1
|
Liu Y, Gu Y, Yi L, Ge K. Trifunctional silver nanoparticle modified magnetic prickly-like nickel rods with magnetism, peroxidase-like and surface-enhanced Raman scattering activity for self-calibration dual-mode detection of 5-hydroxymethylfurfural in foods. Food Chem 2025; 483:144249. [PMID: 40245617 DOI: 10.1016/j.foodchem.2025.144249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/01/2025] [Accepted: 04/05/2025] [Indexed: 04/19/2025]
Abstract
PROBLEM OF RESEARCH Owing to insufficient stability and low detection accuracy, current 5-HMF detection technologies are limited in complex food matrices AIM OF STUDY: In this study, novel trifunctional Ag nanoparticle-modified magnetic prickly-like Ni rods (NiRs@AgNPs) were developed for self-calibration colourimetric/SERS dual-mode detection of 5-HMF in foods. REMARKABLE METHODOLOGY NiRs@AgNPs integrated magnetism with peroxidase-like and SERS activities through NiRs-AgNP synergy. Aptamer immobilization enabled specific 5-HMF recognition, with 5-HMF triggering dual-mode signal reduction (SERS/UV-Vis) through inhibited peroxidase-like activity and suppressed oxidised TMB formation. REMARKABLE RESULTS The composite exhibited good linear responses for 5-HMF ranging from 0.1 to 6.0 and 0.05 to 7.5 mg L-1, with limits of detections of 0.05 and 0.02 mg L-1 for the colourimetric and SERS modes, respectively. SIGNIFICANCE OF STUDY The dual-mode strategy improves reliability and expands the applicability of 5-HMF detection in complex food matrices by overcoming single-mode limitations.
Collapse
Affiliation(s)
- Yahao Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Lunzhao Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan State Farms Group CO., LTD, Kunming 650233, China.
| | - Kun Ge
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
2
|
Zhu H, St Dollente Mesias V, Dai X, Qiu W, Yao X, Huang J. Simple strategy for preparing nanoporous silver sheets as reusable SERS substrates for trace analysis with up to 60 reuses. Anal Bioanal Chem 2025:10.1007/s00216-025-05903-2. [PMID: 40402273 DOI: 10.1007/s00216-025-05903-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 05/23/2025]
Abstract
Leveraging fingerprint-like specificity of molecular vibrations and enhanced sensitivity from metallic nanostructures, surface-enhanced Raman spectroscopy (SERS) has emerged as a powerful analytical tool. However, most SERS substrates are designed for disposable single-use, which compromises data reproducibility, increases operational costs, raises sustainability concerns, and narrows practical applications. Furthermore, the complex fabrication methods of existing reusable SERS substrates and their limited recycling/reusable cycles pose significant challenges to address the needs of automated high-throughput analytical applications. In this study, we developed a novel nanoporous silver sheet as a background-free, highly sensitive, and reusable SERS platform, using a simple chemical redox method. With multiple layers of uniform coral rock-like nano-silver rods, it demonstrated excellent sensitivity with a detection limit of 1 × 10⁻⁷ M (24 ppb) for thiram and universal detection capability across a diverse range of 10 pesticides, such as carbamates, organophosphorus compounds, pyrethroids, organochlorines, and benzimidazoles, which was further validated through practical testing on yellow cabbages. More importantly, this nanoporous silver sheet could be reused at least 60 times from a straightforward rinsing procedure to maintain its consistently outstanding performance for continues SERS measurements. Given its accessibility and economic viability, this highly reusable SERS substrate holds the promise to promote the practical applications of SERS in various fields in the future.
Collapse
Affiliation(s)
- Hongni Zhu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Vince St Dollente Mesias
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xin Dai
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Wenting Qiu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xiaobin Yao
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
3
|
Hajikhani M, Kousheh S, Zhang Y, Lin M. Design of a novel SERS substrate by electrospinning for the detection of thiabendazole in soy-based foods. Food Chem 2024; 436:137703. [PMID: 37857202 DOI: 10.1016/j.foodchem.2023.137703] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/11/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023]
Abstract
This study aimed to detect and quantify thiabendazole in soy products by surface-enhanced Raman spectroscopy (SERS) coupled with electrospun substrates. Enhanced Raman signals were acquired from uniform electrospun substrates, which were analyzed by focusing on the CN stretching modes at 1592 cm-1 for soy sauce and 1580 cm-1 for soy milk. The results revealed a linear relationship between the signal intensity and analyte concentrations with high R2 values (99.42 % for soy sauce and 99.75 % for soy milk). The limits of quantification (LOQ) were determined to be 69.9 ppb for soy milk and 240.59 ppb for soy sauce samples. The limits of detection (LOD) were found to be 23.1 ppb for soy milk and 79.4 ppb for soy sauce. These findings highlight the effectiveness of the electrospinning-SERS approach for detecting thiabendazole in soy-based food samples, contributing to the understanding of pesticide contamination and ensuring the quality and safety of food products.
