1
|
Meng X, Pang X, Yang J, Zhang X, Dong H. Recent Advances in Electrochemiluminescence Biosensors for MicroRNA Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307701. [PMID: 38152970 DOI: 10.1002/smll.202307701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/06/2023] [Indexed: 12/29/2023]
Abstract
Electrochemiluminescence (ECL) as an analytical technology with a perfect combination of electrochemistry and spectroscopy has received considerable attention in bioanalysis due to its high sensitivity and broad dynamic range. Given the selectivity of bio-recognition elements and the high sensitivity of the ECL analysis technique, ECL biosensors are powerful platforms for the sensitive detection of biomarkers, achieving the accurate prognosis and diagnosis of diseases. MicroRNAs (miRNAs) are crucial biomarkers involved in a variety of physiological and pathological processes, whose aberrant expression is often related to serious diseases, especially cancers. ECL biosensors can fulfill the highly sensitive and selective requirements for accurate miRNA detection, prompting this review. The ECL mechanisms are initially introduced and subsequently categorize the ECL biosensors for miRNA detection in terms of the quenching agents. Furthermore, the work highlights the signal amplification strategies for enhancing ECL signal to improve the sensitivity of miRNA detection and finally concludes by looking at the challenges and opportunities in ECL biosensors for miRNA detection.
Collapse
Affiliation(s)
- Xiangdan Meng
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
| | - Xuejiao Pang
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
| | - Junyan Yang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong, 518060, P. R. China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong, 518060, P. R. China
| |
Collapse
|
2
|
Qin H, Chen Z, Zuo F, Cao R, Wang F, Wu H, Wang S, Xie Y, Ding S, Min X, Duan X. "DSN-mismatched CRISPR″sensor for highly selective and sensitive detection of under-expressed miR-let-7a. Anal Chim Acta 2024; 1295:342273. [PMID: 38355234 DOI: 10.1016/j.aca.2024.342273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 02/16/2024]
Abstract
Several microRNAs (miRNAs) are expressed at lower levels in specific tumors, e.g., miR-let-7a in non-small cell lung cancer (NSCLC). This makes it challenging to analyze their lower abundance versus specifically elevated miRNAs. Here, we describe a novel fluorescent biosensor for the highly selective and sensitive detection of miR-let-7a constructed by combining miRNA screening assisted by a duplex-specific nuclease (DSN) with CRISPR-Cas12a system signal amplification. We meticulously designed a mismatch in the first three to four bases at the 5'-end of the capture DNA to improve the signal-to-noise ratio of the CRISPR-Cas12a system. Within this "DSN-mismatched CRISPR" fluorescence strategy, miR-let-7a was accurately screened by DSN-assisted cleavage, and the mismatched capture DNA unbound to target miRNA could trigger the CRISPR-Cas12a system to produce a mass of trans-cleave fluorescence signals. This "turn-off" approach was suitable for detecting decreased levels of miRNAs. This approach can not only discriminate the single-base mismatched let-7 family but also reach a limit of detection at 64.17 fM as well as be quantified from 100 fM to 500 pM. The miR-let-7a levels were then measured in clinical serum samples from healthy volunteers and patients with NSCLC. This study holds promise for the development of a universal under-expressed miRNA assay for early diagnosis and treatment of cancers.
Collapse
Affiliation(s)
- Huijun Qin
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, PR China; Department of Clinical Laboratory, Dazhou Central Hospital, Dazhou, 635000, PR China
| | - Zhuoying Chen
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, PR China
| | - Fujiang Zuo
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, PR China
| | - Rufei Cao
- College of Basic Medicine, Zunyi Medical University, Zunyi, 563000, PR China
| | - Fangyuan Wang
- College of Basic Medicine, Zunyi Medical University, Zunyi, 563000, PR China
| | - Haiping Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Shuji Wang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, PR China
| | - Yuanjiang Xie
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, PR China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Xun Min
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, PR China.
| | - Xiaolei Duan
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, PR China; College of Basic Medicine, Zunyi Medical University, Zunyi, 563000, PR China.
