1
|
Kumari R, Mendki N, Chandra P. Smartphone-Integrated Automated Sensor Employing Electrochemically Engineered 3D Bimetallic Nanoflowers for Hydrogen Peroxide Quantification in Milk. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11146-11159. [PMID: 38739881 DOI: 10.1021/acs.langmuir.4c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Hydrogen peroxide (H2O2), one of the reactive oxygen species in living beings, serves as a regulator of various cellular processes. However, excessive peroxide concentrations are linked to oxidative stress and promptly disrupt cellular components, leading to several pathological conditions in the body. Moreover, it is extremely reactive and has a limited lifetime; thus, H2O2 sensing remains a prominent focus of research. Enzymatic sensing probes were widely employed to detect H2O2 in the recent past; however, they are susceptible to intrinsic chemical and thermal instabilities, which decrease the reliability and durability of the surface. This research was designed to come up with a feasible solution to this problem. Herein, a novel nonenzymatic peroxidase-mimic three-dimensional (3D) bimetallic nanoflower has been synergistically engineered for quick sensing of H2O2. The sensor platform showed minimal resistance or enhanced charge transfer properties as well as remarkable analytical capability, having a broad linear range between 0.01 and 1 nM and a detection limit of 1.46 ± 0.07 pM. The probe responded to changes in H2O2 concentration in just 2.10 ± 0.02 s, making it a quick sensing platform for H2O2 tracking. This peroxidase-mimic nanozyme probe showed minimal sensitivity to interferants often seen in real-world sample matrices and possessed good recoveries ranging from 92.88 to 99.09% in milk samples. Further, a facile and user-friendly smartphone application (APP) named "HPeroxide-Check" was developed and integrated into the sensor to check the milk adulteration by detecting H2O2. It processes the current output obtained from the sensing interface and provides real-time peroxide concentrations in milk. The entire procedure of fabricating the probe is a single, highly robust step that takes only 10 min and is coupled with a smartphone APP, highlighting the sensor's quick manufacturing and deployment for automated H2O2 monitoring in industrial and point-of-care settings.
Collapse
Affiliation(s)
- Rohini Kumari
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi221005, Uttar Pradesh, India
| | - Nachiket Mendki
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi221005, Uttar Pradesh, India
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi221005, Uttar Pradesh, India
| |
Collapse
|
2
|
Malarat N, Soleh A, Saisahas K, Samoson K, Promsuwan K, Saichanapan J, Wangchuk S, Meng L, Limbut W. Electropolymerization of poly(phenol red) on laser-induced graphene electrode enhanced adsorption of zinc for electrochemical detection. Talanta 2024; 272:125751. [PMID: 38377665 DOI: 10.1016/j.talanta.2024.125751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
We present a highly sensitive and selective electrode of laser-induced graphene modified with poly(phenol red) (P(PhR)@LIG) for measuring zinc nutrition in rice grains using square wave anodic stripping voltammetry (SWASV). The physicochemical properties of P(PhR)@LIG were investigated with scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), Fourier infrared spectroscopy (FT-IR) and Raman spectroscopy. The modified electrode demonstrated an amplified anodic stripping response of Zn2+ due to the electropolymerization of P(PhR), which enhanced analyte adsorption during the accumulation step of SWASV. Under optimized parameters, the developed sensor provided a linear range from 30 to 3000 μg L-1 with a detection limit of 14.5 μg L-1. The proposed electrode demonstrated good reproducibility and good anti-interference properties. The sensor detected zinc nutrition in rice grain samples with good accuracy and the results were consistent with the standard ICP-OES method.
Collapse
Affiliation(s)
- Natchaya Malarat
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Asamee Soleh
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Kasrin Saisahas
- Division of Health and Applied Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Krisada Samoson
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Kiattisak Promsuwan
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Jenjira Saichanapan
- Division of Health and Applied Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Sangay Wangchuk
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Lingyin Meng
- Sensor and Actuator Systems, Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden.
