1
|
Wang M, Zheng J, Zhang G, Lu S, Zhou J. Wearable Electrochemical Glucose Sensors for Fluid Monitoring: Advances and Challenges in Non-Invasive and Minimally Invasive Technologies. BIOSENSORS 2025; 15:309. [PMID: 40422047 DOI: 10.3390/bios15050309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/02/2025] [Accepted: 05/06/2025] [Indexed: 05/28/2025]
Abstract
This review highlights the latest developments in wearable electrochemical glucose sensors, focusing on their transition from invasive to non-invasive and minimally invasive designs. We discuss the underlying mechanisms, performance metrics, and practical challenges of these technologies, emphasizing their potential to revolutionize diabetes care. Additionally, we explore the motivation behind this review: to provide a comprehensive analysis of emerging sensing platforms, assess their clinical applicability, and identify key research gaps that need addressing to achieve reliable, long-term glucose monitoring. By evaluating electrochemical sensors based on tears, saliva, sweat, urine, and interstitial fluid, this work aims to guide future innovations toward more accessible, accurate, and user-friendly solutions for diabetic patients, ultimately improving their quality of life and disease management outcomes.
Collapse
Affiliation(s)
- Ming Wang
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou 450007, China
| | - Junjie Zheng
- College of Intelligent Textile and Fabric Electronics, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Ge Zhang
- College of Intelligent Textile and Fabric Electronics, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Shiyan Lu
- College of Intelligent Textile and Fabric Electronics, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Jinli Zhou
- College of Intelligent Textile and Fabric Electronics, Zhongyuan University of Technology, Zhengzhou 450007, China
| |
Collapse
|
2
|
Çakıroğlu B. Graphene quantum dots on TiO 2 nanotubes as a light-assisted peroxidase nanozyme. Mikrochim Acta 2024; 191:268. [PMID: 38627271 PMCID: PMC11599415 DOI: 10.1007/s00604-024-06341-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024]
Abstract
Hybrid nanozyme graphene quantum dots (GQDs) deposited TiO2 nanotubes (NTs) on titanium foil (Ti/TiO2 NTs-GQDs) were manufactured by bestowing the hybrid with the advantageous porous morphology, surface valence states, high surface area, and copious active sites. The peroxidase-like activity was investigated through the catalytic oxidation of chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2, which can be visualized by the eyes. TiO2 NTs and GQDs comprising oxygen-containing functional groups can oxidize TMB in the presence of H2O2 by mimicking peroxidase enzymes. The peroxidase-mimicking activity of hybrid nanozyme was significantly escalated by introducing light illumination due to the photosensitive features of the hybrid material. The peroxidase-like activity of Ti/TiO2 NTs-GQDs enabled H2O2 determination over the linear range of 7 to 250 μM, with a LOD of 2.1 µM. The satisfying peroxidase activity is possibly due to the unimpeded access of H2O2 to the catalyst's active sites. The porous morphology provides the easy channeling of reactants and products. The periodic structure of the material also gave rise to acceptable reproducibility. Without material functionalization, the Ti/TiO2 NTs-GQDs can be a promising substitute for peroxidases for H2O2 detection.
Collapse
Affiliation(s)
- Bekir Çakıroğlu
- Biomedical, Magnetic and Semiconductor Materials Research Center (BIMAS-RC), Sakarya University, 54187, Sakarya, Türkiye.
| |
Collapse
|
3
|
Zhang S, Peng Q, Jiang N, Qiao C, Li S, Yue W. Peroxidase-like activity and mechanism of gold nanoparticle-modified Ti 3C 2 MXenes for the construction of H 2O 2 and ampicillin colorimetric sensors. Mikrochim Acta 2024; 191:195. [PMID: 38478128 DOI: 10.1007/s00604-024-06263-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/13/2024] [Indexed: 03/17/2024]
Abstract
Transition metal carbides modified by Au nanoparticles (Au/Ti3C2) were synthesized and developed as a colorimetric sensor for the determination of H2O2 and ampicillin. The surface electrical properties of Ti3C2 were changed, and Au nanoparticles (AuNPs) and gold growth solution were synthesized simultaneously. Au/Ti3C2 was obtained by seed growth method with AuNPs modified on the surface of transition metal carbides, nitrides or carbon-nitrides (Ti3C2 MXenes). The synthesized AuNPs and Ti3C2 had no peroxidase-like activity, but Au/Ti3C2 had. The peroxidase catalytic mechanism was due to electron transfer. The peroxidase activity of Au/Ti3C2 can be utilized for the determination of H2O2. The linear range of Au/Ti3C2 for H2O2 was 1-60 µM, and the detection limit was 0.12 µM (S/N = 3). A colometric sensor for ampicillin detection based on Au/Ti3C2 was further constructed since S in ampicillin formed an Au-S bond with Au/Ti3C2, leading to the weakening of its peroxidase-like property. The change of peroxidase-like property attenuated oxidation of TMB, and the ampicillin content was inversely proportional to the concentration of oxidized TMB, and the blue color of solution faded, which enabled the determination of ampicillin. The linear range for ampicillin was 0.005-0.5 µg mL- 1, and the detection limit was 1.1 ng mL- 1 (S/N = 3). The sensor was applied to the detection of ampicillin in milk and human serum.
