1
|
Luo S, Wu Q, Wang L, Qu H, Zheng L. Direct detection of doxorubicin in whole blood using a hydrogel-protected electrochemical aptamer-based biosensor. Talanta 2025; 285:127289. [PMID: 39613489 DOI: 10.1016/j.talanta.2024.127289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
Electrochemical aptamer-based biosensors (EABs) have been developed for multiple important biomarkers for their convenient and real-time features. However, the application of EABs in complex biological fluids has been limited by the rapid loss of sensitivity and selectivity due to inactivation and biofouling of aptamer probes and electrodes. To address this issue, we report the preparation of a simple hydrogel-protected aptamer-based biosensor (HP-EAB) for direct detection of Doxorubicin (DOX) in whole blood. The aptamer provides excellent selectivity for the electrochemical sensor, allowing the prepared sensor to accurately detect DOX in a 50-fold diluted whole blood sample. The agarose hydrogel coating on the electrode surface allows the passage of small molecules while hindering the adsorption of biomolecules from the whole blood matrix to the electrode surface. The experimental results show that the prepared HP-EAB has high stability compared with the unprotected EAB, and the HP-EAB maintains excellent detection performance after 7 days of storage. The hydrogel coating can effectively reduce the non-specific response to the whole blood matrix and prolong the life-time of the sensor. When used to detect DOX in rabbit whole blood, the HP-EAB exhibited excellent detection performance with a detection limit of 25.9 nM (S/N = 3) and a detection range of 0.1 μM-50 μM. The developed HP-EAB provides an excellent platform for the rapid and accurate determination of important analytes in complex biological fluids.
Collapse
Affiliation(s)
- Songjia Luo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Qingliu Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Lu Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei, 230009, China.
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, Hefei, 230009, China.
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Intelligent Interconnected Systems Laboratory of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
2
|
Deng G, Lu F, Li S, Long Y, Wu J, Guo X, Li C, Song Z, Foda MF, Ding F, Han H. A two-in-one molybdenum disulfide-chitosan nanoparticles system for activating plant defense mechanisms and reactive oxygen species to treat Citrus Huanglongbing. Int J Biol Macromol 2024:135528. [PMID: 39278448 DOI: 10.1016/j.ijbiomac.2024.135528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/18/2024]
Abstract
Citrus Huanglongbing (HLB) poses an enormous challenge to Citrus cultivation worldwide, necessitating groundbreaking interventions beyond conventional pharmaceutical methods. In this study, we propose molybdenum disulfide-chitosan nanoparticles (MoS2-CS NPs) through electrostatic adsorption, preserving the plant-beneficial properties of molybdenum disulfide (MoS2), while enhancing its antibacterial effectiveness through chitosan modification. MoS2-CS NPs exhibited significant antibacterial efficacy against RM1021, and the closest relatives to Candidatus Liberibacter asiaticus (CLas), Erwinia carotovora, and Xanthomonas citri achieved survival rates of 7.40 % ± 1.74 %, 8.94 % ± 1.40 %, and 6.41 % ± 0.56 %, respectively. In vivo results showed, CLas survival rate of 10.42 % ± 3.51 %. Furthermore, treatment with MoS2-CS NPs resulted in an increase in chlorophyll and carotenoid content. Concomitantly, a significant reduction in malondialdehyde (MDA), soluble sugar, hydrogen peroxide (H2O2), and starch contents was also observed. Mechanistically, MoS2-CS NPs enhanced the activity of antioxidant-related enzymes by upregulating the expression of antioxidant genes, thereby galvanizing the antioxidant system to alleviate oxidative stress. Collectively, this dual functionality-combining direct antibacterial action with the activation of plant defense mechanisms-marks a promising strategy for managing Citrus Huanglongbing and suggests potential agricultural applications for MoS2-based antibacterial treatments.
