1
|
Suo Z, Yu T, Xu Y, Ren W, Liu Y, Wei M, Jin H, He B, Zhao R. Research progress of photoelectrochemical sensors in food detection. Food Res Int 2025; 206:116071. [PMID: 40058922 DOI: 10.1016/j.foodres.2025.116071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/10/2025] [Accepted: 02/22/2025] [Indexed: 05/13/2025]
Abstract
Food is the basic of the people, security is the basic of the food. As the quality of life improves, food safety has emerged as a global concern, making the development of simple, rapid, and efficient food safety detection methods critically important. Photoelectrochemical (PEC) sensors are a novel class of sensors developed in recent years that integrate photoelectric technology with biosensing. Owing to their high sensitivity, simple design, low cost, and ease of miniaturization, PEC sensors have found widespread applications in food detection, bioanalysis, clinical diagnostics, and environmental protection. This paper reviews the development of PEC sensors, the basic principles of PEC sensor detection, and the electron transport pathways of semiconductor materials in PEC sensors. It focuses on how photoelectroactive materials and related signal amplification strategies can improve the detection performance of the sensors, as well as the latest research advances of PEC sensors in the detection of food toxins. Finally, the challenges and future trends of PEC sensors in food safety detection are discussed.
Collapse
Affiliation(s)
- Zhiguang Suo
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou 450001, China.
| | - Tengfei Yu
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou 450001, China
| | - Yiwei Xu
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou 450001, China
| | - Wenjie Ren
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou 450001, China
| | - Yong Liu
- School of Energy Science and Technology, Henan University, Kaifeng 475004, China
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou 450001, China
| | - Huali Jin
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou 450001, China
| | - Baoshan He
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou 450001, China
| | - Renyong Zhao
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Caglayan MO, Şahin S, Üstündağ Z. An Overview of Aptamer-Based Sensor Platforms for the Detection of Bisphenol-A. Crit Rev Anal Chem 2024; 54:1320-1341. [PMID: 36001397 DOI: 10.1080/10408347.2022.2113359] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Endocrine disruptive compounds are natural or anthropogenic environmental micropollutants that alter the function of the endocrine system ultimately damaging the metabolism. Bisphenol A (BPA) is the most common of these pollutants and it is often used in epoxy coatings and polycarbonates as a plasticizer. Therefore, monitoring BPA levels in different environments is very important and challenging. In recent years, an increasing number of BPA detection methods have been proposed. This article presents a critical review of aptamer-based electrochemical, fluorescence-based, colorimetric, and several other BPA detection platforms published in the last decade. Furthermore, a statistical evaluation has been made using principle component analysis showing analytical performance parameters do not create very different clusters. Comparisons to other BPA detection methods are also presented so that the reader has an overall literature overview.
Collapse
Affiliation(s)
| | - Samet Şahin
- Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Zafer Üstündağ
- Department of Chemistry, Kütahya Dumlupınar University, Kütahya, Turkey
| |
Collapse
|
3
|
Sheikh TA, Ismail M, Rabbee MF, Khan H, Rafique A, Rasheed Z, Siddique A, Rafiq MZ, Khattak ZAK, Jillani SMS, Shahzad U, Akhtar MN, Saeed M, Alzahrani KA, Uddin J, Rahman MM, Verpoort F. 2D MXene-Based Nanoscale Materials for Electrochemical Sensing Toward the Detection of Hazardous Pollutants: A Perspective. Crit Rev Anal Chem 2024:1-46. [PMID: 39046991 DOI: 10.1080/10408347.2024.2379851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
MXenes (Mn+1XnTx), a subgroup of 2-dimensional (2D) materials, specifically comprise transition metal carbides, nitrides, and carbonitrides. They exhibit exceptional electrocatalytic and photocatalytic properties, making them well-suited for the detection and removal of pollutants from aqueous environments. Because of their high surface area and remarkable properties, they are being utilized in various applications, including catalysis, sensing, and adsorption, to combat pollution and mitigate its adverse effects. Different characterization techniques like XRD, SEM, TEM, UV-Visible spectroscopy, and Raman spectroscopy have been used for the structural elucidation of 2D MXene. Current responses against applied potential were measured during the electrochemical sensing of the hazardous pollutants in an aqueous system using a variety of electroanalytical techniques, including differential pulse voltammetry, amperometry, square wave anodic stripping voltammetry, etc. In this review, a comprehensive discussion on structural patterns, synthesis, properties of MXene and their application for electrochemical detection of lethal pollutants like hydroquionone, phenol, catechol, mercury and lead, etc. are presented. This review will be helpful to critically understand the methods of synthesis and application of MXenes for the removal of environmental pollutants.