Collapse
Affiliation(s)
- Mehdi Hajikhani
- Food Science Program, University of Missouri, Columbia, MO 65211, USA
| | | | - Yi Zhang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Mengshi Lin
- Food Science Program, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
4
|
Sun H, Tian Y, Wei J, Wei W, Zhang Z, Han S, Niu W. Silver decahedral nanoparticles with uniform and adjustable sizes for surface-enhanced Raman scattering-based thiram residue detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4533-4540. [PMID: 37641926 DOI: 10.1039/d3ay01196h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Surface-enhanced Raman scattering (SERS) has been widely used as a sensitive molecular spectroscopy technology in food safety detection. Precise morphology control of plasmonic nanoparticles for high sensitivity and high uniformity SERS substrates remains challenging. Herein, silver decahedral nanoparticles (AgDeNPs) with uniform and adjustable sizes were synthesized by a photochemical seed-mediated method and utilized as SERS substrates for pesticide residue detection. The SERS sensitivity was demonstrated by using 4-mercaptobenzoic acid (4-MBA) as a typical model molecule, and the limit of detection (LOD) reached 1.0 × 10-13 M. The pesticide residue detection of thiram in aqueous solution and on fruit peels was successfully realized; the LODs were 1.0 × 10-11 M and 0.96 ng cm-2, respectively, and SERS repeatability was also proved. Overall, size-tunable AgDeNPs show attractive SERS performances and are expected to hold potential application in sensitive food and environmental safety detection.
Collapse
Affiliation(s)
- Hongda Sun
- School of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yu Tian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei 230026, China
| | - Jinping Wei
- School of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Wenli Wei
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei 230026, China
| | - Zhichao Zhang
- School of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Shuang Han
- School of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Serebrennikova KV, Komova NS, Aybush AV, Zherdev AV, Dzantiev BB. Flexible Substrate of Cellulose Fiber/Structured Plasmonic Silver Nanoparticles Applied for Label-Free SERS Detection of Malathion. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1475. [PMID: 36837103 PMCID: PMC9963878 DOI: 10.3390/ma16041475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/20/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is considered an efficient technique providing high sensitivity and fingerprint specificity for the detection of pesticide residues. Recent developments in SERS-based detection aim to create flexible plasmonic substrates that meet the requirements for non-destructive analysis of contaminants on curved surfaces by simply wrapping or wiping. Herein, we reported a flexible SERS substrate based on cellulose fiber (CF) modified with silver nanostructures (AgNS). A silver film was fabricated on the membrane surface with an in situ silver mirror reaction leading to the formation of a AgNS-CF substrate. Then, the substrate was decorated through in situ synthesis of raspberry-like silver nanostructures (rAgNS). The SERS performance of the prepared substrate was tested using 4-mercaptobenzoic acid (4-MBA) as a Raman probe and compared with that of the CF-based plasmonic substrates. The sensitivity of the rAgNS/AgNS-CF substrate was evaluated by determining the detection limit of 4-MBA and an analytical enhancement factor, which were 10 nM and ~107, respectively. Further, the proposed flexible rAgNS/AgNS-CF substrate was applied for SERS detection of malathion. The detection limit for malathion reached 0.15 mg/L, which meets the requirements about its maximum residue level in food. Thus, the characteristics of the rAgNS/AgNS-CF substrate demonstrate the potential of its application as a label-free and ready-to-use sensing platform for the SERS detection of trace hazardous substances.
Collapse
Affiliation(s)
- Kseniya V. Serebrennikova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky prospect 33, 119071 Moscow, Russia
| | - Nadezhda S. Komova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky prospect 33, 119071 Moscow, Russia
| | - Arseniy V. Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin Street 4, 119991 Moscow, Russia
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky prospect 33, 119071 Moscow, Russia
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky prospect 33, 119071 Moscow, Russia
| |
Collapse
|
6
|
Borah N, Gogoi D, Ghosh NN, Tamuly C. GA-AuNP@Tollens’ complex as a highly sensitive plasmonic nanosensor for detection of formaldehyde and benzaldehyde in preserved food products. Food Chem 2023; 399:133975. [DOI: 10.1016/j.foodchem.2022.133975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 12/01/2022]
|
7
|
Fan J, Fang X, Zhang Y, Xu L, Zhao Z, Gu C, Zhou X, Chen D, Jiang T. Quantitative SERS sensing mediated by internal standard Raman signal from silica nanoparticles in flexible polymer matrix. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121304. [PMID: 35526441 DOI: 10.1016/j.saa.2022.121304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Attributed to poor signal uniformity and external interference, ultrasensitive surface-enhanced Raman spectroscopy (SERS) still faces difficulties in the reliable and quantitative detection of trace molecules. Here, a facile Ag/Si/sodium carboxy methyl cellulose (NaCMC) film with internal standard (IS) was promoted for quantitative determination of thiram. The effects of preparation conditions on SERS activity of the film were systematically investigated and then a flexible SERS substrate with high sensitivity and uniformity was fabricated. The enhancement factor was calculated to be 1.12 × 106 and SERS mapping was recorded with a relative standard deviation value of 19.8% by utilizing 4-mercaptobenzoic acid (4-MBA) as target molecule. Additionally, the dominant contribution of the IS from encapsulated Si nanoparticles (NPs) was confirmed in the quantitative assay of 4-MBA and thiram, facilitating attractive fitting coefficients (R2) as 0.991 and 0.998. Besides that, the proposed flexible film was conducted to scrub trace thiram from the surfaces of apple, orange, and cucumber, resulting in recoveries of 89%, 94%, and 91%. A smart and facile quantitative SERS substrate was developed here for monitoring trace biochemical molecules, verifying its potential utilizations in monitoring pesticide residues.
