1
|
Jin L, Li L, Zeng X, Yu S, Zhang J. The ratiometric fluorescent sensor based on the mixture of CdTe quantum dots and graphene quantum dots for quantitative analysis of silver in drinks. Food Chem 2023; 429:136926. [PMID: 37487396 DOI: 10.1016/j.foodchem.2023.136926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/29/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023]
Abstract
Silver nanoparticles can be used in antibacterial packaging or disinfection. Research has shown that sugary fluid induces the leaching of silver nanoparticles into water, which may be harmful to humans. Single wavelength fluorescence analysis has been used for quantitative analysis of silver nanoparticles but suffers from low specificity and poor anti-interference ability. In this paper, a ratiometric fluorescence sensor system (GCS) was used for the detection of Ag+, which realized both visual detection and quantitative analysis of silver in drinks. The color changes of GCS with different concentrations of Ag+ are distinguishable and easy to analyze. There is also a good linear relationship between the concentrations of Ag+ and varieties of F424 nm/F570 nm, and the lowest detection limit reached 0.2266 nmol/L. This GCS shows good selectivity and recovery and could be used for the detection of Ag+ in drink samples.
Collapse
Affiliation(s)
- Li Jin
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China.
| | - Lan Li
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Xiaodan Zeng
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Shihua Yu
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Jianpo Zhang
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China.
| |
Collapse
|
2
|
Halawa MI, Saqib M, Lei W, Su L, Zhang X. Zirconium-Directed Supramolecular Self-Assembly of Coenzyme A@GNCs with Enhanced Phosphorescence for Developing Ultrasensitive Tracer Probe of Dipicolinic Acid, a Biomarker of Bacterial Spores. Anal Chem 2023; 95:11164-11171. [PMID: 37437237 DOI: 10.1021/acs.analchem.3c02209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Luminescent gold nanoclusters (GNCs) are a class of attractive quantum-sized nanomaterials bridging the gap between organogold complexes and gold nanocrystals. They typically have a core-shell structure consisting of a Au(I)-organoligand shell-encapsulated few-atom Au(0) core. Their luminescent properties are greatly affected by their Au(I)-organoligand shell, which also supports the aggregation-induced emission (AIE) effect. However, so far, the luminescent Au nanoclusters encapsulated with the organoligands containing phosphoryl moiety have rarely been reported, not to mention their AIE. In this study, coenzyme A (CoA), an adenosine diphosphate (ADP) analogue that is composed of a bulky 5-phosphoribonucleotide adenosine moiety connected to a long branch of vitamin B5 (pantetheine) via a diphosphate ester linkage and ubiquitous in all living organisms, has been used to synthesize phosphorescent GNCs for the first time. Interestingly, the synthesized phosphorescent CoA@GNCs could be further induced to generate AIE via the PO32- and Zr4+ interactions, and the observed AIE was found to be highly specific to Zr4+ ions. In addition, the enhanced phosphorescent emission could be quickly turned down by dipicolinic acid (DPA), a universal and specific component and also a biomarker of bacterial spores. Therefore, a Zr4+-CoA@GNCs-based DPA biosensor for quick, facile, and highly sensitive detection of possible spore contamination has been developed, showing a linear concentration range from 0.5 to 20 μM with a limit of detection of 10 nM. This study has demonstrated a promising future for various organic molecules containing phosphoryl moiety for the preparation of AIE-active metal nanoclusters.
Collapse
Affiliation(s)
- Mohamed Ibrahim Halawa
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518055, P. R. China
- Guangdong Laboratory of Artificial Intelligence & Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Muhammad Saqib
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Weihao Lei
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518055, P. R. China
| | - Lei Su
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518055, P. R. China
| | - Xueji Zhang
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518055, P. R. China
- Guangdong Laboratory of Artificial Intelligence & Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
3
|
Kakkar S, Gupta P, Kumar N, Kant K. Progress in Fluorescence Biosensing and Food Safety towards Point-of-Detection (PoD) System. BIOSENSORS 2023; 13:249. [PMID: 36832016 PMCID: PMC9953818 DOI: 10.3390/bios13020249] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The detection of pathogens in food substances is of crucial concern for public health and for the safety of the natural environment. Nanomaterials, with their high sensitivity and selectivity have an edge over conventional organic dyes in fluorescent-based detection methods. Advances in microfluidic technology in biosensors have taken place to meet the user criteria of sensitive, inexpensive, user-friendly, and quick detection. In this review, we have summarized the use of fluorescence-based nanomaterials and the latest research approaches towards integrated biosensors, including microsystems containing fluorescence-based detection, various model systems with nano materials, DNA probes, and antibodies. Paper-based lateral-flow test strips and microchips as well as the most-used trapping components are also reviewed, and the possibility of their performance in portable devices evaluated. We also present a current market-available portable system which was developed for food screening and highlight the future direction for the development of fluorescence-based systems for on-site detection and stratification of common foodborne pathogens.