Collapse
Affiliation(s)
- Guiyun Deng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Feifan Lu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shuojun Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; National Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, 200031, China
| | - Yuying Long
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jianghong Wu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaofeng Guo
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chunyin Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhiyong Song
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mohamed F Foda
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Fang Ding
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Heyou Han
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
3
|
Brycht M, Poltorak L, Baluchová S, Sipa K, Borgul P, Rudnicki K, Skrzypek S. Electrochemistry as a Powerful Tool for Investigations of Antineoplastic Agents: A Comprehensive Review. Crit Rev Anal Chem 2024; 54:1017-1108. [PMID: 35968923 DOI: 10.1080/10408347.2022.2106117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Cancer is most frequently treated with antineoplastic agents (ANAs) that are hazardous to patients undergoing chemotherapy and the healthcare workers who handle ANAs in the course of their duties. All aspects related to hazardous oncological drugs illustrate that the monitoring of ANAs is essential to minimize the risks associated with these drugs. Among all analytical techniques used to test ANAs, electrochemistry holds an important position. This review, for the first time, comprehensively describes the progress done in electrochemistry of ANAs by means of a variety of bare or modified (bio)sensors over the last four decades (in the period of 1982-2021). Attention is paid not only to the development of electrochemical sensing protocols of ANAs in various biological, environmental, and pharmaceutical matrices but also to achievements of electrochemical techniques in the examination of the interactions of ANAs with deoxyribonucleic acid (DNA), carcinogenic cells, biomimetic membranes, peptides, and enzymes. Other aspects, including the enantiopurity studies, differentiation between single-stranded and double-stranded DNA without using any label or tag, studies on ANAs degradation, and their pharmacokinetics, by means of electrochemical techniques are also commented. Finally, concluding remarks that underline the existence of a significant niche for the basic electrochemical research that should be filled in the future are presented.
Collapse
Affiliation(s)
- Mariola Brycht
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Lukasz Poltorak
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Simona Baluchová
- Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Charles University, Prague 2, Czechia
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, The Netherlands
| | - Karolina Sipa
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Paulina Borgul
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Konrad Rudnicki
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Sławomira Skrzypek
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| |
Collapse
|
4
|
Zhao Y, Hao Y, Cui M, Li N, Sun B, Wang Y, Zhao H, Zhang C. An electrochemical biosensor based on DNA tetrahedron nanoprobe for sensitive and selective detection of doxorubicin. Bioelectrochemistry 2024; 157:108652. [PMID: 38271768 DOI: 10.1016/j.bioelechem.2024.108652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Doxorubicin (DOX) is a clinical chemotherapeutic drug and patients usually suffer from dose-dependent cytotoxic and side effects during chemotherapy process with DOX. Therefore, developing a reliable strategy for DOX analysis in biological samples for dosage guidance during chemotherapy process is of great significance. Herein, a sensitive and selective electrochemical biosensor for DOX detection was designed based on gold nanoparticles (AuNPs) and DNA tetrahedron (TDN) nanoprobe bifunctional glassy carbon electrode that could detect DOX in human serum and cell lysate samples. AuNPs not only could enhance electron transfer efficiency and detection sensitivity, but also could improve the biocompatibility of electrode. TDN nanoprobes were employed as specific DOX bind sites that could bind abundant DOX through intercalative characteristics to contribute to sensitive and selective detection. Under the optimal conditions, the proposed TDN nanoprobes-based DOX biosensor exhibited a wide linear range that ranged from 1.0 nM to 50 μM and a low detection limit that was 0.3 nM. Moreover, the proposed DOX biosensor displayed nice selectivity, reproducibility and stability, and was successfully applied for DOX detection in human serum and cell lysate samples. These promising results maybe pave a way for DOX dosage guidance and therapeutic efficacy optimization in clinic.