Collapse
Affiliation(s)
- Tahir Ali Sheikh
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Ismail
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Hira Khan
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ayesha Rafique
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Zeerak Rasheed
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Amna Siddique
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Zeeshan Rafiq
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Shehzada Muhammad Sajid Jillani
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Umer Shahzad
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Nadeem Akhtar
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mohsin Saeed
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid A Alzahrani
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jamal Uddin
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University, Baltimore, Maryland, USA
| | - Mohammed M Rahman
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
- National Research Tomsk Polytechnic University, Tomsk, Russian
| |
Collapse
|
4
|
Mansouri S. Recent developments of (bio)-sensors for detection of main microbiological and non-biological pollutants in plastic bottled water samples: A critical review. Talanta 2024; 274:125962. [PMID: 38537355 DOI: 10.1016/j.talanta.2024.125962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 05/04/2024]
Abstract
The importance of water in all biological processes is undeniable. Ensuring access to clean and safe drinking water is crucial for maintaining sustainable water resources. To elaborate, the consumption of water of inadequate quality can have a repercussion on human health. Furthermore, according to the instability of tap water quality, the consumption rate of bottled water is increasing every day at the global level. Although most people believe bottled water is safe, it can also be contaminated by microbiological or chemical pollution, which can increase the risk of disease. Over the last decades, several conventional analytical tools applied to analyze the contamination of bottled water. On the other hand, some limitations restrict their application in this field. Therefore, biosensors, as emerging analytical method, attract tremendous attention for detection both microbial and chemical contamination of bottled water. Biosensors enjoy several facilities including selectivity, affordability, and sensitivity. In this review, the developed biosensors for analyzing contamination of bottled water were highlighted, as along with working strategies, pros and cons of studies. Challenges and prospects were also examined.
Collapse
Affiliation(s)
- Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia; University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis, Laboratory of Biophysics and Medical Technologies, Tunis, Tunisia.
| |
Collapse
|
5
|
Zhao R, Zhang T, Qiu X, Cao Z, Gao S, Song X, Li Y, Chen F, Zhou X. Charge transport properties and mechanisms of bacterial cellulose (BC)-Zinc complexes. Carbohydr Polym 2024; 334:122066. [PMID: 38553206 DOI: 10.1016/j.carbpol.2024.122066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/17/2024] [Accepted: 03/14/2024] [Indexed: 04/02/2024]
Abstract
Most current flexible electronic devices are based on petroleum materials that are difficult to degrade. The exploration of sustainable and eco-friendly materials has become a major focus in both the scientific and industrial communities. In this study, BC-Zn-BIM (bacterial cellulose-Zn-benzimidazole), a novel composite electrode material based on biodegradable BC was developed. Here, BC acted as a conductive medium involved in the conductive behavior of the composite material. We've explored the charge transport mechanisms of BC-Zn-BIM by density functional theory (DFT) calculations, and applied it in the electrochemical detection of Bisphenol A (BPA). The results indicated that the oxygen-containing groups in BC and the nitrogen-containing heterocycles in BIM have a tendency to lose electrons, whereas zinc ions actively acquire electrons from these groups. This process promoted charge transfer within BC-Zn-BIM and endowed it with semiconductor-like properties, enhancing the electrocatalytic reaction of BPA. The detection limit of the electrochemical biosensor was 12 nM, and the sample recovery was 95.1%105.6%. This study clarified the mechanism of the higher electrical properties achieved in Zn-BIM complex grown in-situ on dielectric BC. This will further promote the development of low-cost, environmentally friendly flexible electronic devices.