Collapse
Affiliation(s)
- Shuqi Zhang
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing, 211198, People's Republic of China
| | - Qiang Peng
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing, 211198, People's Republic of China
| | - Nian Jiang
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing, 211198, People's Republic of China
| | - Cairong Qiao
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing, 211198, People's Republic of China
| | - Shuaiwen Li
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing, 211198, People's Republic of China
| | - Wanqing Yue
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing, 211198, People's Republic of China.
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, 639 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
4
|
Ye ZT, Tseng SF, Tsou SX, Tsai CW. High-sensitivity flip chip blue Mini-LEDs miniaturized optical instrument for non-invasive glucose detection. DISCOVER NANO 2024; 19:6. [PMID: 38175421 PMCID: PMC10766880 DOI: 10.1186/s11671-023-03948-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
The colorimetric detection of glucose typically involves a peroxidase reaction producing a color, which is then recorded and analyzed. However, enzyme detection has difficulties with purification and storage. In addition, replacing enzyme detection with chemical methods involves time-consuming steps such as centrifugation and purification and the optical instruments used for colorimetric detection are often bulky and not portable. In this study, ammonium metavanadate and sulfuric acid were used to prepare the detection solution instead of peroxidase to produce color. We also analyzed the effect of different concentrations of detection solution on absorbance sensitivity. Finally, a flip chip blue Mini-LEDs miniaturized optical instrument (FC blue Mini-LEDs MOI) was designed for glucose detection using optics fiber, collimating lenses, a miniaturized spectrometer, and an FC Blue Mini-LEDs with a center wavelength of 459 nm. While detecting glucose solutions in the concentration range of 0.1-10 mM by the developed MOI, the regression equation of y = 0.0941x + 0.1341, R2 of 0.9744, the limit of detection was 2.15 mM, and the limit of quantification was 7.163 mM. Furthermore, the preparation of the detection solution only takes 10 min, and the absorbance sensitivity of the optimized detection solution could be increased by 2.3 times. The detection solution remained stable with only a 0.6% decrease in absorbance compared to the original after storing it in a refrigerated environment at 3 °C for 14 days. The method proposed in this study for detecting glucose using FC blue light Mini-LEDs MOI reduces the use of peroxidase. In addition, it has a wide detection range that includes blood as well as non-invasive saliva and tear fluids, providing patients with a miniaturized, highly sensitive, and quantifiable glucose detection system.
Collapse
Affiliation(s)
- Zhi Ting Ye
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, 168, University Rd., Min-Hsiung, Chia-Yi, 62102, Taiwan, ROC.
| | - Shen Fu Tseng
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, 168, University Rd., Min-Hsiung, Chia-Yi, 62102, Taiwan, ROC
| | - Shang Xuan Tsou
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, 168, University Rd., Min-Hsiung, Chia-Yi, 62102, Taiwan, ROC
| | - Chun Wei Tsai
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106319, Taiwan, ROC.