| |
Collapse
|
3
|
Yang S, Tian L, Song G, Li H, Li C, Wu Q, Shan X, Zhao L. Electrochemiluminescent assay based on Co-MOF and TiO 2 for determination of bisphenol A. Mikrochim Acta 2024; 191:142. [PMID: 38367049 DOI: 10.1007/s00604-024-06216-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/16/2024] [Indexed: 02/19/2024]
Abstract
An electrochemiluminescence (ECL) sensor for determining bisphenol A (BPA) was prepared based on titanium dioxide (TiO2) and Co-MOF. TiO2 is a co-reaction promoter that amplifies the ECL signal in the Ru(bpy)32+-trinpropylamine (TPrA) system. When the electrode is modified with Co-MOF the ECL signal is significantly enhanced. This is because Co-MOF can not only be used as a co-reaction accelerator but also as a carrier to adsorb more luminescent substances. Possible mechanisms for amplifying the original signal through the synergistic action of the two substances are investigated. The ECL strength decreases with increasing concentrations of BPA, and the amount of BPA can be determined by the change in ECL signal strength (ΔI). Under optimal experimental conditions, the linear range of BPA was 2.0 × 10-10 to 2.0 × 10-5 M, with a determination limit of 6.7 × 10-11 M (3σ/m). The relative standard deviation (RSD) of the signal for ten consecutive measurements was 1.5%. The sensor can be used to detect BPA in bottled samples with recoveries of 96 to 105%.
Collapse
Affiliation(s)
- Shuning Yang
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China
| | - Li Tian
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China.
| | - Guanying Song
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China
| | - Huiling Li
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China
| | - Chao Li
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China
| | - Qian Wu
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China
| | - Xiangyu Shan
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China
| | - Lun Zhao
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China.
| |
Collapse
|
4
|
Ghosh S, Yang CJ, Lai JY. Optically active two-dimensional MoS 2-based nanohybrids for various biosensing applications: A comprehensive review. Biosens Bioelectron 2024; 246:115861. [PMID: 38029711 DOI: 10.1016/j.bios.2023.115861] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
Following the discovery of graphene, there has been a surge in exploring other two-dimensional (2D) nanocrystals, including MoS2. Over the past few decades, MoS2-based nanocrystals have shown great potential applications in biosensing, owing to their excellent physico-chemical properties. Unlike graphene, MoS2 shows layer-dependent finite band gaps (∼1.8 eV for a single layer and ∼1.2 for bulk) and relatively strong interaction with the electromagnetic spectrum. The tunability of the size, shape, and intrinsic properties, such as high optical absorption, electron mobility, mechanical strength and large surface area, of MoS2 nanocrystals, make them excellent alternative probe materials for preparing optical, photothermal, and electrical bio/immunosensors. In this review, we will provide insights into the rapid evolutions in bio/immunosensing applications based on MoS2 and its nanohybrids. We emphasized the various synthesis, characterization, and functionalization routes of 2D MoS2 nanosheets/nanoflakes. Finally, we discussed various fabrication techniques and the critical parameters, including the limit of detection (LOD), linear detection range, and sensitivity of the biosensors. In addition, the role of MoS2 in enhancing the performance of biosensors, the limitations associated with current biosensing technologies, future challenges, and clinical implications are addressed. The advantages/disadvantages of each biosensor technique are also summarized. Collectively, we believe that this review will encourage resolute researchers to follow up further with the state-of-the-art MoS2-based biosensing technology.
Collapse
Affiliation(s)
- Sandip Ghosh
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Chia-Jung Yang
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Jui-Yang Lai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan; Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan; Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan.
| |
Collapse
|
5
|
Aguila-Rosas J, Ramos D, Quirino-Barreda CT, Flores-Aguilar JA, Obeso JL, Guzmán-Vargas A, Ibarra IA, Lima E. Copper(II)-MOFs for bio-applications. Chem Commun (Camb) 2023; 59:11753-11766. [PMID: 37703047 DOI: 10.1039/d3cc03146b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The recent development and implementation of copper-based metal-organic frameworks in biological applications are reviewed. The advantages of the presence of copper in MOFs for relevant applications such as drug delivery, cancer treatment, sensing, and antimicrobial are highlighted. Advanced composites such as MOF-polymers are playing critical roles in developing materials for specific applications.
Collapse
Affiliation(s)
- Javier Aguila-Rosas
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.
