1
|
Yang C, Yang N, Zhao D, Zhang Z, Song J, Zhang Z, Hu K, Zhang S. Sulfonic acid-functionalized covalent organic framework@Ti 3C 2T x as efficient solid-phase microextraction blade coating for the extraction of monoamine neurotransmitters in rat serum samples. J Chromatogr A 2025; 1750:465919. [PMID: 40179668 DOI: 10.1016/j.chroma.2025.465919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/22/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
Herein, a sulfonic-functionalized covalent organic framework@Ti3C2Tx nanocomposite (SO3HCOF@Ti3C2Tx) was synthesized and employed as solid phase microextraction (SPME) coating for isolation and extraction of monoamine neurotransmitters (MNTs) from rat serum samples. The resultant composite can combine the characteristics of hydrophilic Ti3C2Tx and SO3HCOF, which endow it has multiple adsorption sites and can provide multiple interactions such as cation exchange, hydrogen bonding and π-π with the target MNTs. The synthesized SO3HCOF@Ti3C2Tx SPME blades have excellent protein exclusion capability, ensuring high adsorption efficiency for MNTs. Under the optimized conditions, the proposed SO3HCOF@Ti3C2Tx blades-based SPME-HPLC method exhibited good linearities (r2≥0.9963), low limits of detection (0.015-0.030 ng mL-1) and low matrix effect (0.83 %-17.36 %). The recoveries of MNTs in the rat serum were in range of 90.3 %-118.3 %, with RSDs <10.8 %. The SPME-HPLC method was successfully applied for the analysis of 4 MNTs in the serum of depression model rats. This work not only details the development of a multi-functional composite, but it also presents an effective strategy for the determination of trace MNTs in serum sample.
Collapse
Affiliation(s)
- Cheng Yang
- Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Nian Yang
- Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Di Zhao
- Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Zhiyu Zhang
- Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Junying Song
- Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Zhenqiang Zhang
- Henan University of Chinese Medicine, Zhengzhou 450046, PR China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, PR China.
| | - Kai Hu
- Henan University of Chinese Medicine, Zhengzhou 450046, PR China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, PR China.
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| |
Collapse
|
2
|
Yuan Y, Li B, Zhang K, Zhu H. A Novel Gully-like Surface of Stainless-Steel Fiber Coated with COF-TPB-DMTP Nanoparticles for Solid-Phase Microextraction of Phthalic Acid Esters in Bottled Tea Beverages. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:385. [PMID: 40072188 PMCID: PMC11901468 DOI: 10.3390/nano15050385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025]
Abstract
A covalent organic framework TPB-DMTP was physically coated onto the gully-like surface of stainless-steel fiber. The fabricated TPB-DMTP-coated stainless-steel fiber was used to extract five phthalic acid esters (PAEs) prior to the GC-FID separation and determination in bottled tea beverages. The developed SPME-GC-FID method gave limits of detection (S/N = 3) from 0.04 µg·L-1 (DBP) to 0.44 µg·L-1 (BBP), with the enrichment factors from 268 (DEHP) to 2657 (DPP). The relative standard deviations (RSDs) of the built method for inter-day and fiber-to-fiber were 4.1-11.8% and 2.3-9.9%, respectively. The prepared TPB-DMTP-coated stainless-steel fibers could stand at least 180 cycles without a significant loss of extraction efficiency. The developed method was successfully applied for the determination of trace PAEs in different bottled tea beverages, with recoveries from 85.5% to 115%.
Collapse
Affiliation(s)
- Yuanyuan Yuan
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China; (Y.Y.)
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Baoding 071003, China
| | - Baohui Li
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China; (Y.Y.)
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Baoding 071003, China
| | - Keqing Zhang
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China; (Y.Y.)
| | - Hongtao Zhu
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China; (Y.Y.)
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Baoding 071003, China
| |
Collapse
|
3
|
Kefayati H, Yamini Y, Ghaemmaghami M. Metal-organic framework-801@MXene nanocomposites as a coating for headspace solid-phase microextraction of methadone and tramadol from biological samples via gas chromatography-mass spectrometry. Mikrochim Acta 2025; 192:145. [PMID: 39934415 DOI: 10.1007/s00604-025-07003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/23/2025] [Indexed: 02/13/2025]
Abstract
MOF-801@MXene nanocomposites are introduced as a new solid-phase microextraction coating. This structure was easily prepared by one-pot solvothermal route. The MOF-801@MXene, MOF-801, and MXene were characterized by various analysis techniques such as field emission scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray powder diffraction, and Brunauer-Emmett-Teller. The coating was used in the headspace solid-phase microextraction of methadone and tramadol in biological samples. The separation and determination of the analytes were performed by gas chromatography-mass spectrometry. The effective parameters on the extraction efficiency of the analytes, such as extraction time and temperature, desorption time and temperature, salt concentration, and NaOH concentration, were optimized by experimental design method. Under optimal conditions, low limits of detection in the range 0.03-0.15 µg L-1, wide linearity in the range 0.10-250.00 µg L-1, and good reproducibility (RSD = 5.3 to 7.4% for n = 3) were achieved. Under optimal conditions, microextraction of methadone and tramadol was performed in real hair, urine, and plasma samples, and satisfactory results were obtained.