| |
Collapse
|
5
|
Qin Y, Li S, Liang L, Zhao S, Ye F. Rational synthesis of FeNiCo-LDH nanozyme for colorimetric detection of deferoxamine mesylate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123156. [PMID: 37506456 DOI: 10.1016/j.saa.2023.123156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
The accurate surveillance and sensitive detection of deferoxamine mesylate (DFO) is of great significance to ensure the safety of thalassemia major patients. Herein, we report a new nanozyme-based colorimetric sensor platform for DFO detection. First, a metal-organic framework (ZIF-67) was used as a precursor for the synthesis of FeNiCo-LDH (Layered Double Hydroxide, LDH) via an ion exchange reaction stirring at room temperature. The results of electron microscopy and nitrogen adsorption-desorption showed that FeNiCo-LDH exhibited a 3D hollow and mesopores structure, which supplied more exposed active sites and faster transfer of mass. The as-prepared FeNiCo-LDH showed superior peroxidase-like activity with a low Km and high υmax. It can catalyze the decomposition of H2O2 to generate reactive oxygen species (ROS) and further react with 3,3',5,5'-tetramethylbenzidine (TMB) to form blue oxidized TMB (oxTMB), which has a characteristic absorption at 652 nm. Once DFO was introduced, it can complex with FeNiCo-LDH and inhibit the peroxidase-like activity of FeNiCo-LDH, making the color of oxTMB lighter. The quantitative range of DFO was 0.8-28 μM with a detection limit of 0.71 μM. This established method was applied to the detection of DFO content in urine samples of thalassemia patients, and the spiked recoveries were falling between 97.7% and 109.6%, with a relative standard deviation was less than 5%, providing a promising tool for the clinical medication of thalassemia patients.
Collapse
Affiliation(s)
- Yuan Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China
| | - Shuishi Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China
| | - Ling Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China
| | - Fanggui Ye
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
6
|
Yang D, Cai C, Liu K, Peng Z, Yan C, Xi J, Xie F, Li X. Recent advances in glucose-oxidase-based nanocomposites for diabetes diagnosis and treatment. J Mater Chem B 2023; 11:7582-7608. [PMID: 37522237 DOI: 10.1039/d3tb01097j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Glucose oxidase (GOx) has attracted a lot of attention in the field of diabetes diagnosis and treatment in recent years owing to its inherent biocompatibility and glucose-specific catalysis. GOx can effectively catalyze the oxidation of glucose in the blood to hydrogen peroxide (H2O2) and glucuronic acid and can be used as a sensitive element in biosensors to detect blood glucose concentrations. Nanomaterials based on the immobilization of GOx can significantly improve the performance of glucose sensors through, for example, reduced electron tunneling distance. Moreover, various insulin-loaded nanomaterials (e.g., metal-organic backbones, and mesoporous silica nanoparticles) have been developed for the control of blood glucose concentrations based on GOx catalytic chemistry. These nano-delivery carriers are capable of releasing insulin in response to GOx-mediated changes in the microenvironment, allowing for a rapid return of the blood microenvironment to a normal state. Therefore, glucose biosensors and insulin delivery vehicles immobilized with GOx are important tools for the diagnosis and treatment of diabetes. This paper reviews the characteristics of various GOx-based nanomaterials developed for glucose biosensing and insulin-responsive release as well as research progress, and also highlights the current challenges and opportunities facing this field.
Collapse
Affiliation(s)
- Dejun Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Chunyan Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Zhaolei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Fan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China.
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
7
|
Yang J, Fang L, Jiang R, Qi L, Xiao Y, Wang W, Ismail I, Fang X. RuCu Nanosheets with Ultrahigh Nanozyme Activity for Chemodynamic Therapy. Adv Healthc Mater 2023; 12:e2300490. [PMID: 37053081 DOI: 10.1002/adhm.202300490] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/03/2023] [Indexed: 04/14/2023]
Abstract
Nanoenzymes have been widely explored for chemodynamic therapy (CDT) in cancer treatment. However, poor catalytic efficiency of nanoenzymes, especially in the tumor microenvironment with insufficient H2 O2 and mild acidity, limits the effect of CDT. Herein, a new ultrathin RuCu nanosheet (NS) based nanoenzyme which has a large specific surface area and abundant channels and defects is developed. The RuCu NSs show superb catalytic efficiency for the oxidation of peroxidase substrate H2 O2 at a wide range of pH and their catalytic efficiency (kcat /Km = 177.2 m-1 s-1 ) is about 14.9 times higher than that of the single-atom catalyst FeN3 P. Besides being an efficient nanozyme as peroxidase, the RuCu NSs possess other two enzyme activities, not only disproportionating superoxide anion to produce H2 O2 but also consuming glutathione to keep a high concentration of H2 O2 in the tumor microenvironment for Fenton reaction. With these advantages, the RuCu NSs exhibit good performance to kill cancer cells and inhibit tumor growth in mice, demonstrating a promising potential as new CDT reagent.