Collapse
Affiliation(s)
- Yunzhi Zhao
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Ying Hao
- School of Mathematics and Physics, Handan University, Handan 056005, China
| | - Min Cui
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Na Li
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Bao Sun
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yu Wang
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang 050035, China
| | - Haiyan Zhao
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Cong Zhang
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
5
|
Zhang C, Zhou X, Yan F, Lin J. N-Doped Graphene Quantum Dots Confined within Silica Nanochannels for Enhanced Electrochemical Detection of Doxorubicin. Molecules 2023; 28:6443. [PMID: 37764222 PMCID: PMC10536127 DOI: 10.3390/molecules28186443] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Herein, we describe a fast and highly sensitive electrochemical sensor for doxorubicin (DOX) detection based on the indium tin oxide (ITO) modified with a binary material consisting of vertically-ordered mesoporous silica films (VMSFs) and N-doped graphene quantum dots (NGQDs). VMSFs, with high permeability and efficient molecular transport capacity, is attached to the ITO electrode via a rapid and controllable electrochemical method, which can serve as a solid template for the confinement of numerous NGQDs through facile electrophoresis. By virtue of the excellent charge transfer capacity, π-π and electrostatic preconcentration effects of NGQDs, as well as the electrostatic enrichment ability of VMSF, the presented NGQDs@VMSF/ITO shows amplified electrochemical signal towards DOX with a positive charge, resulting in good analytical performance in terms of a wide linear range (5 nM~0.1 μM and 0.1~1 μM), high sensitivity (30.4 μA μM-1), and a low limit of detection (0.5 nM). Moreover, due to the molecular sieving property of VMSF, the developed NGQDs@VMSF/ITO sensor has good selectivity and works well in human serum and urine samples, with recoveries of 97.0~109%, thus providing a simple and reliable method for the direct electrochemical analysis of DOX without complex sample pretreatment procedures.
Collapse
Affiliation(s)
- Chaoyan Zhang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China; (C.Z.); (X.Z.)
| | - Xiaoyu Zhou
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China; (C.Z.); (X.Z.)
| | - Fei Yan
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China; (C.Z.); (X.Z.)
| | - Jing Lin
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
6
|
Mo J, Wang S, Zeng J, Ding X. Aptamer-based Upconversion Fluorescence Sensor for Doxorubicin Detection. J Fluoresc 2023; 33:1897-1905. [PMID: 36877414 DOI: 10.1007/s10895-023-03184-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/14/2023] [Indexed: 03/07/2023]
Abstract
Doxorubicin is a common chemotherapeutic drug used to treat a variety of cancers. Monitoring the concentration of doxorubicin in human biological fluids is vital for treatment. In this work, we report an aptamer-functionalized, 808 nm-excited core-shell upconversion fluorescence sensor for specific detection of doxorubicin (DOX). Upconversion nanoparticles and DOX are used as energy donors and energy acceptors respectively. Aptamers immobilized on the surface of upconversion nanoparticles act as the molecular recognition element for DOX. The binding of DOX to the immobilized aptamers results in the fluorescence quenching of the upconversion nanoparticles via a fluorescence resonance energy transfer process. The relative fluorescence intensity exhibits a good linear response to DOX concentration in the range of 0.5 μM to 55 μM with a detection limit of 0.5 μM. The aptasensor displays high specificity and anti-interference against other antibiotics, common ions, and biomolecules owing to strong and specific interactions of aptamers towards DOX. The sensor is further applied for the detection of DOX in urine with spike recoveries of nearly 100%.
Collapse
Affiliation(s)
- Jingwen Mo
- Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments, Engineering Research Center of New Light Sources Technology & Equipment-Ministry of Education, and School of Mechanical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
| | - Shichang Wang
- Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments, Engineering Research Center of New Light Sources Technology & Equipment-Ministry of Education, and School of Mechanical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Jiaying Zeng
- School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China.