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
3
|
Yang J, Chen L, Qi J, Luo F, Li L, Wu H, Cao F, Gu J. Acid-assisted ultrasonic preparation of nitrogen-doped MXene quantum dots for the efficient fluorescence "off-on-off" detection of Zn(II) in water and oxalic acid in vegetables. Food Chem 2024; 430:137007. [PMID: 37536071 DOI: 10.1016/j.foodchem.2023.137007] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
A novel fluorescence "off-on-off" probe was presented to detect Zn(II) and oxalic acid (OA) based on nitrogen-doped MXene quantum dots (N-MQDs), which were synthesized by an ultrasound approach at room temperature with nitric acid and ethylenediamine. These N-MQDs displayed small size (<10 nm), water dispersibility, and good photoluminescence. Furthermore, the N-MQDs showed an selective response towards Zn(II) through fluorescence enhancement, with a limit of detection (LOD) calculated as 0.127 μM in the linear range of 0-20 μM. Then, the fluorescence of N-MQDs/Zn(II) system could be selectively quenched after adding OA, with an effective response in the range from 0 to 20 μM (LOD: 0.883 μM). The fluorescence "turn-on" and "turn-off" properties of N-MQDs were resulted from the intramolecular charge transfer (ICT) of Zn(II) and the coordination between OA and Zn(II), respectively. This sensing platform was successfully applied for Zn(II) and OA detection in actual environmental and vegetable samples.
Collapse
Affiliation(s)
- Jinwen Yang
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Linlin Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Qi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Feili Luo
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Lin Li
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Honghong Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 511464, China; Shenzhen Branch of Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 511464, China
| | - Feifei Cao
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiangjiang Gu
- College of Science, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 511464, China; Shenzhen Branch of Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 511464, China.
| |
Collapse
|
4
|
Ibrahim NFA, Sabani N, Johari S, Manaf AA, Wahab AA, Zakaria Z, Noor AM. A Comprehensive Review of the Recent Developments in Wearable Sweat-Sensing Devices. SENSORS (BASEL, SWITZERLAND) 2022; 22:7670. [PMID: 36236769 PMCID: PMC9573257 DOI: 10.3390/s22197670] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Sweat analysis offers non-invasive real-time on-body measurement for wearable sensors. However, there are still gaps in current developed sweat-sensing devices (SSDs) regarding the concerns of mixing fresh and old sweat and real-time measurement, which are the requirements to ensure accurate the measurement of wearable devices. This review paper discusses these limitations by aiding model designs, features, performance, and the device operation for exploring the SSDs used in different sweat collection tools, focusing on continuous and non-continuous flow sweat analysis. In addition, the paper also comprehensively presents various sweat biomarkers that have been explored by earlier works in order to broaden the use of non-invasive sweat samples in healthcare and related applications. This work also discusses the target analyte's response mechanism for different sweat compositions, categories of sweat collection devices, and recent advances in SSDs regarding optimal design, functionality, and performance.
Collapse
Affiliation(s)
- Nur Fatin Adini Ibrahim
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Norhayati Sabani
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Shazlina Johari
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Centre, Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Asnida Abdul Wahab
- Department of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Zulkarnay Zakaria
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Sports Engineering Research Center, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Anas Mohd Noor
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| |
Collapse
|
5
|
Zhang M, Ke J, Xu D, Zhang X, Liu H, Wang Y, Yu J. Construction of plasmonic Bi/Bismuth oxycarbonate/Zinc bismuth oxide ternary heterojunction for enhanced charge carrier separation and photocatalytic performances. J Colloid Interface Sci 2022; 615:663-673. [PMID: 35158197 DOI: 10.1016/j.jcis.2022.02.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 12/30/2022]
Abstract
In this work, a novel plasmonic ternary Bi/Bismuth oxycarbonate/Zinc bismuth oxide (Bi-Bi2O2CO3-ZnBi2O4) is synthesized synergistically by a one-step hydrothermal method. The results show that the metallic Bi spheres and ZnBi2O4 nanoparticles are uniformly distributed on the surface of flower-like Bi2O2CO3 layer. Compared with the bare ZnBi2O4 and Bi-Bi2O2CO3, the ternary Bi-Bi2O2CO3-ZnBi2O4 heterojunction displays a significantly improved solar energy harvesting efficiency and enhanced photocatalytic degradation activity for environmental organic pollutants. The degradation efficiency of organics reaches to 98.4% under simulated solar light illumination. The degradation kinetics indicates that the photocatalytic reaction rate constant of ternary system is about 4.4 and 29.5 times higher than that of pure ZnBi2O4 and Bi-Bi2O2CO3, respectively. Moreover, O2- and h+ are the main active species in the photodegradation reaction. The improvement of the photocatalytic activity of the composites is attributed to the synergistic effect of ternary heterostructure and surface plasmon resonance (SPR), which promotes charge transfer and effectively inhibits the recombination of photogenerated carriers.
Collapse
Affiliation(s)
- Manlin Zhang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Jun Ke
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China; Hubei Engineering Technology Research Center for Chemical Industry Pollution Control, Wuhan 430205, PR China.
| | - Desheng Xu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Xiaoyu Zhang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Hengyu Liu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Yiran Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Junxia Yu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China.
| |
Collapse
|