Collapse
Affiliation(s)
- Jian Yang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, P. R. China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P. R. China
| | - Le Fang
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, P. R. China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P. R. China
| | - Ruibin Jiang
- Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) Hangzhou, Zhejiang, 310022, P. R. China
| | - Lubin Qi
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P. R. China
| | - Yating Xiao
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, P. R. China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P. R. China
| | - Wenxi Wang
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P. R. China
| | - Ismail Ismail
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P. R. China
| | - Xiaohong Fang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, P. R. China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P. R. China
- Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) Hangzhou, Zhejiang, 310022, P. R. China
| |
Collapse
|
8
|
Qian L, Peng Q, Jiang N, Qiao C, Yue W. Peroxidase-mimicking poly-L-lysine/alginate microspheres with PtS 2 nanoparticles for image-based colorimetric assays. Mikrochim Acta 2023; 190:300. [PMID: 37462758 DOI: 10.1007/s00604-023-05876-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/15/2023] [Indexed: 07/21/2023]
Abstract
Morphologically controllable ALG@ε-PL water-in-water microspheres were successfully prepared using a two-step method through precise control of the two-phase flow rate. Through further interfacial coagulation, the ALG@ε-PL microspheres possess a dense surface structure and good permeability. The sensor based on PtS2@ALG@ε-PL microspheres was constructed by encapsulating PtS2 nanosheets with peroxidase-like properties in ALG@ε-PL water-in-water microspheres. PtS2 nanosheets catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2 to produce blue oxTMB. The strong reducing property of the model analyte dopamine (DA) can reduce oxTMB, thus causing the blue color to fade and successfully achieving colorimetric detection of DA. The linear range of the assay is 2.0-200 μM, and the detection limit is 0.22 μM. The recoveries of DA in serum samples were determined by the spik method, and the results were reproducible.
Collapse
Affiliation(s)
- Ling Qian
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing, 211198, People's Republic of China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing, 211198, People's Republic of China
| | - Qiang Peng
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing, 211198, People's Republic of China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing, 211198, People's Republic of China
| | - Nian Jiang
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing, 211198, People's Republic of China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing, 211198, People's Republic of China
| | - CaiRong Qiao
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing, 211198, People's Republic of China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing, 211198, People's Republic of China
| | - Wanqing Yue
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing, 211198, People's Republic of China.
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
9
|
Jiang N, Qian L, Peng Q, Zhang S, Yue W. Fluorescent sensor based on PtS 2-PEG nanosheets with peroxidase-like activity for intracellular hydrogen peroxide detection and imaging. Anal Chim Acta 2023; 1259:341179. [PMID: 37100474 DOI: 10.1016/j.aca.2023.341179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/25/2023] [Accepted: 04/05/2023] [Indexed: 04/28/2023]
Abstract
Hydrogen peroxide (H2O2) is produced in living organisms and is involved in a variety of redox-regulated processes. Therefore, the detection of H2O2 is important for tracing the molecular mechanisms of some biological events. Here, we demonstrated for the first time the peroxidase activity of PtS2-PEG NSs under the physiological conditions. PtS2 NSs were synthesized by mechanical exfoliation followed by functionalization with polyethylene glycol amines (PEG-NH2) to improve their biocompatibility and physiological stability. Fluorescence was generated by catalyzing the oxidation of o-phenylenediamine (OPD) by H2O2 in the presence of the PtS2 NSs. The proposed sensor had a limit of detection (LOD) of 248 nM and a detection range of 0.5-50 μM in the solution state, which was better than or comparable to previous reports in the literature. The developed sensor was further applied for the detection of H2O2 released from cells as well as for imaging studies. The results show that the sensor is promising for future applications in clinical analysis and pathophysiology.