Collapse
Affiliation(s)
- Hanieh Kefayati
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Yadollah Yamini
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| | - Mostafa Ghaemmaghami
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| |
Collapse
|
4
|
Huang S, Jiang L, Niu J, Liu H, Zhang Y, Dong G, Yuan S, Bu L, Song D, Zhou Q. Enrichment and detection of polycyclic aromatic hydrocarbon in tea and coffee using phenyl-functionalized NiFe 2O 4@Ti 3C 2T X based magnetic solid-phase extraction. Food Chem 2024; 459:140452. [PMID: 39024871 DOI: 10.1016/j.foodchem.2024.140452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are commonly found in various environmental matrices and have received significant attention due to their toxic effects on ecosystems and environmental health. In this study, a specific magnetic composite material derived from MXene, known as phenyl-functionalized NiFe2O4@Ti3C2TX, was designed and synthesized using a simple method. This composite material was used to develop an effective magnetic solid-phase extraction (MSPE) method for enriching trace polycyclic aromatic hydrocarbons (PAHs) in tea and coffee samples. The eluted PAHs were analyzed via gas chromatography-tandem mass spectrometry. Under optimal conditions, this method exhibited excellent linear relationships for 16 PAHs within the ranges of 0.001-25 and 0.0005-25 μg/L, with correlation coefficients exceeding 0.9979. The limits of detection for the target PAHs ranged from 0.1 to 0.3 ng/L. The effectiveness of the proposed method was evaluated by analyzing tea and coffee samples, and the satisfactory spiked recoveries of PAHs ranged from 84.5% to 112.6%.
Collapse
Affiliation(s)
- Shiyu Huang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Liushan Jiang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jingwen Niu
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Huanhuan Liu
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yue Zhang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Guangyu Dong
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Shuai Yuan
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Lutong Bu
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Denghao Song
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Qingxiang Zhou
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China.
| |
Collapse
|
5
|
Jiang L, Dong G, Song D, Liu W, Geng X, Meng D, Nie L, Liao J, Zhou Q. Covalent organic framework-functionalized magnetic MXene nanocomposite for efficient pre-concentration and detection of organophosphorus and organochlorine pesticides in tea samples before gas chromatography-triple quadrupole mass spectrometry analysis. Food Chem 2024; 459:140352. [PMID: 38991447 DOI: 10.1016/j.foodchem.2024.140352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
In this study, a hydrophobic covalent organic framework-functionalized magnetic composite (CoFe2O4@Ti3C2@TAPB-TFTA) with a high specific area with 1,3,5-tris(4-aminophenyl)benzene (TAPB) and 2,3,5,6-tetrafluoroterephthalaldehyde (TFTA) was designed and synthesized through Schiff base reaction. An efficient magnetic solid-phase extraction method was established and combined with gas chromatography-triple quadrupole mass spectrometry to sensitively determine 10 organochlorine and organophosphorus pesticides in tea samples. The established method exhibited good linearity in the range of 0.05-120 μg/L and had low limits of detection (0.013-0.018 μg/L). The method was evaluated with tea samples, and the spiked recoveries of pesticides in different tea samples reached satisfactory values of 85.7-96.8%. Moreover, the adsorption of pesticides was spontaneous and followed Redlich-Peterson isotherm and pseudo-second-order kinetic models. These results demonstrate the sensitivity, effectiveness, and reliability of the proposed method for monitoring organochlorine and organophosphorus pesticides in tea samples, providing a preliminary basis for researchers to reasonably design adsorbents for the efficient extraction of pesticides.
Collapse
Affiliation(s)
- Liushan Jiang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Guangyu Dong
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Denghao Song
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Wenjing Liu
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Xiaodie Geng
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Dejing Meng
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Linchun Nie
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jiawei Liao
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Qingxiang Zhou
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China..
| |
Collapse
|
6
|
Kaur J, Khort A, Sadiktsis I, Preethika M, Bird JRT, Barg S, Odnevall I, Fadeel B. Putting advanced materials to the test: Ti 3C 2 MXenes alleviate the hazardous effects of the environmental pollutant benzo[a]pyrene. CHEMOSPHERE 2024; 366:143513. [PMID: 39389371 DOI: 10.1016/j.chemosphere.2024.143513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Advanced materials are materials that have been engineered to exhibit novel or enhanced properties that confer superior performance when compared to conventional materials. Here, we evaluated the impact of Ti3C2 MXenes, a two-dimensional (2D) material, on the adverse effects caused by polycyclic aromatic hydrocarbons. To this end, we studied benzo[a]pyrene denoted here as B[a]P as a model compound. B[a]P was found to adsorb to MXenes as evidenced by UV-Vis spectroscopy. MXenes in the presence or absence of natural organic matter (NOM) were well tolerated by zebrafish embryos. The uptake (ingestion) of MXenes by zebrafish was determined by quantifying the Ti content using inductively coupled plasma mass spectrometry (ICP-MS) while Raman confocal mapping was applied for the label-free identification of MXenes in situ in exposed zebrafish. The body burden of B[a]P was determined by gas chromatography-mass spectrometry (GC-MS). The potential impact of MXenes on B[a]P triggered aryl hydrocarbon receptor (AhR) induction was assessed by evaluating the induction of downstream genes including cyp1a, and results were validated by using the transgenic zebrafish reporter tg(cyp1a-eGFP). The potential impact of MXenes on the genotoxicity caused by B[a]P was also assessed. MXenes were shown to ameliorate AhR induction and DNA damage caused by B[a]P. This was corroborated by using the human colon-derived cell line HT-29. Taken together, MXenes were found to be non-hazardous and alleviated the adverse effects caused by B[a]P in vitro and in vivo.
