department of Laboratory Medicine, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Husun Qian
- Department of Laboratory Medicine, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China.
| | - Jihong Wu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China.
| |
Collapse
|