Collapse
Affiliation(s)
- Nian Jiang
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing, 211198, PR China
| | - Ling Qian
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing, 211198, PR China
| | - Qiang Peng
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing, 211198, PR China
| | - Shuqi Zhang
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing, 211198, PR China
| | - Wanqing Yue
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing, 211198, PR China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing, 211198, PR China.
| |
Collapse
|
10
|
Wang Q, Sun D, Ma X, Huang R, Xu J, Xu X, Cai L, Xu L. Surface enhanced Raman scattering active substrate based on hydrogel microspheres for pretreatment-free detection of glucose in biological samples. Talanta 2023; 260:124657. [PMID: 37187030 DOI: 10.1016/j.talanta.2023.124657] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
Determining glucose in biological samples is tedious and time-consuming due to sample pretreatment. The sample is usually pretreated to remove lipids, proteins, hemocytes and other sugars that interfere with glucose detection. A surface-enhanced Raman scattering (SERS) active substrate based on hydrogel microspheres has been developed to detect glucose in biological samples. Due to the specific catalytic action of glucose oxidase (GOX), the high selectivity of detection is guaranteed. The hydrogel substrate prepared by microfluidic droplets technology protects the silver nanoparticles from the surrounding environment and improves the stability and reproducibility of the assay. In addition, the hydrogel microspheres have size-adjustable pores that selectively allow small molecules to pass through. The pores block the entry of large molecules, such as impurities, enabling glucose detection through glucose oxidase etching without sample pretreatment. This hydrogel microsphere-SERS platform is highly sensitive and enables reproducible detection of different glucose concentrations in biological samples. The use of SERS to detect glucose provides clinicians with new diagnostic methods for diabetes and a new application opportunity for SERS-based molecular detection techniques.
Collapse
Affiliation(s)
- Qin Wang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, 226001, China; Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Dan Sun
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, 226001, China
| | - Xiaofei Ma
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Rongrong Huang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jinqiu Xu
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Xin Xu
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Liangliang Cai
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Lixing Xu
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, 226001, China.
| |
Collapse
|
11
|
Mirzaei Y, Gholami A, Sheini A, Bordbar MM. An origami-based colorimetric sensor for detection of hydrogen peroxide and glucose using sericin capped silver nanoparticles. Sci Rep 2023; 13:7064. [PMID: 37127668 PMCID: PMC10151347 DOI: 10.1038/s41598-023-34299-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023] Open
Abstract
The hydrogen peroxide (H2O2) measurement is considered highly important in industrial wastewater quality assessment, environmental protection, and disease detection. Here, a simple high-performance paper-based sensor is proposed for rapid and in situ detection of H2O2. To this end, 3,3',5,5'-tetramethylbenzidine is embedded in the sensor to act as a color indicator, whose reaction with hydrogen peroxide is catalyzed by a silver nanozyme modified by sericin. The result of the reaction clarified by the appearance of blue color in the sensor detection zone is received by a portable scanner, while also calculating its intensity by image analysis software. This method is sensitive to hydrogen peroxide in the concentration range of 0.5‒240 mg/dL, providing a detection limit of 0.15 mg/dL. The ability of the sensor to determine glucose is also evaluated by adding a layer containing glucose oxidase enzyme to the sensor structure. A desirable response is obtained in the range of 1.0‒160 mg/dL, together with a detection limit of 0.37 mg/dL. Accordingly, the proposed sensor shows satisfactory results compared to clinical methods for monitoring the amount of glucose in biological samples such as serum and saliva.
Collapse
Affiliation(s)
- Younes Mirzaei
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, 87317-51167, Iran
| | - Ali Gholami
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, 87317-51167, Iran.
| | - Azarmidokht Sheini
- Department of Mechanical Engineering, Shohadaye Hoveizeh Campus of Technology, Shahid Chamran University of Ahvaz, Dashte Azadegan, Ahvaz, Khuzestan, Iran
| | | |
Collapse
|
12
|
Bifunctional nanoprobe for dual-mode detection based on blue emissive iron and nitrogen co-doped carbon dots as a peroxidase-mimic platform. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Chi Z, Wang Q, Gu J. Recent advances in colorimetric sensors based on nanozymes with peroxidase-like activity. Analyst 2023; 148:487-506. [PMID: 36484756 DOI: 10.1039/d2an01850k] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Nanozymes have been widely used to construct colorimetric sensors due to their advantages of cost-effectiveness, high stability, good biocompatibility, and ease of modification. The emergence of nanozymes greatly enhanced the detection sensitivity and stability of the colorimetric sensing platform. Recent significant research has focused on designing various sensors based on nanozymes with peroxidase-like activity for colorimetric analysis. However, with the deepening of research, nanozymes with peroxidase-like activity has also exposed some problems, such as weak affinity and low catalytic activity. In view of the above issues, existing investigations have shown that the catalytic properties of nanozymes can be improved by adding surface modification and changing the structure of nanomaterials. In this review, we summarize the recent trends and advances of colorimetric sensors based on several typical nanozymes with peroxidase-like activities, including noble metals, metal oxides, metal sulfides/metal selenides, and carbon and metal-organic frameworks (MOF). Finally, the current challenges and prospects of colorimetric sensors based on nanozymes with peroxidase-like activity are summarized and discussed to provide a reference for researchers in related fields.