| | - Xiong Ding
- School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| |
Collapse
|
7
|
Selective and sensitive electrochemical detection of doxorubicin via a novel magnesium oxide/carbon dot nanocomposite based sensor. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
8
|
An ultrasensitive and preprocessing-free electrochemical platform for the detection of doxorubicin based on tryptophan/polyethylene glycol-cobalt ferrite nanoparticles modified electrodes. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Zhao H, Shi K, Zhang C, Ren J, Cui M, Li N, Ji X, Wang R. Spherical COFs decorated with gold nanoparticles and multiwalled carbon nanotubes as signal amplifier for sensitive electrochemical detection of doxorubicin. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
10
|
Shokri F, Yari A, Jalalvand AR. Simultaneous estimation of rates of DNA damage induced by three important chemotherapy drugs by a novel electrochemical biosensor assisted by chemometric multivariate calibration methods. Int J Biol Macromol 2022; 219:650-662. [PMID: 35952814 DOI: 10.1016/j.ijbiomac.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022]
Abstract
In this work, a novel electrochemical biosensor assisted by multivariate calibration methods was developed for simultaneous estimation of rates of DNA damage induced by doxorubicin (DX), daunorubicin (DR) and idarubicin (ID), and also to simultaneous determination of the drugs. A glassy carbon electrode was efficiently modified and used as the biosensing platform. Binding and interactions of DX, DR and ID with DNA were modeled by molecular docking methods, and theoretical information was completed by experimental results. The methylene blue was able to intercalate within the DNA structure and by incubation of the biosensor with DX or DR or ID, the methylene blue was replaced by drug and therefore, the voltammetric signal of the biosensor was changed due to the exposed DNA and repelling the electrochemical probe molecules carrying negative charge. The DNA damage induced by each drug was individually monitored by differential pulse voltammetry and then, rates of DNA damage were calibrated and validated by mixture design and multivariate calibration methods. The developed multivariate calibration model constructed based on vectorization of the data was able to simultaneous detection of the rates of DNA damage induced by all the three drugs. The change in the biosensor response in the presence of the drugs was also modeled by multivariate calibration methods to simultaneous determination of the drugs.
Collapse
Affiliation(s)
- Foroozan Shokri
- Department of Chemistry, Faculty of Science, Lorestan University, Khoramabad, Iran
| | - Abdollah Yari
- Department of Chemistry, Faculty of Science, Lorestan University, Khoramabad, Iran
| | - Ali R Jalalvand
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
11
|
Sulfur nanoparticle-encapsulated MOF and boron nanosheet-ferrocene complex modified electrode platform for ratiometric electrochemical sensing of adriamycin and real-time monitoring of drug release. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Li F, Fan P, Chen X, Lin X, Liu C, Hu C, Yang S, Xiao F. A ratiometric fluorescent strategy based on copper nanoclusters/carbon dots for sensitive detection of doxorubicin. LUMINESCENCE 2022; 37:868-875. [PMID: 35304812 DOI: 10.1002/bio.4230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 11/09/2022]
Abstract
Sensitive detection of doxorubicin (DOX) is critical for clinical theranostics. A novel ratiometric fluorescence strategy based on inner filter effect (IFE) has been established for sensitive detection of DOX by designing a ratiometric fluorescence probe. In the presence of DOX, the fluorescence intensity of copper nanoclusters (CuNCs) at 485 nm decreases, and the fluorescence intensity of carbon dots (CDs) at 560 nm increases. Therefore, DOX can be quantitatively detected by measuring the ratio of the fluorescence intensities at 560 and 485 nm (F560 /F485 ). The F560 /F485 ratio exhibits a linear correlation to the DOX concentration in the range from 1.0×10-8 M to 1.0×10-4 M with the detection limit of 3.7 nM. Furthermore, this method is also successfully applied to analysis of DOX in human plasma samples, affording an effective platform for drug safety management.
