1
|
Bhat A, Tian F, Singh B. Advances in Nanomaterials and Colorimetric Detection of Arsenic in Water: Review and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2024; 24:3889. [PMID: 38931673 PMCID: PMC11207815 DOI: 10.3390/s24123889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Arsenic, existing in various chemical forms such as arsenate (As(V)) and arsenite (As(III)), demands serious attention in water and environmental contexts due to its significant health risks. It is classified as "carcinogenic to humans" by the International Agency for Research on Cancer (IARC) and is listed by the World Health Organization (WHO) as one of the top 10 chemicals posing major public health concerns. This widespread contamination results in millions of people globally being exposed to dangerous levels of arsenic, making it a top priority for the WHO. Chronic arsenic toxicity, known as arsenicosis, presents with specific skin lesions like pigmentation and keratosis, along with systemic manifestations including chronic lung diseases, liver issues, vascular problems, hypertension, diabetes mellitus, and cancer, often leading to fatal outcomes. Therefore, it is crucial to explore novel, cost-effective, and reliable methods with rapid response and improved sensitivities (detection limits). Most of the traditional detection techniques often face limitations in terms of complexity, cost, and the need for sophisticated equipment requiring skilled analysts and procedures, which thereby impedes their practical use, particularly in resource-constrained settings. Colorimetric methods leverage colour changes which are observable and quantifiable using simple instrumentation or even visual inspection. This review explores the colorimetric techniques designed to detect arsenite and arsenate in water. It covers recent developments in colorimetric techniques, and advancements in the role of nanomaterials in colorimetric arsenic detection, followed by discussion on current challenges and future prospects. The review emphasizes efforts to improve sensitivity, selectivity, cost, and portability, as well as the role of advanced materials/nanomaterials to boost the performance of colorimetric assays/sensors towards combatting this pervasive global health concern.
Collapse
Affiliation(s)
- Abhijnan Bhat
- School of Food Science & Environmental Health, Grangegorman, Technological University Dublin (TU Dublin), D07 ADY7 Dublin, Ireland; (A.B.)
- Health, Engineering & Materials Science (HEMS) Research Hub, Technological University Dublin (TU Dublin), D24 FKT9 Dublin, Ireland
- Nanolab Research Centre, Physical to Life sciences Hub, Technological University Dublin (TU Dublin), D08 CKP1 Dublin, Ireland
| | - Furong Tian
- School of Food Science & Environmental Health, Grangegorman, Technological University Dublin (TU Dublin), D07 ADY7 Dublin, Ireland; (A.B.)
- Nanolab Research Centre, Physical to Life sciences Hub, Technological University Dublin (TU Dublin), D08 CKP1 Dublin, Ireland
| | - Baljit Singh
- School of Food Science & Environmental Health, Grangegorman, Technological University Dublin (TU Dublin), D07 ADY7 Dublin, Ireland; (A.B.)
- Health, Engineering & Materials Science (HEMS) Research Hub, Technological University Dublin (TU Dublin), D24 FKT9 Dublin, Ireland
- Nanolab Research Centre, Physical to Life sciences Hub, Technological University Dublin (TU Dublin), D08 CKP1 Dublin, Ireland
- MiCRA Biodiagnostics Technology Gateway, Technological University Dublin (TU Dublin), D24 FKT9 Dublin, Ireland
| |
Collapse
|
2
|
Sadiq Z, Al-Kassawneh M, Safiabadi Tali SH, Jahanshahi-Anbuhi S. Tailoring plasmonic sensing strategies for the rapid and sensitive detection of hypochlorite in swimming water samples. Mikrochim Acta 2024; 191:183. [PMID: 38451315 DOI: 10.1007/s00604-024-06246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
A tunable plasmonic sensor has been developed by varying the dextran content in the initially synthesized dextran-gold nanoparticle (dAuNPs) solution. A colloidal nanogold solution (dAuNPs-Sol) was initially prepared using dextran and gold salt in alkaline media by a one-pot green synthetic route. The dAuNPs-Sol was combined with varying amounts of dextran (ranging from 0.01 to 30.01%) to create a tunable probe, along with different solid formats, including tablet (dAuNPs-Tab), powder (dAuNPs-Powder), and composite (dAuNPs-Comp). Both the liquid and solid phase plasmonic probes were characterized using UV-vis spectroscopy, transmission electron microscopy (TEM) dynamic light scattering (DLS), and zeta potential analysis. The impact of dextran content in the dAuNP solution is studied in terms of surface charge and hydrodynamic size. The influence of operational treatments used to achieve solid dAuNPs probes is also explored. All plasmonic probes were employed to detect a broad range of OCl¯ concentrations (ranging from µM to mM) in water through aggregation followed by calculating a lower and upper limit of detection (LLoD, ULoD) of the proposed colorimetric sensors. Results indicate that the most sensitive detection is achieved with a lower dextran content (0.01%), which exhibits an LLoD of 50 µM. The dAuNPs-Sol sensor is selective and demonstrates real-world applicability, as confirmed by interference analysis and successful testing with various water samples. Additionally, it is found that a 20 × concentration of dextran-coated gold nanoparticles could be attained without any changes in the particle morphology. This concentration is achieved through a straightforward process that does not require the use of a centrifuge machine. This finding highlights the practicality and simplicity of the method, indicating its potential for scalable and cost-effective production of concentrated dAuNPs without compromising their structural integrity.