Collapse
Affiliation(s)
- Zhongmei Chi
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning Province, 121013, P. R. China.
| | - Qiong Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning Province, 121013, P. R. China.
| | - Jiali Gu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning Province, 121013, P. R. China.
| |
Collapse
|
14
|
Jeon HJ, Kim HS, Chung E, Lee DY. Nanozyme-based colorimetric biosensor with a systemic quantification algorithm for noninvasive glucose monitoring. Theranostics 2022; 12:6308-6338. [PMID: 36168630 PMCID: PMC9475463 DOI: 10.7150/thno.72152] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/20/2022] [Indexed: 11/10/2022] Open
Abstract
Diabetes mellitus accompanies an abnormally high glucose level in the bloodstream. Early diagnosis and proper glycemic management of blood glucose are essential to prevent further progression and complications. Biosensor-based colorimetric detection has progressed and shown potential in portable and inexpensive daily assessment of glucose levels because of its simplicity, low-cost, and convenient operation without sophisticated instrumentation. Colorimetric glucose biosensors commonly use natural enzymes that recognize glucose and chromophores that detect enzymatic reaction products. However, many natural enzymes have inherent defects, limiting their extensive application. Recently, nanozyme-based colorimetric detection has drawn attention due to its merits including high sensitivity, stability under strict reaction conditions, flexible structural design with low-cost materials, and adjustable catalytic activities. This review discusses various nanozyme materials, colorimetric analytic methods and mechanisms, recent machine learning based analytic methods, quantification systems, applications and future directions for monitoring and managing diabetes.
Collapse
Affiliation(s)
- Hee-Jae Jeon
- Weldon School of Biomedical Engineering, Purdue University, Indiana 47906, USA
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyung Shik Kim
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- AI Graduate School, GIST, Gwangju 61005, Republic of Korea
- Research Center for Photon Science Technology, GIST, Gwangju 61005, Republic of Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, Republic of Korea
- Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, Seoul 04763, Republic of Korea
- Elixir Pharmatech Inc., Seoul 07463, Republic of Korea
| |
Collapse
|
15
|
Tan B, Zhang S, Wang K, Yan Y, Chu Z, Wang Q, Li X, Zhu G, Fan J, Zhao H. Moisture-resistant and green cyclodextrin metal-organic framework nanozyme based on cross-linkage for visible detection of cellular hydrogen peroxide. Mikrochim Acta 2022; 189:295. [PMID: 35882703 DOI: 10.1007/s00604-022-05389-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/19/2022] [Indexed: 11/28/2022]
Abstract
A moisture-resistant and green cyclodextrin metal-organic framework (CD-MOF) nanosheet has been prepared via an one-pot antisolvent synthesis procedure. After the treatment of in situ chemical cross-linkage, the two-dimensional (2D) cross-linked CD-MOF exhibited both peroxidase (POD) and oxidase (OXD) enzymatic activities, as well as hydrolytic stability. On the basis of its POD mimics function, the proof-of-concept biosensors were constructed to realize the colorimetric detection for H2O2 and glucose, respectively. In vitro cytotoxicity experiments showed that the 2D cross-linked CD-MOF nanozymes still maintained excellent biocompatibility even at a concentration reaching up to several mg/mL. The in situ colorimetric detection of H2O2 secreted by HepG2 cells further confirmed its promising biocompatibility, showing its great promises as label-free colorimetric probe in early cancer detection and pathological process monitoring.
