1
|
Xue Z, Ning D, Jia K, Liu H, Xiang Y, Cao J, Chen J, Zhong Y, Wang X, Zhang Z. Mechanism study of Dual-Emission ratiometric fluorescent pH-Sensitive carbon quantum dots and its application on mornitoring enzymatic catalysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125048. [PMID: 39217959 DOI: 10.1016/j.saa.2024.125048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/10/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Carbon dots (CQD) have received significant attention as a novel ratiometric fluorescent pH nanoprobe, owing to their favorable optical properties and excellent biocompatibility. Despite their appealing features, the precise mechanism behind the pH-sensitive photoluminescence of CQDs remains to be fully understood. This study endeavors to unravel the mechanism underlying the pH-responsive ratiometric fluorescence in dual-emission CQDs, synthesized through a one-step hydrothermal method using o-phenylenediamine and oxalic acid as precursors. The resultant CQDs exhibit inherent dual-emission at wavelengths of 383 nm and 566 nm, with the ratiometric fluorescence response tailored by the ratio of precursors, providing a robust tool for pH sensing across a range of 2 to 6. Detailed characterizations, including chemical, morphological, and optical analyses, alongside theoretical insights from time-dependent density functional theory (TD-DFT), elucidate the mechanism underlying the pH-dependent luminescence, attributed to the electron cloud transmission between amide and adjacent carboxyl groups on the CQD surface. The superior performance of these CQDs in real-time pH monitoring is demonstrated through their application in glucose oxidase-catalyzed reactions, showcasing their potential as efficient, reliable nanoprobes for biomedical research and diagnostic applications.
Collapse
Affiliation(s)
- Zhiyu Xue
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - De Ning
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Kaihong Jia
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Hao Liu
- BOE Technology Group Co., Ltd, Beijing 100176, China
| | - Yong Xiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; Frontier Center of Energy Distribution and Integration, Tianfu Jiangxi Lab, Chengdu 641419, China
| | - Jinlong Cao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610017, China
| | - Junxian Chen
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610093, China
| | - Yeshuang Zhong
- Department of Physics, School of Biology and Engineering, Guizhou Medical University, Guizhou 550031, China
| | - Xinyu Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Zhen Zhang
- Trauma Medical Center, Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Liu Y, Xia S, Xiao M, Yang M, Yang M, Yi C. Synthesis of a metal-organic framework Cu-Mi-UiO-66-based fluorescent nanoprobe for the simultaneous sensing and intracellular imaging of GSH and ATP. NANOSCALE 2024; 16:14831-14843. [PMID: 39034677 DOI: 10.1039/d4nr02585g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
This study reports a fluorescent nanoprobe operated in fluorescence turn-on mode for simultaneously sensing and imaging intracellular GSH and ATP. By using maleimide-derivatives as the ligand, the bimetallic nanoscale metal-organic framework (NMOF) Cu-Mi-UiO-66 has been synthesized for the first time using a straightforward one-step solvothermal approach, serving as a GSH recognition moiety. Subsequently, a Cy5-labeled ATP aptamer was assembled onto Cu-Mi-UiO-66 via strong coordination between phosphate and zirconium, π-π stacking and electrostatic adsorption to develop the dual-responsive fluorescence nanoprobe Cu-Mi-UiO-66/aptamer. Due to the photoinduced electron transfer (PET) effect between maleimide groups and the benzene ring of the ligand and the charge transfer between Cy5 and the Zr(IV)/Cu(II) bimetal center of the NMOF, the Cu-Mi-UiO-66/aptamer exhibits a fluorescence turn-off status. The Michael addition reaction between the thiol group of GSH and the maleimide on the NMOF skeleton results in turning on of the blue fluorescence of Cu-Mi-UiO-66. Meanwhile, upon specific interaction with ATP, the aptamer changes into internal loop structures and detaches from Cu-Mi-UiO-66, resulting in turning on of the red fluorescence of Cy5. The nanoprobe demonstrated an excellent sensing performance with a good linear range (GSH, 5.0-450.0 μM; ATP, 1.0-50.0 μM) and a low detection limit (GSH, 2.17 μM; ATP, 0.635 μM). More importantly, the Cu-Mi-UiO-66/aptamer exhibits good performance for tracing intracellular concentration variations of GSH and ATP in living HepG2 cells under different stimulations. This study highlights the potential of NMOFs for multiplexed analysis and provides a valuable tool for tumor microenvironment research and early cancer diagnosis.