Collapse
Affiliation(s)
- Zubi Sadiq
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Muna Al-Kassawneh
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Seyed Hamid Safiabadi Tali
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Sana Jahanshahi-Anbuhi
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada.
| |
Collapse
|
3
|
Gebremedhin KH, Kahsay MH, Wegahita NK, Teklu T, Berhe BA, Gebru AG, Tesfay AH, Asgedom AG. Nanomaterial-based optical colorimetric sensors for rapid monitoring of inorganic arsenic species: a review. DISCOVER NANO 2024; 19:38. [PMID: 38421536 PMCID: PMC10904709 DOI: 10.1186/s11671-024-03981-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Health concerns about the toxicity of arsenic compounds have therefore encouraged the development of new analytical tools for quick monitoring of arsenic in real samples with improved sensitivity, selectivity, and reliability. An overview of advanced optical colorimetric sensor techniques for real-time monitoring of inorganic arsenic species in the environment is given in this review paper. Herein, several advanced optical colorimetric sensor techniques for arsenite (As+3) and arsenate (As+5) based on doping chromogenic dyes/reagents, biomolecule-modified nanomaterials, and arsenic-binding ligand tethered nanomaterials are introduced and discussed. This review also highlights the benefits and limitations of the colorimetric sensor for arsenic species. Finally, prospects and future developments of an optical colorimetric sensor for arsenic species are also proposed. For future study in this sector, particularly for field application, authors recommend this review paper will be helpful for readers to understand the design principles and their corresponding sensing mechanisms of various arsenic optical colorimetric sensors.
Collapse
Affiliation(s)
- Kalayou Hiluf Gebremedhin
- Department of Chemistry, College of Natural and Computational Science, Mekelle University, Mekelle, Tigray, Ethiopia.
| | - Mebrahtu Hagos Kahsay
- Department of Chemistry, College of Natural and Computational Science, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Nigus Kebede Wegahita
- Department of Environmental Science, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Tesfamariam Teklu
- Department of Chemistry, College of Natural and Computational Science, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Berihu Abadi Berhe
- School of Earth Science, College of Natural and Computational Science, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Asfaw Gebretsadik Gebru
- Department of Chemistry, College of Natural and Computational Science, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Amanuel Hadera Tesfay
- Department of Chemistry, College of Natural and Computational Science, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Abraha Geberekidan Asgedom
- Department of Chemistry, College of Natural and Computational Science, Mekelle University, Mekelle, Tigray, Ethiopia
| |
Collapse
|
4
|
An Au(111)-dominant polycrystalline gold/gold nanoparticles/1,8-naphthyridine/glassy carbon electrode for anodic stripping voltammetry determination of As(III). Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Dual-mode colorimetric determination of As(III) based on negatively-charged aptamer-mediated aggregation of positively-charged AuNPs. Anal Chim Acta 2022; 1221:340111. [DOI: 10.1016/j.aca.2022.340111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022]
|
6
|
Sawan S, Errachid A, Maalouf R, Jaffrezic-Renault N. Aptamers functionalized metal and metal oxide nanoparticles: Recent advances in heavy metal monitoring. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
|
8
|
Yin F, Yang H, Huo K, Liu X, Yuan M, Cao H, Ye T, Sun X, Xu F. Preparation of efficient ion-imprinted polymers for selectively removing and detecting As( iii) from the aqueous phase. NEW J CHEM 2022. [DOI: 10.1039/d2nj02075k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of a specific As(iii)-ion-imprinted polymer for oxidation liquid phase color detection of As(iii) ions in aqueous system.