Collapse
Affiliation(s)
- Rui Zhao
- Qingdao University of Science and Technology, Qingdao, Shandong 266031, PR China
| | - Tianshuo Zhang
- Qingdao University of Science and Technology, Qingdao, Shandong 266031, PR China
| | - Xianglin Qiu
- Qingdao University of Science and Technology, Qingdao, Shandong 266031, PR China
| | - Ziyi Cao
- Qingdao University of Science and Technology, Qingdao, Shandong 266031, PR China
| | - Shanshan Gao
- Qingdao University of Science and Technology, Qingdao, Shandong 266031, PR China.
| | - Xiaoming Song
- Qingdao University of Science and Technology, Qingdao, Shandong 266031, PR China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, PR China.
| | - Yue Li
- Qingdao University of Science and Technology, Qingdao, Shandong 266031, PR China
| | - Fushan Chen
- Qingdao University of Science and Technology, Qingdao, Shandong 266031, PR China
| | - Xinyi Zhou
- Qingdao University of Science and Technology, Qingdao, Shandong 266031, PR China
| |
Collapse
|
6
|
Verma S, Thakur D, Pandey CM, Kumar D. Recent Prospects of Carbonaceous Nanomaterials-Based Laccase Biosensor for Electrochemical Detection of Phenolic Compounds. BIOSENSORS 2023; 13:305. [PMID: 36979517 PMCID: PMC10046707 DOI: 10.3390/bios13030305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Phenolic compounds (PhCs) are ubiquitously distributed phytochemicals found in many plants, body fluids, food items, medicines, pesticides, dyes, etc. Many PhCs are priority pollutants that are highly toxic, teratogenic, and carcinogenic. Some of these are present in body fluids and affect metabolism, while others possess numerous bioactive properties such as retaining antioxidant and antimicrobial activity in plants and food products. Therefore, there is an urgency for developing an effective, rapid, sensitive, and reliable tool for the analysis of these PhCs to address their environmental and health concern. In this context, carbonaceous nanomaterials have emerged as a promising material for the fabrication of electrochemical biosensors as they provide remarkable characteristics such as lightweight, high surface: volume, excellent conductivity, extraordinary tensile strength, and biocompatibility. This review outlines the current status of the applications of carbonaceous nanomaterials (CNTs, graphene, etc.) based enzymatic electrochemical biosensors for the detection of PhCs. Efforts have also been made to discuss the mechanism of action of the laccase enzyme for the detection of PhCs. The limitations, advanced emerging carbon-based material, current state of artificial intelligence in PhCs detection, and future scopes have also been summarized.
Collapse
Affiliation(s)
- Sakshi Verma
- Department of Applied Chemistry, Delhi Technological University, Delhi 110042, India
| | - Deeksha Thakur
- Department of Applied Chemistry, Delhi Technological University, Delhi 110042, India
| | - Chandra Mouli Pandey
- Department of Chemistry, Faculty of Science, SGT University, Gurugram 122505, India
| | - Devendra Kumar
- Department of Applied Chemistry, Delhi Technological University, Delhi 110042, India
| |
Collapse
|
7
|
Saini SS, Copello GJ, Martini MF. Solid phase extraction with rotating cigarette filter for determination of bisphenol A in source and drinking water: computational and analytical studies. ANAL SCI 2023; 39:607-617. [PMID: 36807887 DOI: 10.1007/s44211-023-00276-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/14/2023] [Indexed: 02/23/2023]
Abstract
An ultrasound assisted solid phase extraction method using rotating cigarette filter is developed herein to preconcentrate and determine trace amount of bisphenol in source and drinking water. Qualitative and quantitative measurements were performed using high-performance liquid chromatography coupled with ultra violet detector. Sorbent-analyte interactions were thoroughly investigated computationally and experimentally using molecular dynamics simulations; and attenuated total reflectance Fourier transform infrared spectroscopy, and Raman spectroscopy, respectively. Various extraction parameters were investigated and optimized. Under the optimal conditions, the results were linear in a low scale range of 0.01-55 ng/mL with correlation coefficient of 0.9941 and a low limit of detection (0.04 ng/mL, signal/noise = 3:1). A good precision (intra-day relative standard deviation ≤ 6.05%, inter-day relative standard deviation ≤ 7.12%) and recovery (intra-day ≥ 98.41%, inter-day ≥ 98.04%)) are obtained. Finally, the proposed solid phase extraction method offered a low cost, simple, fast, and sensitive analytical method to determine trace amount of bisphenol A in source and drinking water samples with chromatographic detection.