Collapse
Affiliation(s)
- Saloni Kakkar
- Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh 160036, India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, India
| | - Payal Gupta
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, India
| | - Navin Kumar
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, India
| | - Krishna Kant
- Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain
| |
Collapse
|
4
|
Bi N, Zhang YH, Hu MH, Xu J, Song W, Gou J, Li YX, Jia L. Highly selective and multicolor ultrasensitive assay of dipicolinic acid: The integration of terbium(III) and gold nanocluster. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121777. [PMID: 36058171 DOI: 10.1016/j.saa.2022.121777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
A novel multicolor fluorescent nano-probe based on the hybridization of Tb3+ ion with gold nanoclusters (Au NCs) was synthesized to monitor and on-site visual assay of 2,6-pyridinedicarboxylic acid (DPA), a biomarker of bacterial spores. DPA can replace the water molecule in the center of Tb3+ and strongly coordinate with Tb3+ based on the analyte-triggered antenna effect. Simultaneously, the red fluorescence of Au NCs is not influenced after addition of DPA and can be used as steady inside fluorescence reference channel to measure background noise. On this basis, the multicolor fluorescence nano-probe based on Tb3+-doped Au NCs for fast analysis of DPA was fabricated. The linear range of this method is 0 to 12.5 μM and the limit of detection is 3.4 nM, which is well below the quantity of DPA concentration of 60 μM released by the spore transmission dose of anthrax infection. The proposed multicolor fluorescence nano-probe was successfully detecting DPA in actual sample with good sensitivity and specificity. In addition, the visual paper-based nano-probe is designed to detect DPA by using the color scanning application of smart phone. This developed platform possesses abroad application prospects with advantages of effective, convenient carrying, simple operation, good selectivity and repeatability.
Collapse
Affiliation(s)
- Ning Bi
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Yin-Hong Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Mei-Hua Hu
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Jun Xu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Wei Song
- Chongqing Jianfeng Chemical Co., Ltd., Chongqing 400000, PR China
| | - Jian Gou
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Yong-Xin Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Lei Jia
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China.
| |
Collapse
|
5
|
Europium-modified carbon nitride nanosheets for smartphone-based fluorescence sensitive recognition of anthrax biomarker dipicolinic acid. Food Chem 2023; 398:133884. [DOI: 10.1016/j.foodchem.2022.133884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/10/2022] [Accepted: 08/05/2022] [Indexed: 11/19/2022]
|
6
|
Qiu J, Na L, Li Y, Bai W, Zhang J, Jin L. N,S-GQDs mixed with CdTe quantum dots for ratiometric fluorescence visual detection and quantitative analysis of malachite green in fish. Food Chem 2022; 390:133156. [DOI: 10.1016/j.foodchem.2022.133156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 11/04/2022]
|
7
|
Schwardmann LS, Dransfeld AK, Schäffer T, Wendisch VF. Metabolic Engineering of Corynebacterium glutamicum for Sustainable Production of the Aromatic Dicarboxylic Acid Dipicolinic Acid. Microorganisms 2022; 10:microorganisms10040730. [PMID: 35456781 PMCID: PMC9024752 DOI: 10.3390/microorganisms10040730] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/04/2023] Open
Abstract
Dipicolinic acid (DPA) is an aromatic dicarboxylic acid that mediates heat-stability and is easily biodegradable and non-toxic. Currently, the production of DPA is fossil-based, but bioproduction of DPA may help to replace fossil-based plastics as it can be used for the production of polyesters or polyamides. Moreover, it serves as a stabilizer for peroxides or organic materials. The antioxidative, antimicrobial and antifungal effects of DPA make it interesting for pharmaceutical applications. In nature, DPA is essential for sporulation of Bacillus and Clostridium species, and its biosynthesis shares the first three reactions with the L-lysine pathway. Corynebacterium glutamicum is a major host for the fermentative production of amino acids, including the million-ton per year production of L-lysine. This study revealed that DPA reduced the growth rate of C. glutamicum to half-maximal at about 1.6 g·L−1. The first de novo production of DPA by C. glutamicum was established by overexpression of dipicolinate synthase genes from Paenibacillus sonchi genomovar riograndensis SBR5 in a C. glutamicum L-lysine producer strain. Upon systems metabolic engineering, DPA production to 2.5 g·L−1 in shake-flask and 1.5 g·L−1 in fed-batch bioreactor cultivations was shown. Moreover, DPA production from the alternative carbon substrates arabinose, xylose, glycerol, and starch was established. Finally, expression of the codon-harmonized phosphite dehydrogenase gene from P. stutzeri enabled phosphite-dependent non-sterile DPA production.