Collapse
Affiliation(s)
- Jasreen Kaur
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Alexander Khort
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, 100 44, Stockholm, Sweden
| | - Ioannis Sadiktsis
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91, Stockholm, Sweden
| | - Murugan Preethika
- Institute of Materials Resource Management, University of Augsburg, Augsburg, 86135, Germany
| | - James R T Bird
- Department of Materials, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Suelen Barg
- Institute of Materials Resource Management, University of Augsburg, Augsburg, 86135, Germany
| | - Inger Odnevall
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, 100 44, Stockholm, Sweden; AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, 171 77, Stockholm, Sweden; Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
7
|
Han Z, Li G, Li M, Zhang Y, Meng Z. Ordered mesoporous hairbrush-like nanocarbon assembled microfibers for solid-phase microextraction of benzene series in oilfield sewage. ANAL SCI 2024; 40:1031-1041. [PMID: 38642247 DOI: 10.1007/s44211-024-00506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/04/2024] [Indexed: 04/22/2024]
Abstract
The development of advanced functional nanomaterials for solid-phase microextraction (SPME) remains an imperative aspect of sample pretreatment. Herein, we introduce a novel SPME fiber consisting of graphene fibers modified with ordered mesoporous carbon nanotubes arrays (CNTAs) tailored for the determination of benzene series in oilfield wastewater, which is synthesized by an ionic liquid-assisted wet spinning process of graphene nanosheets, followed by a precisely controlled growth of metal-organic framework and subsequent pyrolysis treatment. The resulting robust microfiber structure resembles a "hairbrush" configuration, with a crumpled graphene fiber "stem" and high-order mesoporous CNTAs "hairs". This unique architecture significantly enhances the SPME capacity, as validated by gas chromatography-mass spectrometry. The hairbrush-like nanocarbon assembled microfibers possess structural characteristics, a high specific surface area, and numerous binding sites, offering efficient enrichment of benzene series compounds in oilfield wastewater, including benzene, ethylbenzene, m-xylene, p-xylene, and toluene. Our analysis demonstrates that these microfibers exhibit broad linear ranges (0.2-600 μg L-1), low detection limits (0.005-0.03 mg L-1), and excellent repeatability (3.2-5.5% for one fiber, 2.1-6.7% for fiber-to-fiber) for detection. When compared to commercial alternatives, these hairbrush-like nanocarbon-assembled microfibers exhibit significantly enhanced extraction efficiency for benzene series compounds.
Collapse
Affiliation(s)
- Zhuo Han
- Technology Inspection Center of ShengLi Oilfiled Branch, China Petrochemical Corporation, Dongying, 257000, People's Republic of China
| | - Gangzhu Li
- Technology Inspection Center of ShengLi Oilfiled Branch, China Petrochemical Corporation, Dongying, 257000, People's Republic of China.
| | - Mo Li
- Technology Inspection Center of ShengLi Oilfiled Branch, China Petrochemical Corporation, Dongying, 257000, People's Republic of China
| | - Yanbo Zhang
- Technology Inspection Center of ShengLi Oilfiled Branch, China Petrochemical Corporation, Dongying, 257000, People's Republic of China
| | - Zhaoyu Meng
- Technology Inspection Center of ShengLi Oilfiled Branch, China Petrochemical Corporation, Dongying, 257000, People's Republic of China
| |
Collapse
|
8
|
Ghaemmaghami M, Yamini Y. Three-Dimensional Network of Highly Uniform Cobalt Oxide Microspheres/MXene Composite as a High-Performance Electrocatalyst in Hydrogen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18782-18789. [PMID: 38567820 DOI: 10.1021/acsami.3c17883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Due to its affordable cost, excellent redox capability, and relatively effective resistance to corrosion in alkaline environments, spinel Co3O4 demonstrates potential as a viable alternative to noble-metal-based electrocatalysts. Nevertheless, these materials continue to exhibit drawbacks, such as limited active surface area and inadequate intrinsic conductivity. Researchers have been trying to increase the electrical conductivity of Co3O4 nanostructures by integrating them with various conductive substrates due to the low conductivity of pristine Co3O4. In this study, uniform cobalt glycerate solid spheres are first synthesized as the precursor and subsequently transformed into cobalt oxide microspheres by a simple annealing procedure. Co3O4 grown on the surface of Ti3C2Tx-MXene nanosheets (Co3O4/MXene) was successfully synthesized through electrostatic attraction. In order to create a positively charged surface, the Co3O4 microspheres were treated with aminopropyltriethoxysilane. The Co3O4/MXene exhibited a low overpotential of 118 mV at 10 mA cm-2 and a Tafel slope of 113 mV dec-1 for the hydrogen evolution reaction, which is much lower than the pristine Co3O4 at 232 and 195.3 mV dec-1.