Collapse
Affiliation(s)
- Shivender Singh Saini
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Samba, Jammu and Kashmir, 181143, India.
| | - Guillermo J Copello
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M Florencia Martini
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Farmacología, UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Junín 956, C1113AAD, Buenos Aires, Argentina
| |
Collapse
|
8
|
Zhu S, Liu Y, Gu Z, Zhao Y. Research trends in biomedical applications of two-dimensional nanomaterials over the last decade - A bibliometric analysis. Adv Drug Deliv Rev 2022; 188:114420. [PMID: 35835354 DOI: 10.1016/j.addr.2022.114420] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 11/01/2022]
Abstract
Two-dimensional (2D) nanomaterials with versatile properties have been widely applied in the field of biomedicine. Despite various studies having reviewed the development of biomedical 2D nanomaterials, there is a lack of a study that objectively summarizes and analyzes the research trend of this important field. Here, we employ a series of bibliometric methods to identify the development of the 2D nanomaterial-related biomedical field during the past 10 years from a holistic point of view. First, the annual publication/citation growth, country/institute/author distribution, referenced sources, and research hotspots are identified. Thereafter, based on the objectively identified research hotspots, the contributions of 2D nanomaterials to the various biomedical subfields, including those of biosensing, imaging/therapy, antibacterial treatment, and tissue engineering are carefully explored, by considering the intrinsic properties of the nanomaterials. Finally, prospects and challenges have been discussed to shed light on the future development and clinical translation of 2D nanomaterials. This review provides a novel perspective to identify and further promote the development of 2D nanomaterials in biomedical research.
Collapse
Affiliation(s)
- Shuang Zhu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing 100049, China; College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaping Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing 100049, China; The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui 230001, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing 100049, China; College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuliang Zhao
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Acharya PB, George A, Shrivastav PS. A Status Update on the Development of Polymer and Metal-Based Graphene Electrochemical Sensors for Detection and Quantitation of Bisphenol A. Crit Rev Anal Chem 2022; 54:669-690. [PMID: 35776701 DOI: 10.1080/10408347.2022.2094197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The detection and quantitation of bisphenol A (BPA) in the environment and food products has been a subject of considerable interest. BPA, a diphenylmethane derivative is a well-known industrial raw material with wide range of applications. It is a well-known endocrine disruptor and acts as an estrogen mimic. BPA is an environmental health concern and its accumulation in hydro-geological cycles is a matter of serious ecological peril. This review basically assesses various chemically modified electrodes composed of diverse components that have been employed to recognize BPA in different matrices. Electrochemical sensors prepared using graphene materials in combination with metals and polymers for selective detection of BPA have been discussed extensively. The emphasis is on detection of BPA in various samples encountered in routine use such as plastic bottles, receipts, baby feed bottles, milk samples, mineralized water, tissue paper, DVDs, and others. Although research in this field is in the exploratory stage, deeper insights into fundamental studies of sensing systems, fast analysis of real samples and validation of sensors are some of the factors that need major impetus. It is expected that chemically modified electrode-based sensing systems will soon take over as a viable option for monitoring diverse pollutants.
Collapse
Affiliation(s)
- Prachi B Acharya
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Archana George
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Pranav S Shrivastav
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
10
|
Huang J, Zhang T, Dong G, Zhu S, Yan F, Liu J. Direct and Sensitive Electrochemical Detection of Bisphenol A in Complex Environmental Samples Using a Simple and Convenient Nanochannel-Modified Electrode. Front Chem 2022; 10:900282. [PMID: 35720995 PMCID: PMC9204582 DOI: 10.3389/fchem.2022.900282] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Rapid, convenient, and sensitive detection of Bisphenol A (BPA) in complex environmental samples without the need for tedious pre-treatment is crucial for assessing potential health risks. Herein, we present an electrochemical sensing platform using a simple nanochannel-modified electrode, which enables the direct and sensitive detection of BPA in complex samples. A vertically ordered mesoporous silica-nanochannel film (VMSF) with high-density nanochannels is rapidly and stably grown on the surface of a electrochemically activated glassy carbon electrode (p-GCE) by using the electrochemically assisted self-assembly (EASA) method. The