1
|
Rajkumar C, Veerakumar P, Nkenyereye L, Tamtam MR, Chung WY, Shim J. Carbon spheres anchored on sulfur-doped nanosheet/nanowire g-C3N4 isotype heterojunctions as a metal‑free hybrid electrode for voltammetric determination of antioxidant. Microchem J 2024; 204:110961. [DOI: 10.1016/j.microc.2024.110961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Yan B, Dai Y, Xin L, Li M, Zhang H, Long H, Gao X. Research progress in the degradation of printing and dyeing wastewater using chitosan based composite photocatalytic materials. Int J Biol Macromol 2024; 263:130082. [PMID: 38423910 DOI: 10.1016/j.ijbiomac.2024.130082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/28/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
The surge in economic growth has spurred the expansion of the textile industry, resulting in a continuous rise in the discharge of printing and dyeing wastewater. In contrast, the photocatalytic method harnesses light energy to degrade pollutants, boasting low energy consumption and high efficiency. Nevertheless, traditional photocatalysts suffer from limited light responsiveness, inadequate adsorption capabilities, susceptibility to agglomeration, and hydrophilicity, thereby curtailing their practical utility. Consequently, integrating appropriate carriers with traditional photocatalysts becomes imperative. The combination of chitosan and semiconductor materials stands out by reducing band gap energy, augmenting reactive sites, mitigating carrier recombination, bolstering structural stability, and notably advancing the photocatalytic degradation of printing and dyeing wastewater. This study embarks on an exploration by initially elucidating the technical principles, merits, and demerits of prevailing printing and dyeing wastewater treatment methodologies, with a focal emphasis on the photocatalytic approach. It delineates the constraints encountered by traditional photocatalysts in practical scenarios. Subsequently, it comprehensively encapsulates the research advancements and elucidates the reaction mechanisms underlying chitosan based composite materials employed in treating printing and dyeing wastewater. Finally, this work casts a forward-looking perspective on the future research trajectory of chitosan based photocatalysts, particularly in the realm of industrial applications.
Collapse
Affiliation(s)
- Boting Yan
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Anhui University of Technology, Ministry of Education, Maanshan, Anhui 243002, China; School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China
| | - Yiming Dai
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Anhui University of Technology, Ministry of Education, Maanshan, Anhui 243002, China; School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China
| | - Lili Xin
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Anhui University of Technology, Ministry of Education, Maanshan, Anhui 243002, China
| | - Mingyang Li
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Anhui University of Technology, Ministry of Education, Maanshan, Anhui 243002, China; School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China
| | - Hao Zhang
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Anhui University of Technology, Ministry of Education, Maanshan, Anhui 243002, China; School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China
| | - Hongming Long
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Anhui University of Technology, Ministry of Education, Maanshan, Anhui 243002, China; School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China
| | - Xiangpeng Gao
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Anhui University of Technology, Ministry of Education, Maanshan, Anhui 243002, China; School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China.
| |
Collapse
|
3
|
Wahyuni WT, Putra BR, Rahman HA, Anindya W, Hardi J, Rustami E, Ahmad SN. Electrochemical Sensors based on Gold-Silver Core-Shell Nanoparticles Combined with a Graphene/PEDOT:PSS Composite Modified Glassy Carbon Electrode for Paraoxon-ethyl Detection. ACS OMEGA 2024; 9:2896-2910. [PMID: 38250352 PMCID: PMC10795144 DOI: 10.1021/acsomega.3c08349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
Herein, a nonenzymatic detection of paraoxon-ethyl was developed by modifying a glassy carbon electrode (GCE) with gold-silver core-shell (Au-Ag) nanoparticles combined with the composite of graphene with poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS). These core-shell nanoparticles (Au-Ag) were synthesized using a seed-growth method and characterized using UV-vis spectroscopy and high-resolution transmission electron microscopy (HR-TEM) techniques. Meanwhile, the structural properties, surface morphology and topography, and electrochemical characterization of the composite of Au-Ag core-shell/graphene/PEDOT:PSS were analyzed using infrared spectroscopy, field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), and electrochemical impedance spectroscopy (EIS) techniques. Moreover, the proposed sensor for paraoxon-ethyl detection based on Au-Ag core-shell/graphene/PEDOT:PSS modified GCE demonstrates good electrochemical and electroanalytical performance when investigated with cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry techniques. It was found that the synergistic effect between Au-Ag core-shell nanoparticles and the composite of graphene/PEDOT:PSS provides a higher conductivity and enhanced electrocatalytic activity for paraoxon-ethyl detection at an optimum pH of 7. At pH 7, the proposed sensor for paraoxon-ethyl detection shows a linear range of concentrations from 0.2 to 100 μM with a limit of detection of 10 nM and high sensitivity of 3.24 μA μM-1 cm-2. In addition, the proposed sensor for paraoxon-ethyl confirmed good reproducibility, with the possibility of being further developed as a disposable electrode. This sensor also displayed good selectivity in the presence of several interfering species such as diazinon, carbaryl, ascorbic acid, glucose, nitrite, sodium bicarbonate, and magnesium sulfate. For practical applications, this proposed sensor was employed for the determination of paraoxon-ethyl in real samples (fruits and vegetables) and showed no significant difference from the standard spectrophotometric technique. In conclusion, this proposed sensor might have a potential to be developed as a platform of electrochemical sensors for pesticide detection.