Collapse
Affiliation(s)
- Mostafa Ghaemmaghami
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran 14117-13116, Iran
| | - Yadollah Yamini
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran 14117-13116, Iran
| |
Collapse
|
9
|
Rozaini MNH, Khoo KS, Abdah MAAM, Ethiraj B, Alam MM, Anwar AF, Yunus NM, Liew CS, Lim JW, Ho CD, Tong WY. Potential application of 2D nano-layered MXene in analysing and remediating endocrine disruptor compounds and heavy metals in water. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:111. [PMID: 38466501 DOI: 10.1007/s10653-024-01917-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/15/2024] [Indexed: 03/13/2024]
Abstract
With the advancement of technologies and growth of the economy, it is inevitable that more complex processes are deployed, producing more heterogeneous wastewater that comes from biomedical, biochemical and various biotechnological industries. While the conventional way of wastewater treatment could effectively reduce the chemical oxygen demand, pH and turbidity of wastewater, trace pollutants, specifically the endocrine disruptor compounds (EDCs) that exist in µg L-1 or ng L-1 have further hardened the detection and removal of these biochemical pollutants. Even in small amounts, EDC could interfere human's hormone, causing severe implications on human body. Hence, this review elucidates the recent insights regarding the effectiveness of an advanced 2D material based on titanium carbide (Ti3C2Tx), also known as MXene, in detecting and removing EDCs. MXene's highly tunable feature also allows its surface chemistry to be adjusted by adding chemicals with different functional groups to adsorb different kinds of EDCs for biochemical pollution mitigation. At the same time, the incorporation of MXene into sample matrices also further eases the analysis of trace pollutants down to ng L-1 levels, thereby making way for a more cleaner and comprehensive wastewater treatment. In that sense, this review also highlights the progress in synthesizing MXene from the conventional method to the more modern approaches, together with their respective key parameters. To further understand and attest to the efficacy of MXene, the limitations and current gaps of this potential agent are also accentuated, targeting to seek resolutions for a more sustainable application.
Collapse
Affiliation(s)
- Muhammad Nur' Hafiz Rozaini
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | | | - Baranitharan Ethiraj
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mohammad Mahtab Alam
- Department of Basic Medical Sciences, College of Applied Medical Science, King Khalid University, 61421, Abha, Saudi Arabia
| | - Aliya Fathima Anwar
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Normawati M Yunus
- Centre of Research in Ionic Liquids (CORIL), Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Chin Seng Liew
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia.
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India.
| | - Chii-Dong Ho
- Department of Chemical and Materials Engineering, Tamkang University, Tamsui, 251301, New Taipei, Taiwan
| | - Woei-Yenn Tong
- Universiti Kuala Lumpur, Institute of Medical Science Technology, A1-1, Jalan TKS 1, Taman Kajang Sentral, 43000, Kajang, Selangor, Malaysia.
| |
Collapse
|
10
|
Moosavi NS, Yamini Y, Ghaemmaghami M. MXene nanosheets woven in polyacrylonitrile nanofiber yarns aligned spider web as a highly efficient sorbent for in-tube solid phase microextraction of beta-blockers from biofluids. J Chromatogr A 2023; 1706:464232. [PMID: 37506463 DOI: 10.1016/j.chroma.2023.464232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
The use of electrospinning has received much attention in the production of nanofiber webs due to its advantages such as flexibility and simplicity. The direct electrospinning of nanofibers in an aligned or twisted form and the production of nanofiber yarns can turn nanofibers into woven fabrics, which leads to an increase in the diversity of nanofiber applications and improves their end-use possibilities. In this work, a victorious nanofiber yarn spinning system was used with the help of a rotating funnel. Yarn formation was studied using a composited polyacrylonitrile (PAN)/MXene polymer solution ejected from two oppositely charged nozzles. Finaly their application for packed-in-tube solid-phase microextraction of β-blocker drugs from biofluids was demonstrated. The separation and quantification of analytes were performed by HPLC-UV instrument. The 3D-yarn PAN/MXene sorbent exhibited high flexibility, porosity, sorbent loading, mechanical stability, and a long lifetime. The characterization of the final nanofiber was carried out utilizing Fourier-transform infrared spectroscopy, field emission scanning electron microscope, energy-dispersive X-ray mapping, transmission electron microscope and X-ray diffraction analysis. Various parameters that affect the extraction efficiency, such as extraction time, pH, ionic strength and flow rate of sample solution, and type, volume and flow rate of eluent, were investigated and optimized. Under optimized conditions, the limits of detection were obtained in the range of 1.5-3.0 μg L-1. This method demonstrated appropriate linearity for β-blockers in the range of 5.0-1000.0 μg L-1, with coefficients of determination greater than 0.990. The inter- and intra-assay precisions (RSDs, for n = 3) are in the range of 2.5-3.5%, and 4.5-5.2%, respectively. Finally, the validated method was put in an application for the analysis of atenolol, propranolol and betaxolol in human urine and saliva samples at different hours and acceptable relative recoveries were obtained in the range of 89.5% to 110.4%.
Collapse
Affiliation(s)
- Negar Sabahi Moosavi
- Department of Chemistry, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran
| | - Yadollah Yamini
- Department of Chemistry, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran.
| | - Mostafa Ghaemmaghami
- Department of Chemistry, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran
| |
Collapse
|
11
|
Li D, Ren Y, Chen R, Wu H, Zhuang S, Zhang M. Label-free MXene-assisted field effect transistor for the determination of IL-6 in patients with kidney transplantation infection. Mikrochim Acta 2023; 190:284. [PMID: 37417992 DOI: 10.1007/s00604-023-05814-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 04/23/2023] [Indexed: 07/08/2023]
Abstract
A spiral interdigitated MXene-assisted field effect transistor (SiMFETs) was proposed for determination of IL-6 in patients with kidney transplantation infection. Our SiMFETs demonstrated enhanced IL-6 detection range of 10 fg/mL-100 ng/mL due to the combination of optimized transistor's structure and semiconducting nanocomposites. Specifically, on one hand, MXene-based field effect transistor drastically amplified the amperometric signal for determination of IL-6; on the other hand, the multiple spiral structure of interdigitated drain-source architecture improved the transconductance of FET biosensor. The developed SiMFETs biosensor demonstrated satisfactory stability for 2 months, and favorable reproducibility and selectivity against other biochemical interferences. The SiMFETs biosensor exhibited acceptable correlation coefficient (R2=0.955) in quantification of clinical biosamples. The sensor successfully distinguished the infected patients from the health control with enhanced AUC of 0.939 (sensitivity of 91.7%, specificity of 86.7%). Those merits introduced here may pave an alternative strategy for transistor-based biosensor in point-of-care clinic applications.