high antifouling capability of the VMSF/p-GCE sensor is proven by investigating the electrochemical behavior of BPA in the presence of model coexisting interfering molecules including amylum, protein, surfactant, and humic acid. The VMSF/p-GCE sensor can sensitively detect BPA ranged from 50 to 1.0 μM and 1.0–10.0 μM, with low detection limits (15 nM). Owing to the electrocatalytic performance and high potential resolution of p-GCE, the sensor exhibits high selectivity for BPA detection in the presence of common environmental pollutants, including bisphenol S (BPS), catechol (CC), hydroquinone (HQ), and 4-nitrophenol (4-NP). In combination with the good antifouling property of the VMSF, direct detection of BPA in environmental water samples and soil leaching solution (SLS) is also realized without separation pretreatment. The developed VMSF/p-GCE sensor demonstrated advantages of simple structure, high sensitivity, good antifouling performance, and great potential in direct electroanalysis of endocrine-disrupting compounds in complex samples.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
- Heihe Water Resources and Ecological Protection Research Center, Lanzhou, China
| | - Tongtong Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guotao Dong
- Heihe Water Resources and Ecological Protection Research Center, Lanzhou, China
- *Correspondence: Guotao Dong, ; Jiyang Liu,
| | - Shanshan Zhu
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fei Yan
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiyang Liu
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Guotao Dong, ; Jiyang Liu,
| |
Collapse
|
11
|
Chen Z, Xie M, Zhao F, Han S. Application of Nanomaterial Modified Aptamer-Based Electrochemical Sensor in Detection of Heavy Metal Ions. Foods 2022; 11:1404. [PMID: 35626973 PMCID: PMC9140949 DOI: 10.3390/foods11101404] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 02/07/2023] Open
Abstract
Heavy metal pollution resulting from significant heavy metal waste discharge is increasingly serious. Traditional methods for the detection of heavy metal ions have high requirements on external conditions, so developing a sensitive, simple, and reproducible detection method is becoming an urgent need. The aptamer, as a new kind of artificial probe, has received more attention in recent years for its high sensitivity, easy acquisition, wide target range, and wide use in the detection of various harmful substances. The detection platform that an aptamer-based electrochemical biosensor (E-apt sensor) provides is a new approach for the detection of heavy metal ions. Nanomaterials are particularly important in the construction of E-apt sensors, as they can be used as aptamer carriers or sensitizers to stimulate or inhibit electrochemical signals, thus significantly improving the detection sensitivity. This review summarizes the application of different types of nanomaterials in E-apt sensors. The construction methods and research progress of the E-apt sensor based on different working principles are systematically introduced. Moreover, the advantages and challenges of the E-apt sensor in heavy metal ion detection are summarized.
Collapse
Affiliation(s)
- Zanlin Chen
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.C.); (M.X.)
| | - Miaojia Xie
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.C.); (M.X.)
| | - Fengguang Zhao
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510006, China;
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.C.); (M.X.)
| |
Collapse
|
12
|
The hybrids of perylene tetracarboxylic acid functionalized multi-walled carbon nanotubes and chitosan for electrochemical chiral sensing of tryptophan enantiomers. Bioelectrochemistry 2022; 146:108110. [DOI: 10.1016/j.bioelechem.2022.108110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 12/29/2022]
|
13
|
Sanko V, Şenocak A, Oğuz Tümay S, Çamurcu T, Demirbas E. Core‐shell Hierarchical Enzymatic Biosensor Based on Hyaluronic Acid Capped Copper Ferrite Nanoparticles for Determination of Endocrine‐disrupting Bisphenol A. ELECTROANAL 2021. [DOI: 10.1002/elan.202100386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Vildan Sanko
- Department of Chemistry Gebze Technical University P.O.Box: 141 Gebze 41400 Kocaeli Turkey
| | - Ahmet Şenocak
- Department of Chemistry Gebze Technical University P.O.Box: 141 Gebze 41400 Kocaeli Turkey
| | - Süreyya Oğuz Tümay
- Department of Chemistry Gebze Technical University P.O.Box: 141 Gebze 41400 Kocaeli Turkey
| | - Taşkın Çamurcu
- Department of Chemistry Gebze Technical University P.O.Box: 141 Gebze 41400 Kocaeli Turkey
| | - Erhan Demirbas
- Department of Chemistry Gebze Technical University P.O.Box: 141 Gebze 41400 Kocaeli Turkey
| |
Collapse
|
14
|
Joshi DJ, Koduru JR, Malek NI, Hussain CM, Kailasa SK. Surface modifications and analytical applications of graphene oxide: A review. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116448] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Khan R, Radoi A, Rashid S, Hayat A, Vasilescu A, Andreescu S. Two-Dimensional Nanostructures for Electrochemical Biosensor. SENSORS (BASEL, SWITZERLAND) 2021; 21:3369. [PMID: 34066272 PMCID: PMC8152006 DOI: 10.3390/s21103369] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022]
Abstract