Collapse
Affiliation(s)
- Bing Tan
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, International Joint Laboratory On Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China.
| | - Shasha Zhang
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, International Joint Laboratory On Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Kemeng Wang
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, International Joint Laboratory On Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Yingli Yan
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, International Joint Laboratory On Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Zhili Chu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453007, People's Republic of China
| | - Qiwen Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Xiang Li
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, International Joint Laboratory On Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Guifen Zhu
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, International Joint Laboratory On Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Jing Fan
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, International Joint Laboratory On Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Huimin Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, People's Republic of China.
| |
Collapse
|
16
|
Li G, Xue Y, Wang C, Li X, Li S, Huang Y, Zhou Z. Persimmon Tannin-Reduction Graphene Oxide-Platinum-Palladium Nanocomposite Decorated on Screen-Printed Carbon Electrode for Enhanced Electrocatalytic Reduction of Hydrogen Peroxide. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
According to studies, Hydrogen peroxide (H2O2) is a significant biomarker of physiological processes. Unnormal H2O2 levels in human body may result in diseases. Hence, there is an increasing demand for monitoring the H2O2
concentrations in biological specimen. Here, we construct a non-enzymatic H2O2 electrochemical biosensor based on persimmon tannin-reduced graphene oxide-platinum-palladium nanocomposite (PrG-Pt@Pd NPs) modified with screen-printed carbon electrode (SPE). Combined with
suitable electrocatalytic mode for Pt@Pd NPs, high specific large specific volume and good electrical conductivity of RGO, well as the superior sorption capacity of PT for metal-based nano-ion, the PrGPt@Pd striped pleasing heterogeneous catalytic activity toward H2O2
reduction via the synergistic effect. In experimental conditions of optimal, this non-enzymatic electrochemical sensor exhibited excellent electrocatalytic performance for H2O2 with less negative potential (−0.5 V), fast response time (<3 s), it shows good linearity
in the range of 5.0–100.0 μM, in addition to this LOD of this sensor was 0.059 μM as well as the excellent sensitivity of the sensor (13.696 μA·μM−1·cm−2). Due to excellent specificity, lower detection
limit, and good recovery (98.70–99.96%) in the spiked measurements of human serum samples, this non-enzymatic electrochemical biosensor paves the way for H2O2 detection at ultra-low concentrations in physiology and diagnosis.
Collapse
Affiliation(s)
- Guiyin Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, People’s Republic of China
| | - Yewei Xue
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People’s Republic of China
| | - Chaoxian Wang
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, People’s Republic of China
| | - Xinhao Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People’s Republic of China
| | - Shengnan Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People’s Republic of China
| | - Yong Huang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy,
Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Zhide Zhou
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People’s Republic of China
| |
Collapse
|
17
|
Tan J, Geng W, Li J, Wang Z, Zhu S, Wang X. Colorimetric and Fluorescence Dual-Mode Biosensors Based on Peroxidase-Like Activity of the Co3O4 Nanosheets. Front Chem 2022; 10:871013. [PMID: 35480390 PMCID: PMC9037028 DOI: 10.3389/fchem.2022.871013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/09/2022] [Indexed: 11/20/2022] Open
Abstract
The mimic enzyme has become a research hotspot in recent years because of its advantages of high stability, convenient preparation, and low price. In this article, Co3O4 nanosheets synthesized by a simple hydrothermal method possess the characteristics of a peroxidase-like activity. The results demonstrated that 3,3′,5,5′-Tetramethylbenzidine (TMB) could be oxidized by H2O2 to produce a typical blue product (oxTMB) which has a strong absorption at 650 nm wavelength with the help of the Co3O4 nanosheets. Thus, a simple and sensitive colorimetric detection method for H2O2 was established with a good linear relationship (2–200 μM) and a low limit of detection (0.4 μM). Meanwhile, the colorimetric product can effectively quench the fluorescence emitted by Ru(bpy)32+. Therefore, a colorimetric and fluorescence dual detection mode photochemical sensor for H2O2 detection is constructed based on the principle of the inner filter effect (IFE) between the colorimetric product (oxTMB) and Ru(bpy)32+. It can effectively avoid the false positive problem of a single detection mode. In the presence of glucose oxidase, glucose can be catalyzed to produce gluconic acid and H2O2; therefore, the sensor can also be used for the determination of glucose with a good linear relationship (0.02–2 μM) and a low limit of detection (5 nM). Experimental results showed that the sensor has a high sensitivity and strong anti-interference ability which can be used for the detection of actual samples.
Collapse
Affiliation(s)
- Jingying Tan
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | - Weifu Geng
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Junde Li
- Hospital of Qingdao Agricultural University, Qingdao Agricultural University, Qingdao, China
| | - Zhen Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shaohao Zhu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xiuzhong Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Xiuzhong Wang,
| |
Collapse
|