Collapse
Affiliation(s)
- Dawei Li
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yaofei Ren
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruoyang Chen
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haoyu Wu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shaoyong Zhuang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
12
|
Ding YZ, Zhang YD, Shi YP. Transition metal composites for selective analysis of vitamin B 2 in rice by ultrahigh-performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2023; 1693:463881. [PMID: 36857984 DOI: 10.1016/j.chroma.2023.463881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
A novel amino-functionalized zinc ferrite nanoparticles/MXene (ZnFe2O4-NH2/MXene composite which consist of ZnFe2O4-NH2 and single/few layers MXene was designed and synthesized as an efficient extractant for analysis of vitamin B2 in rice first combined with ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). As a result, the single/few layer MXene was tightly attached to the spherical ZnFe2O4-NH2 nanoparticles by electrostatic self-assembly interaction, which present large specific surface area and fast mass transfer rate. The relevant experimental parameters, including the pH of the solution, extraction time, adsorbent amount, desorption solvent, desorption solvent volume and desorption time were investigated and optimized. Under optimum conditions, the ZnFe2O4-NH2/MXene composite exhibited excellent selectivity and adsorption capacity for vitamin B2 through hydrogen bonding interactions and the metal-π complexation interaction. The adsorption kinetics, isotherms, and thermodynamic studies were systemically investigated to evaluate the adsorption mechanism and characteristics, which ascribed to chemical adsorption, monolayer adsorption and a spontaneous endothermic process. Furthermore, the performance of the proved method was validated with the good linear correlation coefficient (r = 0.999), low limit of detection (0.86 ng·mL-1) and the limit of quantification (2.98 ng·mL-1), satisfactory recoveries (81.7-102.5%) and reasonable accuracy (RSD<7.8%). The theoretical and technological underpinning for investigating the kinship amongst vitamin alterations and the degree of rice storage was set using this suggested approach to assess vitamin B2 in rice from various years.
Collapse
Affiliation(s)
- Yu-Zhu Ding
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yi-Da Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| |
Collapse
|
13
|
Li H, Li A, Zhang D, Wu Q, Mao P, Qiu Y, Zhao Z, Yu P, Su X, Bai M. First-Principles Study on the Structural, Electronic, and Lithium Storage Properties of Ti 3C 2T 2 (T = O, F, H, OH) MXene. ACS OMEGA 2022; 7:40578-40585. [PMID: 36385825 PMCID: PMC9647848 DOI: 10.1021/acsomega.2c05913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/17/2022] [Indexed: 05/28/2023]
Abstract
The structures of bare Ti3C2 and functionalized Ti3C2T2 (T = O, F, H, OH) MXenes were constructed, and the effect of surface functional groups T2 (T = O, F, H, OH) on the structural, electronic, and lithium storage properties were investigated by first-principles calculations. The results show that the proximity of surface functional groups will induce some lattice distortion of Ti3C2T2 MXene. The degree of lattice distortion depends mainly on the adsorption position of functional groups and the types of surface functional groups. From the point of view of forming energy, the surface functional groups tend to be located at the CCP site. From the energy band and DOS results, the presence of surface functional groups has a significant effect on the valence band, while it has a slight impact on the conduction band. In terms of lithium storage, lithium atom adsorption starts from the HCP position for bare Ti3C2, while functionalized Ti3C2T2 starts from the CCP position. The double-layer lithium storage capacity of bare Ti3C2 and Ti3C2O2 were 639.78 mAh/g and 537.22 mAh/g, respectively. And the single-layer lithium storage capacity of Ti3C2F2 was 130.77 mAh/g.