Collapse
Affiliation(s)
- Yun Liu
- Key Laboratory of Sensing Technology and Biomedical Instruments (Guangdong Province), School of Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Shuqi Xia
- Key Laboratory of Sensing Technology and Biomedical Instruments (Guangdong Province), School of Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Meng Xiao
- Key Laboratory of Sensing Technology and Biomedical Instruments (Guangdong Province), School of Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Changqing Yi
- Key Laboratory of Sensing Technology and Biomedical Instruments (Guangdong Province), School of Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
- Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, China
| |
Collapse
|
3
|
Wu Y, Zhu R, Zhou M, Liu J, Dong K, Zhao S, Cao J, Wang W, Sun C, Wu S, Wang F, Shi Y, Sun Y. Homologous cancer cell membrane-camouflaged nanoparticles target drug delivery and enhance the chemotherapy efficacy of hepatocellular carcinoma. Cancer Lett 2023; 558:216106. [PMID: 36841418 DOI: 10.1016/j.canlet.2023.216106] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common digestive tract malignancy that seriously threatens human life and health. Early HCC may be treated by intervention, surgery, and internal radiotherapy, while the choice for late HCC is primarily chemotherapy to prolong patient survival. Lenvatinib (LT) is a Food and Drug Administration (FDA)-approved frontline drug for the treatment of advanced liver cancer and has achieved excellent clinical efficacy. However, its poor solubility and severe side effects cannot be ignored. In this study, a bionic nanodrug delivery platform was successfully constructed. The platform consists of a core of Lenvatinib wrapped with a pH-sensitive polymer, namely, poly(β-amino ester)-polyethylene glycol-amine (PAE-PEG-NH2), and a shell formed by a cancer cell membrane (CCM). The prepared nanodrugs have high drug loading capacity, long-term stability, good biocompatibility, and a long retention time. In addition, the targeting effect of tumor cell membranes and the pH-responsive characteristics of the polymer materials enable them to precisely target tumor cells and achieve responsive release in the tumor microenvironment, which makes them suitable for effective drug delivery. In vivo experiments revealed that the nanodrug showed superior tumor accumulation and therapeutic effects in subcutaneous tumor mice model and could effectively eliminate tumors within 21 days. As a result, it opens up a new way to reduce side effects and improve the specific therapeutic effect of first-line clinical medications to treat tumors.
Collapse
Affiliation(s)
- Yahui Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China; Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Rongtao Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China; Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Mengyang Zhou
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jingjing Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Kai Dong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China; Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Senfeng Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China; Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Jiahui Cao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China; Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Weijie Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China; Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Chenguang Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China; Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Shitao Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China; Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Fan Wang
- Experimental Animal Platform in Academy of Medical Sciences of Zhengzhou University, Zhengzhou, 450052, China
| | - Yupeng Shi
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yuling Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China; Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China.
| |
Collapse
|
6
|
Chen W, Zhao J, Hou M, Yang M, Yi C. Gadolinium-porphyrin based polymer nanotheranostics for fluorescence/magnetic resonance imaging guided photodynamic therapy. NANOSCALE 2021; 13:16197-16206. [PMID: 34545903 DOI: 10.1039/d1nr04489c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanotheranostics for fluorescence/magnetic resonance (FL/MR) dual-modal imaging guided photodynamic therapy (PDT) are highly desirable in precision and personalized medicine. In this study, a facile non-covalent electrostatic interaction induced self-assembly strategy is developed to effectively encapsulate gadolinium porphyrin (Gd-TCPP) into homogeneous supramolecular nanoparticles (referred to as Gd-PNPs). Gd-PNPs exhibit the following advantages: (1) excellent FL imaging property, high longitudinal relaxivity (16.157 mM-1 s-1), and good singlet oxygen (1O2) production property; (2) excellent long-term colloidal stability, dispersity and biocompatibility; and (3) enhanced in vivo FL/MR imaging guided tumor growth inhibition efficiency for CT 26 tumor-bearing mice. This study provides a new strategy to design and synthesize metalloporphyrin-based nanotheranostics for imaging-guided cancer therapy with enhanced theranostic properties.
Collapse
Affiliation(s)
- Wandi Chen
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China.
| | - Junkai Zhao
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China.
| | - Mengfei Hou
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China.
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Changqing Yi
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China.
- Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, P. R. China
| |
Collapse
|