Collapse
Affiliation(s)
- Feifei Li
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengfei Fan
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xinbei Chen
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Xi Lin
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Jiading Center for Disease Control and Prevention, Shanghai, China
| | - Can Liu
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Congcong Hu
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shengyuan Yang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Fubing Xiao
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
13
|
Zhang L, Wang M, Zhu Z, Chen S, Wu H, Yang Y, Che F, Li Q, Li H. A GD2-aptamer-mediated, self-assembling nanomedicine for targeted multiple treatments in neuroblastoma theranostics. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:732-748. [PMID: 34703655 PMCID: PMC8515170 DOI: 10.1016/j.omtn.2021.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
Because current mainstream anti-glycolipid GD2 therapeutics for neuroblastoma (NB) have limitations, such as severe adverse effects, improved therapeutics are needed. In this study, we developed a GD2 aptamer (DB99) and constructed a GD2-aptamer-mediated multifunctional nanomedicine (ANM) with effective, precise, and biocompatible properties, which functioned both as chemotherapy and as gene therapy for NB. DB99 can bind to GD2+ NB tumor cells but has minimal cross-reactivity to GD2− cells. Furthermore, ANM is formulated by self-assembly of synthetic aptamers DB99 and NB-specific MYCN small interfering RNA (siRNA), followed by self-loading of the chemotherapeutic agent doxorubicin (Dox). ANM is capable of specifically recognizing, binding, and internalizing GD2+, but not GD2−, NB tumor cells in vitro. Intracellular delivery of ANM activates Dox release for chemotherapy and MYCN-siRNA-induced MYCN silencing. ANM specifically targets, and selectively accumulates in, the GD2+ tumor site in vivo and further induces growth inhibition of GD2+ tumors in vivo; in addition, ANM generates fewer or no side effects in healthy tissues, resulting in markedly longer survival with fewer adverse effects. These results suggest that the GD2-aptamer-mediated, targeted drug delivery system may have potential applications for precise treatment of NB.
Collapse
Affiliation(s)
- Liyu Zhang
- Department of Neonatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.,Shaanxi Institute of Pediatric Diseases, Affiliated Children's hospital of Xi'an Jiaotong University, Xi'an 710002, Shaanixi, China
| | - Meng Wang
- Department of Emergency Surgery, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi, China
| | - Zeen Zhu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Shengquan Chen
- Department of Neonatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Haibin Wu
- Shaanxi Institute of Pediatric Diseases, Affiliated Children's hospital of Xi'an Jiaotong University, Xi'an 710002, Shaanixi, China
| | - Ying Yang
- Shaanxi Institute of Pediatric Diseases, Affiliated Children's hospital of Xi'an Jiaotong University, Xi'an 710002, Shaanixi, China
| | - Fengyu Che
- Shaanxi Institute of Pediatric Diseases, Affiliated Children's hospital of Xi'an Jiaotong University, Xi'an 710002, Shaanixi, China
| | - Qiao Li
- Department of clinical laboratory, Affiliated Children's hospital of Xi'an Jiaotong University, Xi'an 710002, China
| | - Hui Li
- Department of Neonatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.,Department of Neonatology, Affiliated Children's hospital of Xi'an Jiaotong University, Xi'an 710002, China
| |
Collapse
|
14
|
Sriram B, Baby JN, Hsu YF, Wang SF, George M, Veerakumar P, Lin KC. Electrochemical sensor-based barium zirconate on sulphur-doped graphitic carbon nitride for the simultaneous determination of nitrofurantoin (antibacterial agent) and nilutamide (anticancer drug). J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Rajaji U, K YK, Chen SM, Raghu MS, Parashuram L, Alzahrani FM, Alsaiari NS, Ouladsmane M. Deep eutectic solvent synthesis of iron vanadate-decorated sulfur-doped carbon nanofiber nanocomposite: electrochemical sensing tool for doxorubicin. Mikrochim Acta 2021; 188:303. [PMID: 34435234 DOI: 10.1007/s00604-021-04950-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/19/2021] [Indexed: 11/30/2022]
Abstract
Detection of anticancer drug (doxorubicin) using an electrochemical sensor is developed based on a transition metal vanadate's related carbon composite material. With an environmentally friendly process, we have synthesized a metal oxide composite of iron vanadate nanoparticle assembled with sulfur-doped carbon nanofiber (FeV/SCNF). The FeV/SCNF composite was characterized using XRD, TEM, FESEM with elemental mapping, XPS and EDS. In contrast to other electrodes reported in the literature, a much-improved electrochemical efficiency is shown by FeV/SCNF composite modified electrodes. Amperometric technique has been employed at 0.25 V (vs. Ag/AgCl) for the sensitive detection of DOX within a wide range of 20 nM-542.5 μM and it possesses enhanced selectivity in presence of common interferents. The modified electrochemical sensors show high sensitivity of 46.041 μA μM-1 cm-2. The newly developed sensor could be used for the determination of doxorubicin in both blood serum and drug formulations with acceptable results, suggesting its feasibility for real-time applications.