Collapse
Affiliation(s)
- Hui Li
- School
of Materials Science and Engineering, Chang’an
University, Xi’an710064, Shaanxi, People’s Republic of China
| | - Anping Li
- School
of Materials Science and Engineering, Chang’an
University, Xi’an710064, Shaanxi, People’s Republic of China
| | - Dandan Zhang
- School
of Chemical Engineering, Northwest University, Xi’an710069, Shaanxi, People’s Republic
of China
| | - Qianpeng Wu
- School
of Materials Science and Engineering, Chang’an
University, Xi’an710064, Shaanxi, People’s Republic of China
| | - Peng Mao
- School
of Materials Science and Engineering, Chang’an
University, Xi’an710064, Shaanxi, People’s Republic of China
| | - Yixuan Qiu
- School
of Materials Science and Engineering, Chang’an
University, Xi’an710064, Shaanxi, People’s Republic of China
| | - Zhiguo Zhao
- School
of Materials Science and Engineering, Chang’an
University, Xi’an710064, Shaanxi, People’s Republic of China
| | - Pengfei Yu
- School
of Materials Science and Engineering, Chang’an
University, Xi’an710064, Shaanxi, People’s Republic of China
| | - Xinghua Su
- School
of Materials Science and Engineering, Chang’an
University, Xi’an710064, Shaanxi, People’s Republic of China
| | - Min Bai
- School
of Materials Science and Engineering, Chang’an
University, Xi’an710064, Shaanxi, People’s Republic of China
| |
Collapse
|
14
|
Zhao Y, Hu K, Yang C, Liu X, Li L, Li Z, Wang P, Zhang Z, Zhang S. Covalent organic framework@Ti3C2T composite as solid phase microextraction coating for the determination of polycyclic aromatic hydrocarbons in honey samples. Anal Chim Acta 2022; 1237:340581. [DOI: 10.1016/j.aca.2022.340581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
15
|
Marzi Khosrowshahi E, Ghalkhani M, Afshar Mogaddam MR, Farajzadeh MA, Sohouli E, Nemati M. Evaluation of MXene as an adsorbent in dispersive solid phase extraction of several pesticides from fresh fruit juices prior to their determination by HPLC-MS/MS. Food Chem 2022; 386:132773. [PMID: 35344730 DOI: 10.1016/j.foodchem.2022.132773] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/12/2022] [Accepted: 03/21/2022] [Indexed: 11/04/2022]
Abstract
This study aimed to introduce a dispersive solid phase extraction method based on MXene nanoparticles as a novel sorbent for the simultaneous extraction and determination of twelve pesticides from fresh fruit juices. In the following, a high performance liquid chromatography-tandem mass spectrometry was used for their determination in the samples. In this method, two-dimensional nanomaterials of Ti2AlC were exfoliated in an acidic solution and then they were added into the sample solution. To enhance the sample solution and sorbent contact area, the mixture was vortexed for a few minutes. Then the adsorbed analytes onto the sorbent were eluted using acetone and then analyzed. Under optimal conditions, the calibration curves of the method were linear within the range of 3.0-1000 µg L-1. The limits of detection, intra- and inter-day relative standard deviations, and extraction recoveries were in the ranges of 0.08-1.0 µg L-1, 2.5-4.2%, 2.5-5.5%, and 69-75%, respectively. Performing the method verified the presence of some of the analytes in several samples. This method can help to monitor pesticides in juice samples as well as to improve our understanding the safety of foods.
Collapse
Affiliation(s)
| | - Masoumeh Ghalkhani
- Electrochemical Sensors Research Laboratory, Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, P.O. Box 1678815811, Tehran, Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Engineering Faculty, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey
| | - Esmail Sohouli
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahboob Nemati
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutical and Food Control, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Hollow Fiber-Solid Phase Microextraction of Polycyclic Aromatic Hydrocarbons from Environment Water Followed by Flash Evaporation GC/MS. Chromatographia 2022. [DOI: 10.1007/s10337-022-04150-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Mousavi KZ, Yamini Y, Karimi B, Khataei MM, Khorasani M, Seidi S, Ghaemmaghami M. Plugged bifunctional periodic mesoporous organosilica as a high-performance solid phase microextraction coating for improving extraction efficiency of chlorophenols in different matrices. Talanta 2021; 235:122724. [PMID: 34517592 DOI: 10.1016/j.talanta.2021.122724] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
In this study, a sensitive solid phase microextraction (SPME) coating was developed based on two kinds of plugged and non-plugged bifunctional periodic mesoporous organosilicas (BFPMO) with ionic liquid and ethyl units. The extraction efficiency of all plugged and unplugged sorbents was investigated for the extraction of chlorophenols (CPs) in water and honey samples by emphasizing the effect of different physicochemical properties. The separation and determination of the CPs was performed by gas chromatography-mass spectrometry (GC-MS). The extraction results showed that plugged BFPMO coating exhibited outstanding enrichment ability for the extraction of CPs as model analytes with different polarities. This can be attributed to a valuable hydrophobic-hydrophilic balance in the mesochanels of the plugged BFPMO, which is the result of the combination of plug technology and bridged organic groups. Low limits of detection in the range of 5-70 ng L-1, wide linearity, and good reproducibility (RSD = 8.1-10.1 % for n = 6) under the optimized extraction conditions were achieved. Finally, the BFPMOs coated fiber was successfully used for determination of CPs in real water samples. The relative recoveries for the five CPs were in the range of 92.3-104.0 %, which proved the applicability of the method.
Collapse
Affiliation(s)
- Kobra Zavar Mousavi
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Yadollah Yamini
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| | - Babak Karimi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), P.O. Box 45195-1159, Zanjan, 45137-6731, Iran; Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | | | - Mojtaba Khorasani
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), P.O. Box 45195-1159, Zanjan, 45137-6731, Iran
| | - Shahram Seidi
- Department of Analytical Chemistry, K.N. Toosi University of Technology, Tehran, Iran
| | - Mostafa Ghaemmaghami
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| |
Collapse
|
18
|
Rozaini MNH, Kiatkittipong W, Saad B, Yahaya N, Shaharun MS, Sangu SS, Mohamed Saheed MS, Wong YF, Mohamad M, Sambudi NS, Lim JW. Green adsorption–desorption of mixed triclosan, triclocarban, 2-phenylphenol, bisphenol A and 4-tert-octylphenol using MXene encapsulated polypropylene membrane protected micro-solid-phase extraction device in amplifying the HPLC analysis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Xu P, Lu C, Wang D, Fu D. Combination of ultrathin micro-patterned MXene and PEDOT: Poly(styrenesulfonate) enables organic electrochemical transistor for amperometric determination of survivin protein in children osteosarcoma. Mikrochim Acta 2021; 188:301. [PMID: 34409498 DOI: 10.1007/s00604-021-04947-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/15/2021] [Indexed: 01/01/2023]
Abstract
An ultrathin micro-patterned MXene/PEDOT:PSS-based organic electrochemical transistor biosensor was constructed, which can significantly amplify the amperometric signal and transistor's performance. A novel interdigitated OECTs biosensor has been developed for reliable determination of survivin for the following considerations: (1) The synergistic effect of intercalated MXene and ionic PEDOT:PSS enhanced the mobility and volumetric capacitance of OECTs biosensor. (2) Compared with the best previous literatures, our assay demonstrated enhanced detection limit of survivin down to 10 pg mL-1, as well as satisfactory selectivity, reproducibility, and reliability. (3) Comparison of OECTs against commercial ELISA kit yielded favorable linearity (Y = 1.0015*X + 0.0039) and correlation coefficient (R2 = 0.9717). Those advantages are expected to pave the way to design of an OECTs biosensor with robustness, non-invasiveness, and miniaturization for the point-of-care applications.