Collapse
Affiliation(s)
- Jinqi Fan
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Xinyu Fang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Yongling Zhang
- GongQing Institute of Science and Technology, Gongqingcheng 332020, Jiangxi, PR China
| | - Lanxin Xu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Ziqi Zhao
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Chenjie Gu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Xingfei Zhou
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Dong Chen
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China.
| | - Tao Jiang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China.
| |
Collapse
|
8
|
Liu S, Guo J, Hinestroza JP, Kong X, Yu Q. Fabrication of plasmonic absorbent cotton as a SERS substrate for adsorption and detection of harmful ingredients in food. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Xu G, Zhang Q, Gao C, Ma L, Song P, Xia L. A label-free SERS sensor for the detection of Hg2+ based on phenylacetylene functionalized Ag nanoparticles. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Wan M, Zhao H, Peng L, Zhao Y, Sun L. Facile One-Step Deposition of Ag Nanoparticles on SiO 2 Electrospun Nanofiber Surfaces for Label-Free SERS Detection and Antibacterial Dressing. ACS APPLIED BIO MATERIALS 2021; 4:6549-6557. [PMID: 35006892 DOI: 10.1021/acsabm.1c00674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The fabrication of highly active and free-standing surface-enhanced Raman scattering (SERS) substrates in a simple and low-cost manner has been a crucial and urgent challenge in recent years. Herein, SiO2 nanofiber substrates modified with size-tunable Ag nanoparticles were prepared by the combination of electrospinning and in situ chemical reduction. The results demonstrate the presence and uniform adsorption of Ag nanoparticles on the SiO2 matrix surface. The free-standing composite nanofibrous substrates show high-performance SERS response toward 4-mercaptophenol and 4-mercaptobenzoic acid, and the detection limit can be as low as 10-10 mol/L. Most importantly, the as-prepared substrate as a versatile SERS platform can realize label-free detection of bio-macromolecules of bacteria, i.e., Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Furthermore, the substrates also possess outstanding antibacterial activities against S. aureus and E. coli. Briefly, the significance of this study is that size-tunable Ag nanoparticles can be decorated on SiO2 nanofiber surfaces with triethanolamine as a bridging and reducing agent through a one-pot reaction, and the as-prepared nanofibrous membranes are expected to act as a candidate for label-free SERS detection as well as antibacterial dressing.
Collapse
Affiliation(s)
- Menghui Wan
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China
| | - Haodong Zhao
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China
| | - Lichao Peng
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China
| | - Yanbao Zhao
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China
| | - Lei Sun
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China
| |
Collapse
|
11
|
Pan X, Bai L, Pan C, Liu Z, Ramakrishna S. Design, Fabrication and Applications of Electrospun Nanofiber-Based Surface-Enhanced Raman Spectroscopy Substrate. Crit Rev Anal Chem 2021; 53:289-308. [PMID: 34284659 DOI: 10.1080/10408347.2021.1950522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is an advanced and powerful analysis tool. Due to the advantages of high sensitivity, high resolution, and nondestructive testing, it has been widely used in physics, chemistry, material science and other fields. In recent years, substantial progress has been made in developing flexible platforms for the design and fabrication of SERS substrates. One important kind of the flexible platforms is based on electrospun nanofibers. Electrospun nanofibers not only have unique advantages such as easy preparation, high porosity and large specific surface area, but also can increase the number of hotspots when combined with precious metal nanomaterials, thereby enhancing the SERS signal and expanding the application scope. In this review, we firstly focus on two strategies for the fabrication of metal nanostructure decorated in/on the electrospun nanofibers, namely in-situ and ex-situ. Then the applications of these SERS substrates in the fields of quantitative analysis, monitoring chemical reactions and recyclable detection are introduced in detail. Finally, the challenges as well as perspectives are presented to offer a guideline for the future exploration of these SERS substrates. We expect that it will provide new inspiration for the development of electrospun nanofiber-based SERS substrates.
Collapse
Affiliation(s)
- Xue Pan
- School of Materials Science and Engineering, Ocean University of China, Qingdao, China
| | - Lu Bai
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, Qingdao, China
| | - Chengcheng Pan
- School of Materials Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhicheng Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao, China.,Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|