- Laboratorio de Farmacia Molecular y Liberación Controlada, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, C.P. 04960, CDMX, Mexico
| | - Dalia Ramos
- Laboratorio de Farmacia Molecular y Liberación Controlada, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, C.P. 04960, CDMX, Mexico
| | - Carlos T Quirino-Barreda
- Laboratorio de Farmacia Molecular y Liberación Controlada, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, C.P. 04960, CDMX, Mexico
| | - Juan Andrés Flores-Aguilar
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.
| | - Juan L Obeso
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Irrigación 11500, Miguel Hidalgo, CDMX, Mexico
| | - Ariel Guzmán-Vargas
- ESIQIE - Instituto Politécnico Nacional, Avenida IPN UPALM Edificio 7, Zacatenco, 07738 México D.F, Mexico.
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.
| | - Enrique Lima
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.
| |
Collapse
|
6
|
Mohan B, Kumar S, Kumar V, Jiao T, Sharma HK, Chen Q. Electrochemiluminescence metal-organic frameworks biosensing materials for detecting cancer biomarkers. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Negahdary M, Angnes L. Application of electrochemical biosensors for the detection of microRNAs (miRNAs) related to cancer. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214565] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Gao Y, Wang S, Wang B, Jiang Z, Fang T. Recent Progress in Phase Regulation, Functionalization, and Biosensing Applications of Polyphase MoS 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202956. [PMID: 35908166 DOI: 10.1002/smll.202202956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The disulfide compounds of molybdenum (MoS2 ) are layered van der Waals materials that exhibit a rich array of polymorphic structures. MoS2 can be roughly divided into semiconductive phase and metallic phase according to the difference in electron filling state of the 4d orbital of Mo atom. The two phases show completely different properties, leading to their diverse applications in biosensors. But to some extent, they compensate for each other. This review first introduces the relationship between phase state and the chemical/physical structures and properties of MoS2 . Furthermore, the synthetic methods are summarized and the preparation strategies for metastable phases are highlighted. In addition, examples of electronic and chemical property designs of MoS2 by means of doping and surface modification are outlined. Finally, studies on biosensors based on MoS2 in recent years are presented and classified, and the roles of MoS2 with different phases are highlighted. This review offers references for the selection of materials to construct different types of biosensors based on MoS2 , and provides inspiration for sensing performance enhancement.
Collapse
Affiliation(s)
- Yan Gao
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Engineering Research Center of New Energy System Engineering and Equipment, University of Shaanxi Province, Xi'an, Shaanxi, 710049, China
| | - Siyao Wang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Engineering Research Center of New Energy System Engineering and Equipment, University of Shaanxi Province, Xi'an, Shaanxi, 710049, China
| | - Bin Wang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Engineering Research Center of New Energy System Engineering and Equipment, University of Shaanxi Province, Xi'an, Shaanxi, 710049, China
| | - Zhao Jiang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Engineering Research Center of New Energy System Engineering and Equipment, University of Shaanxi Province, Xi'an, Shaanxi, 710049, China
| | - Tao Fang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Engineering Research Center of New Energy System Engineering and Equipment, University of Shaanxi Province, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
9
|
Liu J, Wang R, Zhou H, Mathesh M, Dubey M, Zhang W, Wang B, Yang W. Nucleic acid isothermal amplification-based soft nanoarchitectonics as an emerging electrochemical biosensing platform. NANOSCALE 2022; 14:10286-10298. [PMID: 35791765 DOI: 10.1039/d2nr02031a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The emergence of nucleic acid isothermal amplification strategies based on soft nanoarchitectonics offers a new dimension to the traditional electrochemical technique, particularly because of its flexibility, high efficiency, and increased sensitivity for analytical applications. Various DNA/RNA isothermal amplification strategies have been developed for the design and fabrication of new electrochemical biosensors for efficient and important biomolecular detection. Herein, we provide an overview of recent efforts in this research field and the strategies for signal-amplified sensing systems, with their biological applications, current challenges and prospects in this promising new area.
Collapse
Affiliation(s)
- Jing Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China.
| | - Ruke Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China.
| | - Hong Zhou
- Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Motilal Mathesh
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, 3217, Australia.
| | - Mukul Dubey
- TERI-Deakin Nanobiotechnology Centre, TERI Gram, Gwal Pahari, Gurugram, Haryana, India
| | - Wengan Zhang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China.
| | - Bo Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China.