Collapse
Affiliation(s)
- Ping Xu
- Department of Orthopedics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Chunwen Lu
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Dahui Wang
- Department of Orthopedics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| | - Dong Fu
- Department of Orthopedics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| |
Collapse
|
20
|
Pang T, Chen X, Hu K, Cui Y, Zhao W, Zeng H, Zhang Z, Zhang S. Preparation of Ti 3 C 2 T x MXene based solid-phase microextraction coating for sensitive determination of polychlorinated biphenyls in environmental water samples. J Sep Sci 2021; 44:3398-3406. [PMID: 34265181 DOI: 10.1002/jssc.202100247] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 11/09/2022]
Abstract
In this study, a new Ti3 C2 Tx -coated fiber was synthesized and utilized as coatings for solid-phase microextraction of seven polychlorinated biphenyls. The as-produced multilayered Ti3 C2 Tx MXene was characterized by X-ray diffractometer, thermos-gravimetric analysis, scanning electron microscopy, and energy dispersive spectroscopy. It is noteworthy that the Ti3 C2 Tx showed some attractive features including unique 2D layered structures, large surface area, good hydrophilicity, and rich active recognition sites, endowing it has a high affinity towards the target polychlorinated biphenyls. Subsequently, the affecting parameters on the extraction efficiency of polychlorinated biphenyls were optimized. Under the optimal conditions, a novel method for the analysis of polychlorinated biphenyls in water samples was proposed. The Ti3 C2 Tx -coated fiber-based solid-phase microextraction method showed good linearity (r2 > 0.9928), high enrichment factors (268-442), low limits of detection (0.06-0.15 ng/L), and satisfactory repeatability (RSDs < 7.5%) for the polychlorinated biphenyls. The excellent method recoveries were in the range of 90.0-98.4, 92.0-98.2, and 92.0-98.0% for river water, lake water, and tap water samples, respectively. These results suggested that the proposed Ti3 C2 Tx -coated fiber-based method represents a promising alternative for the analysis of polychlorinated biphenyls.
Collapse
Affiliation(s)
- Tiantian Pang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, P. R. China
| | - Xiaohui Chen
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, P. R. China
| | - Kai Hu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, P. R. China
| | - Yongxia Cui
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, P. R. China
| | - Wenjie Zhao
- School of Chemistry, Chemical and Environmental Engineering, Henan University of Technology, Zhengzhou, P. R. China
| | - Huahui Zeng
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, P. R. China
| | - Zhenqiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, P. R. China
| | - Shusheng Zhang
- Center for Modern Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou, P. R. China
| |
Collapse
|
21
|
El Azab NF, Hotar SF, Trabik YA. Investigation of a QuEChERS Based Method for Determination of Polycyclic Aromatic Hydrocarbons in Rat Plasma by GC/MS. J Anal Toxicol 2021; 46:432-442. [PMID: 33710275 DOI: 10.1093/jat/bkab027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/28/2021] [Accepted: 03/11/2021] [Indexed: 11/14/2022] Open
Abstract
Owing to their toxic effects on humans and the environment, sensitive biomonitoring of polycyclic aromatic hydrocarbons (PAHs) is essential and significant. In this work, a sensitive, simple and rapid bioanalytical method was established for the simultaneous determination of thirteen (PAHs) in rat plasma depending on QuEChERS as a preliminary step and gas chromatography/mass spectrometry (GC/MS) for identification. QuEChERS procedure was optimized where acetonitrile was employed for plasma samples extraction which was further cleaned using primary secondary amine as the sorbent material. Optimization of GC/MS conditions was performed to produce optimum selectivity of the proposed method. The method was fully validated for rat plasma samples where recoveries, matrix effects, limit of quantitation, linearity, and precision were evaluated. Linearity range was 5.0-100.0 ng/mL for most of the thirteen analytes. Average recoveries of the thirteen PAHs ranged between 85.57 % to 109.64 % in fortified rat plasma with standard deviations (SDs) less than 8.91 except for anthracene which showed 19.24. The limits of detection (LODs) and quantitation (LOQs) for the thirteen compounds ranged from 0.045 to 0.372 ppb and from 0.137 to 1.128 ppb respectively. The established method was successfully implemented to perform a minor toxicokinetic study in intraperitoneally dosed rats (0.25 and 2 mg/kg in vegetable oil). The thirteen PAHs were tracked in rat plasma samples for 6 h after administration, and most of the target compounds were recognized in plasma samples only at the higher dose.