Collapse
Affiliation(s)
- Umamaheswari Rajaji
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Chung-Hsiao East Road, Section 3, Taipei, 10608, Taiwan, Republic of China
| | - Yogesh Kumar K
- Department of Chemistry, School of Engineering and Technology, Jain University, Bangalore, 562112, India
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Chung-Hsiao East Road, Section 3, Taipei, 10608, Taiwan, Republic of China.
| | - M S Raghu
- Department of Chemistry, New Horizon College of Engineering, Outer Ring Road, Bangalore, 560103, India
| | - L Parashuram
- Department of Chemistry, New Horizon College of Engineering, Outer Ring Road, Bangalore, 560103, India
| | - Fatimah Mohammed Alzahrani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Norah Salem Alsaiari
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Mohamed Ouladsmane
- Advanced Materials Research Chair, Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
16
|
Sriram B, Baby JN, Hsu YF, Wang SF, George M. Synergy of the LaVO4/h-BN Nanocomposite: A Highly Active Electrocatalyst for the Rapid Analysis of Carbendazim. Inorg Chem 2021; 60:5271-5281. [DOI: 10.1021/acs.inorgchem.1c00253] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Jeena N. Baby
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai 600086, Tamil Nadu, India
| | - Yung-Fu Hsu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Mary George
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai 600086, Tamil Nadu, India
| |
Collapse
|
17
|
Lee CY, Prasannan A, Lincy V, Vetri Selvi S, Chen SM, Hong PD. Highly exfoliated functionalized MoS 2 with sodium alginate-polydopamine conjugates for electrochemical sensing of cardio-selective β-blocker by voltammetric methods. Mikrochim Acta 2021; 188:103. [PMID: 33646401 DOI: 10.1007/s00604-021-04717-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
Molybdenum disulfide (MoS2) surface functionalization was performed with a catechol-containing polymer sodium alginate (SA) and dopamine (DA) through simultaneous MoS2 exfoliation and self-polymerization of DA. The MoS2/SA-PDA nanocomposite was characterized using spectroscopic, microscopic, and electroanalytical techniques to evaluate its electrocatalytic performance. The electrocatalytic behavior of the MoS2/SA-PDA nanocomposite modified electrode for the detection of acebutolol (ACE), a cardio-selective β-blocker drug was explored through cyclic voltammetric and differential pulse voltammetric techniques. The influence of scan rate, concentration, and pH value on the oxidation peak current of ACE was investigated to optimize the deducting condition. The electrochemical activity of the MoS2/SA-PDA nanocomposite electrode was attributed to the existence of reactive functional groups being contributed from SA, PDA, and MoS2 exhibiting a synergic effect. The MoS2/SA-PDA nanocomposite modified electrode exhibits admirable electrocatalytic activity with a wide linear response range (0.009 to 520 μM), low detection limit (5 nM), and high sensitivity (0.354 μA μM-1 cm-2) also in the presence of similar (potentially interfering) compounds. The fabricated MoS2/SA-PDA nanocomposite modified electrode can be useful for the detection of ACE in pharmaceutical analysis.
Collapse
Affiliation(s)
- Chung-Yi Lee
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Adhimoorthy Prasannan
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Varghese Lincy
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Subash Vetri Selvi
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 10106, Taiwan
| | - Shen Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 10106, Taiwan
| | - Po-Da Hong
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan.
| |
Collapse
|