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, 3217, Australia.
| |
Collapse
|
10
|
Cao Y, Zhou JL, Ma Y, Zhou Y, Zhu JJ. Recent progress of metal nanoclusters in electrochemiluminescence. Dalton Trans 2022; 51:8927-8937. [PMID: 35593102 DOI: 10.1039/d2dt00810f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metal nanoclusters (MeNCs), composed of a few to hundreds of metal atoms and appropriate surface ligands, have attracted extensive interest in the electrochemiluminescence (ECL) realm owing to their molecule-like optical, electronic, and physicochemical attributes and are strongly anticipated for discrete energy levels, fascinating electrocatalytic activity, and good biocompatibility. Over the past decade, huge efforts have been devoted to the synthesis, properties, and application research of ECL-related MeNCs, and this field is still a subject of heightened concern. Therefore, this perspective aims to provide a comprehensive overview of the recent advances of MeNCs in the ECL domain, mainly covering the emerged ECL available MeNCs, unique chemical and optical properties, and the general ECL mechanisms. Synthesis strategies for desirable ECL performance are further highlighted, and the resulting ECL sensing applications utilizing MeNCs as luminophores, quenchers, and substrates are discussed systematically. Finally, we anticipate the future prospects and challenges in the development of this area.
Collapse
Affiliation(s)
- Yue Cao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| | - Jia-Lin Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| | - Yanwen Ma
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210046, PR China.
| | - Yang Zhou
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210046, PR China.
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
11
|
Wang Q, Yu S, Zhang L, Wang L, Kong J, Li L, Zhang X. Sensitive electrochemiluminescence analysis of lung cancer marker miRNA-21 based on RAFT signal amplification. Chem Commun (Camb) 2022; 58:1701-1703. [PMID: 35022642 DOI: 10.1039/d1cc06738a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrochemiluminescence approach based on surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) was developed for miRNA-21 detection for the first time. The SI-RAFT polymerization generates polymer chains with functional groups that are used to recruit luminol, enabling strong ECL signal output with low concentrations of miRNA-21, and greatly improving the detection sensitivity.
Collapse
Affiliation(s)
- Qingyu Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Shuaibing Yu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Lianshun Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Lianzhi Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, P. R. China
| |
Collapse
|
12
|
Hu K, Cheng J, Wang K, Zhao Y, Liu Y, Yang H, Zhang Z. Sensitive electrochemical immunosensor for CYFRA21-1 detection based on AuNPs@MoS 2@Ti 3C 2T x composites. Talanta 2022; 238:122987. [PMID: 34857321 DOI: 10.1016/j.talanta.2021.122987] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/10/2021] [Accepted: 10/19/2021] [Indexed: 01/23/2023]
Abstract
Cytokeratin fragment antigen 21-1 (CYFRA21-1) is a sensitive marker for detecting non-small cell lung cancer (NSCLC). Ti3C2Tx modified by gold nanoparticles (AuNPs) and molybdenum disulfide (MoS2) were synthesized for the first time to obtain the AuNPs@MoS2@Ti3C2Tx composites, which have large specific surface area and good electrocatalytic properties. A novel electrochemical immunoassay for sensitive detection of CYFRA21-1 was developed by loading a large quantity of secondary antibodies (Ab2) and toluidine blue (TB) on the surface of the material as signal probe, and Nafion-AuNPs mixture as electrode material. When the electrochemical response value of CYFRA21-1 increased linearly within the concentration range of 0.5 pg mL-1-50 ng mL-1, the detection limit can reach as low as 0.03 pg mL-1. In addition, the experimental results showed that the biosensor had the potential to rapidly detect CYFRA21-1 in the complex samples such as patient serum, and had a broad application prospect in the early diagnosis and monitoring of NSCLC.
Collapse
Affiliation(s)
- Kai Hu
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Jiamin Cheng
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Kangbin Wang
- Henan Research Institute of Breeding Livestock and Poultry Industry Co., Ltd, Zhengzhou, 450000, PR China
| | - Yuanqing Zhao
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Yanju Liu
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Huaixia Yang
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Zhenqiang Zhang
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| |
Collapse
|
13
|
Applications of two-dimensional layered nanomaterials in photoelectrochemical sensors: A comprehensive review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214156] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|