Collapse
Affiliation(s)
- Noha F El Azab
- Pharmaceutical Analytical Chemistry Department, Faculty of pharmacy, Ain Shams University, Cairo, Egypt
| | | | - Yossra A Trabik
- Pharmaceutical Analytical Chemistry Department, Faculty of pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
22
|
A carbon dots-based coating for the determination of phthalate esters by solid-phase microextraction coupled gas chromatography in water samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
23
|
Moinfar S, Khodayari A, Sohrabnezhad S, Aghaei A, Jamil LA. MIL-53(Al)/Fe2O3 nanocomposite for solid-phase microextraction of organophosphorus pesticides followed by GC-MS analysis. Mikrochim Acta 2020; 187:647. [DOI: 10.1007/s00604-020-04621-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/21/2020] [Indexed: 12/24/2022]
|
24
|
Ramezani AM, Yamini Y. Electrodeposition of poly-ethylenedioxythiophene-graphene oxide nanocomposite in a stainless steel tube for solid-phase microextraction of letrozole in plasma samples. J Sep Sci 2020; 43:4338-4346. [PMID: 32997397 DOI: 10.1002/jssc.202000838] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 01/04/2023]
Abstract
Coated stainless steel was used as an in-tube solid-phase microextraction for the extraction of letrozole from plasma samples. The coating process on the inner surface of the stainless steel was conducted by a simple electrodeposition process. The coated composite was prepared from 3,4-ethylenedioxythiophene and graphene oxide. In this composite, graphene oxide acts as an anion dopant and sorbent. The coated nanostructured polymer was characterized using different techniques. The operational factors affecting the extraction process, including pH, adsorption, and desorption time, the recycling flow rate of the sample solution, sample volume, desorption solvent type and its volume, and ionic strength were optimized to achieve the best extraction efficiency of the analyte. The total extraction time including adsorption and desorption steps was about 15.0 min. The developed method demonstrated a linear range of 5.0-1500.0 μg/L with a limit of detection of 1.0 μg/L. The repeatability of the developed extraction approach in terms of intraday, interday, and fiber to fiber was attained in the range of 4.9-8.3%. After finding the optimal conditions, the potential of the described approach for letrozole quantitation was investigated in plasma samples, and satisfactory results were obtained.
Collapse
Affiliation(s)
- Amir M Ramezani
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yadollah Yamini
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
25
|
Jalili V, Barkhordari A, Ghiasvand A. Solid-phase microextraction technique for sampling and preconcentration of polycyclic aromatic hydrocarbons: A review. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104967] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Yu J, Di S, Ning T, Yang H, Zhu GT, Chen P, Yu H, Wang J, Zhu S. Rational design and synthesis of magnetic covalent organic frameworks for controlling the selectivity and enhancing the extraction efficiency of polycyclic aromatic hydrocarbons. Mikrochim Acta 2020; 187:531. [DOI: 10.1007/s00604-020-04520-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022]
|
27
|
Magnetic Cu: CuO-GO nanocomposite for efficient dispersive micro-solid phase extraction of polycyclic aromatic hydrocarbons from vegetable, fruit, and environmental water samples by liquid chromatographic determination. Talanta 2020; 218:121131. [PMID: 32797888 DOI: 10.1016/j.talanta.2020.121131] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/19/2022]
Abstract
In this research, we presented a magnetic dispersive micro-solid phase extraction (MD-μ-SPE) method coupled with high performance liquid chromatography (HPLC) based on the use of magnetic Cu: CuO-Graphene Oxide (GO) nanocomposite (Fe3O4/Cu: CuO/GO-NC) for the separation and preconcentration of polycyclic aromatic hydrocarbons (PAHs), i.e. naphthalene (Nap), phenanthrene (Phe), anthracene (Ant), and pyrene (Pyr), in vegetable (onion, tomato, carrot, herb, watermelon, lettuce, eggplant, and chili pepper), fruit (apple, watermelon, and grape), wastewater, and water samples. The MD-μ-SPE of PAHs in matrix samples was carried out, and the impacts of pH, ionic strength, extraction time, temperature, eluent volume, and sorbent mass on the recovery of PAHs were investigated by using Placket-Burman design (PBD). In addition, by using the central composite design (CCD), the best combination of each important variable was measured. Sorbent mass of 14 mg, eluent volume of 200 μL, and 12 min extraction time at the central level of other factors were optimal conditions of pretreatment for the highest extraction recovery (ER%) of trace PAHs. Under the optimal conditions, the method proposed herein provided high enrichment factors ranged from 116.51 to 133.05, good linearity in the range of 10-3800 ng mL-1 for Pyr, 3.0-3500 ng mL-1 for Phe, 5.0-3200 ng mL-1 for Nap, and 5.0-3000 ng mL-1 for Ant with coefficient of determination (R2) values between 0.9889 and 0.9963, low limits of detection (LOD) and quantification (LOQ) in the range of 0.015-0.061 and 0.485-2.034 ng mL-1, respectively, and also satisfactory spiked recoveries (between 95.1% and 106.8%) with the relative standard deviations (RSDs) values in the range of 1.73%-5.62%. The Fe3O4/Cu: CuO/GO-NC-based MD-μ-SPE followed by HPLC-UV corroborated promising results for the convenient and effective determination of PAHs in the samples of vegetables, fruits, and environmental water. The results of this study revealed that our developed method is easy, feasible, precise, highly effective, and convenient to operate for the trace analysis of PAHs in different real samples. The extraction recovery was about 90% of the initial recovery after the sorbent usage for three times; therefore, the Fe3O4/Cu: CuO/GO-NC can readily be regenerated.
Collapse
|
28
|
Graphene oxide/polydimethylsiloxane-coated stainless steel mesh for use in solid-phase extraction cartridges and extraction of polycyclic aromatic hydrocarbons. Mikrochim Acta 2020; 187:213. [DOI: 10.1007/s00604-020-4193-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/24/2020] [Indexed: 11/26/2022]
|