Collapse
Affiliation(s)
- Fengqin Yin
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China
| | - Hongzhi Yang
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China
| | - Kaixuan Huo
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China
| | - Xueting Liu
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China
| | - Min Yuan
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China
| | - Hui Cao
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China
| | - Tai Ye
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiaoyun Sun
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China
| | - Fei Xu
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
9
|
Su T, Wang H, Yao Y. Novel nucleic acid aptamer gold (Au)-nanoparticles (AuNPs-AptHLA-G5-1 and AuNPs-AptHLA-G5-2) to detect the soluble human leukocyte antigen G5 subtype (HLA-G5) in liquid samples. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1416. [PMID: 34733968 PMCID: PMC8506699 DOI: 10.21037/atm-21-3334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022]
Abstract
Background The human leukocyte antigen G5 subtype (HLA-G5) is a major histocompatibility complex (MHC) molecule that is selectively expressed at the maternal-foetal tissue interface and is required for the successful implantation of the in vitro fertilized embryo. It is critical to detect HLA-G5, especially HLA-G5 expression in embryo fluid, during in vitro embryo incubation and culture. However, the specificity and sensitivity of traditional ELISA methods to detect sHLA-G5 are insufficient. This work aimed to explore novel nucleic acid aptamer gold (Au)-nanoparticles to detect soluble HLA-G5 in liquid samples. Methods Soluble HLA-G5 was obtained using a prokaryotic expression system, and two novel aptamers (HLA-G5-Apt1 and HLA-G5-Apt2) detecting HLA-G5 were screened by the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) method. Small (10 nm) gold nanoparticles (AuNPs) were incubated with AptHLAs to form two novel nucleic acid aptamers: Au-nanoparticles (AuNPs-AptHLA-G5-1 and AuNPs-AptHLA-G5-2). Results The results showed that AptHLA-G5-1 and AptHLA-G5-2 have a high affinity for HLA-G5 and can detect its presence in liquid samples. Using the colorimetric sensing method, AuNPs-AptHLA-G1 had a detection limit as low as 20 ng/mL (recovery range between 98.7% to 102.0%), while AuNPs-AptHLA-G2 had a detection limit as low as 20 ng/mL (recovery range between 98.9% to 103.6%). Conclusions Our work demonstrates that novel AuNPs are efficient detectors for HLA-G5 and are useful for diagnosis and treatment in the field of obstetrics-gynaecology.
Collapse
Affiliation(s)
- Tao Su
- Medical School of Chinese PLA & Reproductive Center, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hui Wang
- Medical School of Chinese PLA & Reproductive Center, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuanqing Yao
- Medical School of Chinese PLA & Reproductive Center, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
Recent Advances in Colorimetric Detection of Arsenic Using Metal-Based Nanoparticles. TOXICS 2021; 9:toxics9060143. [PMID: 34204502 PMCID: PMC8235315 DOI: 10.3390/toxics9060143] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/26/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022]
Abstract
Nowadays, arsenic (III) contamination of drinking water is a global issue. Laboratory and instrument-based techniques are typically used to detect arsenic in water, with an accuracy of 1 ppb. However, such detection methods require a laboratory-based environment, skilled labor, and additional costs for setup. As a result, several metal-based nanoparticles have been studied to prepare a cost-effective and straightforward detector for arsenic (III) ions. Among the developed strategies, colorimetric detection is one of the simplest methods to detect arsenic (III) in water. Several portable digital detection technologies make nanoparticle-based colorimetric detectors useful for on-site arsenic detection. The present review showcases several metal-based nanoparticles that can detect arsenic (III) colorimetrically at a concentration of ~0.12 ppb or lower in water. A literature survey suggests that biomolecule-based metal nanoparticles could serve as low-cost, facile, susceptible, and eco-friendly alternatives for detecting arsenic (III). This review also describes future directions, perspectives and challenges in developing this alternative technology, which will help us reach a new milestone in designing an effective arsenic detector for commercial use.
Collapse
|