Collapse
Affiliation(s)
- Lynn S. Schwardmann
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (L.S.S.); (A.K.D.)
| | - Aron K. Dransfeld
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (L.S.S.); (A.K.D.)
| | - Thomas Schäffer
- Multiscale Bioengineering, Technical Faculty and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany;
| | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (L.S.S.); (A.K.D.)
- Correspondence: ; Tel.: +49-521-106-5611
| |
Collapse
|
8
|
Research on Rapid Detection Technology for β2-Agonists: Multi-Residue Fluorescence Immunochromatography Based on Dimeric Artificial Antigen. Foods 2022; 11:foods11060863. [PMID: 35327285 PMCID: PMC8949518 DOI: 10.3390/foods11060863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/27/2022] [Accepted: 03/12/2022] [Indexed: 02/01/2023] Open
Abstract
To detect two types of β2-agonist residues at the same time, we coupled two haptens of clenbuterol (CLE) and ractopamine (RAC) to the same carrier protein through diazotization to prepare dimeric artificial antigen, and a fluorescent lateral flow immunoassay method based on europium nanoparticles (EuNP-FLFIA) was established by combining polyclonal antibodies with europium nanoparticles to form probes. Under optimized conditions, the EuNP-FLFIA could simultaneously detect eight aniline-type and one phenol-type β2-agonists, and the limits of detection (LOD) were 0.11−0.19 ng/mL and 0.12 ng/mL, respectively. The recovery rate of this method was 84.00−114.00%. This method was verified by liquid chromatography−tandem mass spectrometry (LC-MS/MS), and the test results were consistent (R2 > 0.98). Therefore, the method established in this study could be used as a high-throughput screening for the efficient and sensitive detection of β2-agonists in food.
Collapse
|
9
|
Fan S, Jiang X, Yang M, Wang X. Sensitive colorimetric assay for the determination of alkaline phosphatase activity utilizing nanozyme based on copper nanoparticle-modified Prussian blue. Anal Bioanal Chem 2021; 413:3955-3963. [PMID: 33885935 DOI: 10.1007/s00216-021-03347-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
Nanozyme based on Prussian blue nanocubes (PB NCs) loaded with copper nanoparticles (Cu@PB NCs) was synthesized. The peroxidase (POD)-like activity of Cu@PB NCs was studied and utilized for detecting the activity of alkaline phosphatase (ALP). The Cu@PB NCs possess higher POD-like activity compared with PB NCs and natural horseradish peroxidase (HRP) due to the loading of copper nanoparticles. 3,3',5,5'-Tetramethylbenzidine (TMB) can be oxidized to oxTMB in the presence of Cu@PB NCs and H2O2, generating blue-colored compound, while introduction of pyrophosphate (PPi) leads to the POD-like activity of Cu@PB NCs decreased obviously. In the presence of ALP, PPi was hydrolyzed and then the POD-like activity of Cu@PB NCs was restored. So, according to the change of the POD-like activity of Cu@PB NCs, a sensitive colorimetric assay for ALP activity was reported. The limit of detection of the assay is 0.08 mU/mL, with linear range from 0.1 to 50 mU/mL. In addition, the assay was also applied for screening the inhibitors of ALP. Nanozyme based on Prussian blue nanocube (PB NCs) loaded with copper nanoparticles was synthesized and utilized for detecting the activity of alkaline phosphatase (ALP).
Collapse
Affiliation(s)
- Shengnan Fan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Xingxing Jiang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Minghui Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China.
| | - Xianggui Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
- Hunan Key Laboratory of Ophthalmology, Changsha, 410078, Hunan, China.
| |
Collapse
|
10
|
Wang W, Li P, Zheng Z, Cheng D, Dong C, Yang H. Highly sensitive fluorescence detection of tobacco mosaic virus RNA based on disodium 4,4′-diazidostilbene-2,2′-disulfonate tetrahydrate in situ reaction. NEW J CHEM 2021. [DOI: 10.1039/d1nj02546e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel fluorescent turn-on method for TMV RNA via the reducing ability of an AA and DES in situ reaction was reported.
Collapse
Affiliation(s)
- Wenbin Wang
- Henan Key Laboratory of TCM Syndrome and Prescription in Signaling, Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Peipei Li
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China
| | - Zhixian Zheng
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China
| | - Di Cheng
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China
| | - Chengming Dong
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China
| |
Collapse
|