Current advancements in the development of functional nanomaterials and precisely designed nanostructures have created new opportunities for the fabrication of practical biosensors for field analysis. Two-dimensional (2D) and three-dimensional (3D) nanomaterials provide unique hierarchical structures, high surface area, and layered configurations with multiple length scales and porosity, and the possibility to create functionalities for targeted recognition at their surface. Such hierarchical structures offer prospects to tune the characteristics of materials-e.g., the electronic properties, performance, and mechanical flexibility-and they provide additional functions such as structural color, organized morphological features, and the ability to recognize and respond to external stimuli. Combining these unique features of the different types of nanostructures and using them as support for bimolecular assemblies can provide biosensing platforms with targeted recognition and transduction properties, and increased robustness, sensitivity, and selectivity for detection of a variety of analytes that can positively impact many fields. Herein, we first provide an overview of the recently developed 2D nanostructures focusing on the characteristics that are most relevant for the design of practical biosensors. Then, we discuss the integration of these materials with bio-elements such as bacteriophages, antibodies, nucleic acids, enzymes, and proteins, and we provide examples of applications in the environmental, food, and clinical fields. We conclude with a discussion of the manufacturing challenges of these devices and opportunities for the future development and exploration of these nanomaterials to design field-deployable biosensors.
Collapse
Affiliation(s)
- Reem Khan
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA;
| | - Antonio Radoi
- National Institute for Research and Development in Microtechnology—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Voluntari, Romania;
| | - Sidra Rashid
- IRCBM, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan; (S.R.); (A.H.)
| | - Akhtar Hayat
- IRCBM, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan; (S.R.); (A.H.)
| | - Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania;
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA;
| |
Collapse
|
16
|
Development of MWCNT decorated with green synthesized AgNps-based electrochemical sensor for highly sensitive detection of BPA. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-020-01511-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Electrochemical detection of bisphenols in food: A review. Food Chem 2021; 346:128895. [PMID: 33421902 DOI: 10.1016/j.foodchem.2020.128895] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
Bisphenols (BPs) are worldwide used organic compounds in plastics, belonging to the group of endocrine disrupting chemicals (EDCs) which exhibits endocrine disruption to beings. Migration of BPs from food contact materials like plastic containers, epoxy coatings in metal cans and thermal papers, would results in bioaccumulation of BPs in human beings, causing adverse health effects. Therefore, sensitive and selective determination of BPs in food is needed. Among different strategies have been explored for the detection of BPs, electrochemical sensors with relatively high sensitivity and fast response are promising. This paper is devoted to comprehensively review the developed electrochemical methods for BPs sensing in food, so that to find a direction for developing low cost, high accuracy and compatibility sensors toward the sensitive and selective detection of BPs. Different electrochemical technologies categorized by recognition agents, aptamers, enzymes, molecularly imprinted polymers and nanomaterials are discussed and summarized in their mechanisms, usages, merits and limitations. The challenges and further perspectives in the development of electrochemical sensors is also discussed.
Collapse
|
18
|
Zamfir LG, Puiu M, Bala C. Advances in Electrochemical Impedance Spectroscopy Detection of Endocrine Disruptors. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6443. [PMID: 33187314 PMCID: PMC7697587 DOI: 10.3390/s20226443] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 01/18/2023]
Abstract
Endocrine disruptors (EDs) are contaminants that may mimic or interfere with the body's hormones, hampering the normal functions of the endocrine system in humans and animals. These substances, either natural or man-made, are involved in development, breeding, and immunity, causing a wide range of diseases and disorders. The traditional detection methods such as enzyme linked immunosorbent assay (ELISA) and chromatography are still the golden techniques for EDs detection due to their high sensitivity, robustness, and accuracy. Nevertheless, they have the disadvantage of being expensive and time-consuming, requiring bulky equipment or skilled personnel. On the other hand, early stage detection of EDs on-the-field requires portable devices fulfilling the Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment free, Deliverable to end users (ASSURED) norms. Electrochemical impedance spectroscopy (EIS)-based sensors can be easily implemented in fully automated, sample-to-answer devices by integrating electrodes in microfluidic chips. The latest achievements on EIS-based sensors are discussed and critically assessed.
Collapse
Affiliation(s)
- Lucian-Gabriel Zamfir
- R&D Center LaborQ, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania; (L.-G.Z.); (M.P.)
| | - Mihaela Puiu
- R&D Center LaborQ, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania; (L.-G.Z.); (M.P.)
| | - Camelia Bala
- R&D Center LaborQ, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania; (L.-G.Z.); (M.P.)
- Department of Analytical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
| |
Collapse
|
19
|
A review on nanostructure-based mercury (II) detection and monitoring focusing on aptamer and oligonucleotide biosensors. Talanta 2020; 220:121437. [PMID: 32928439 DOI: 10.1016/j.talanta.2020.121437] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/11/2020] [Accepted: 07/19/2020] [Indexed: 02/08/2023]
Abstract
Heavy metal ion pollution is a severe problem in environmental protection and especially in human health due to their bioaccumulation in organisms. Mercury (II) (Hg2+), even at low concentrations, can lead to DNA damage and give permanent harm to the central nervous system by easily passing through biological membranes. Therefore, sensitive detection and monitoring of Hg2+ is of particular interest with significant specificity. In this review, aptamer-based strategies in combination with nanostructures as well as several other strategies to solve addressed problems in sensor development for Hg2+ are discussed in detail. In particular, the analytical performance of different aptamer and oligonucleotide-based strategies using different signal improvement approaches based on nanoparticles were compared within each strategy and in between. Although quite a number of the suggested methodologies analyzed in this review fulfills the standard requirements, further development is still needed on real sample analysis and analytical performance parameters.
Collapse
|
20
|
Boubezari I, Bessueille F, Bonhomme A, Raimondi G, Zazoua A, Errachid A, Jaffrezic-Renault N. Laccase-Based Biosensor Encapsulated in a Galactomannan-Chitosan Composite for the Evaluation of Phenolic Compounds. BIOSENSORS 2020; 10:bios10060070. [PMID: 32580493 PMCID: PMC7345157 DOI: 10.3390/bios10060070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/11/2020] [Accepted: 06/19/2020] [Indexed: 05/12/2023]
Abstract
Galactomannan, a neutral polysaccharide, was extracted from carob seeds and characterized. It was used for the first time for the fabrication of a laccase-based biosensor by the encapsulation of laccase in a chitosan+galactomannan composite. The fabricated biosensor was characterized by FTIR, scanning electron microscopy and cyclic voltammetry. The pyrocatechol detection was obtained by cyclic voltammetry measurements, through the detection of o-quinone at -0.447 V. The laccase activity was well preserved in the chitosan+galactomannan composite and the sensitivity of detection of pyrocatechol in the 10-16 M-10-4 M range was very high. The voltammetric response of the biosensor was stable for more than two weeks. To estimate the antioxidant capacity of olive oil samples, it was shown that the obtained laccase-based biosensor is a valuable alternative to the colorimetric Folin-Ciocalteu method.
Collapse
Affiliation(s)
- Imane Boubezari
- Laboratory of Applied Energetics and Materials, University of Jijel, Ouled Aissa 18000, Algeria; (I.B.); (A.Z.)
- Institute of Analytical Sciences, University of Lyon, 69100 Villeurbanne, France; (F.B.); (A.B.); (G.R.); (A.E.)
| | - François Bessueille
- Institute of Analytical Sciences, University of Lyon, 69100 Villeurbanne, France; (F.B.); (A.B.); (G.R.); (A.E.)
| | - Anne Bonhomme
- Institute of Analytical Sciences, University of Lyon, 69100 Villeurbanne, France; (F.B.); (A.B.); (G.R.); (A.E.)
| | - Gaëtan Raimondi
- Institute of Analytical Sciences, University of Lyon, 69100 Villeurbanne, France; (F.B.); (A.B.); (G.R.); (A.E.)
| | - Ali Zazoua
- Laboratory of Applied Energetics and Materials, University of Jijel, Ouled Aissa 18000, Algeria; (I.B.); (A.Z.)
| | - Abdelhamid Errachid
- Institute of Analytical Sciences, University of Lyon, 69100 Villeurbanne, France; (F.B.); (A.B.); (G.R.); (A.E.)
| | - Nicole Jaffrezic-Renault
- Institute of Analytical Sciences, University of Lyon, 69100 Villeurbanne, France; (F.B.); (A.B.); (G.R.); (A.E.)
- Correspondence: ; Tel.: +33-437423516
| |
Collapse
|