Collapse
Affiliation(s)
- Wulan Tri Wahyuni
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, 16680Bogor,Indonesia
- Tropical
Biopharma Research Center, Institute of Research and Community Empowerment, IPB University, 16680 Bogor,Indonesia
| | - Budi Riza Putra
- Research
Center for Metallurgy, National Research and Innovation Agency, South Tangerang 15315, Banten, Indonesia
| | - Hemas Arif Rahman
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, 16680Bogor,Indonesia
| | - Weni Anindya
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, 16680Bogor,Indonesia
| | - Jaya Hardi
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, Tadulako University, 94148 Kota Palu,Indonesia
| | - Erus Rustami
- Department
of Physics, Faculty of Mathematics and Natural Sciences, IPB University, 16680 Bogor,Indonesia
| | - Shahrul Nizam Ahmad
- School
of
Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Malaysia
| |
Collapse
|
4
|
Liquid crystal-based sensor for real-time detection of paraoxon pesticides based on acetylcholinesterase enzyme inhibition. Mikrochim Acta 2023; 190:122. [PMID: 36890280 DOI: 10.1007/s00604-023-05716-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/22/2023] [Indexed: 03/10/2023]
Abstract
A liquid crystal-based assay (LC) was developed to monitor paraoxon by incorporating a Cu2+ -coated substrate and the inhibitory effect of paraoxon with acetylcholinesterase (AChE). We observed that thiocholine (TCh), a hydrolysate of AChE and acetylthiocholine (ATCh), interfered with the alignment of 5CB films through a reaction between Cu2+ ions and the thiol moiety of TCh. The catalytic activity of AChE was inhibited in the presence of paraoxon due to the irreversible interaction between TCh and paraoxon; consequently, no TCh molecule was available to interact with Cu2+ on the surface. This resulted in a homeotropic alignment of the liquid crystal. The proposed sensor platform sensitively quantified paraoxon with a detection limit of 2.20 ± 0.11 (n = 3) nM within a range of 6 to 500 nM. The specificity and reliability of the assay were verified by measuring paraoxon in the presence of various suspected interfering substances and spiked samples. As a result, the sensor based on LC can potentially be used as a screening tool for accurate evaluation of paraoxon and other organophosphorus compounds.
Collapse
|
5
|
Thakur D, Pandey CM, Kumar D. Graphitic Carbon Nitride-Wrapped Metal-free PoPD-Based Biosensor for Xanthine Detection. ACS OMEGA 2023; 8:2328-2336. [PMID: 36687095 PMCID: PMC9851023 DOI: 10.1021/acsomega.2c06727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
A metal-free, enzymatic biosensor was developed using graphitic carbon nitride (g-C3N4)-wrapped poly-ortho-phenylenediamine (PoPD) for the determination of xanthine (Xn). Field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction confirmed the successful formation of the PoPD, g-C3N4 nanosheets and PoPD@g-C3N4 nanocomposite. Furthermore, the electrochemical behavior of the biosensor was characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The prepared enzyme electrode exhibited maximum response at pH 7.5 with a response time of 5 s, and its sensitivity was 5.798 μAM-1. The nanocomposite shows exceptional sensing capabilities for detecting Xn, having a wide linear range from 1 nM to 1 μM with a relatively low detection limit of 0.001 nM. The biosensor shows good stability (4 weeks) and reproducibility and can detect the presence of Xn from other interfering analytes. Validation of the biosensor with real samples obtained from Rohu (Labeo rohita) fish shows that the fabricated biosensor has the requisite potential to be used for Xn detection in meat samples.
Collapse
Affiliation(s)
- Deeksha Thakur
- Department
of Applied Chemistry, Delhi Technological
University, Delhi110042, India
| | - Chandra Mouli Pandey
- Department
of Chemistry, Faculty of Science, SGT University, Gurugram122505Haryana, India
| | - Devendra Kumar
- Department
of Applied Chemistry, Delhi Technological
University, Delhi110042, India
| |
Collapse
|
6
|
Picomolar, Electrochemical Detection of Paraoxon Ethyl, by Strongly Coordinated NiCo2O4-SWCNT Composite as an Electrode Material. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Hasanpour M, Pardakhty A, Tajik S. The development of disposable electrochemical sensor based on MoSe 2-rGO nanocomposite modified screen printed carbon electrode for amitriptyline determination in the presence of carbamazepine, application in biological and water samples. CHEMOSPHERE 2022; 308:136336. [PMID: 36088965 DOI: 10.1016/j.chemosphere.2022.136336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The present attempt developed a simple sensing system based on the modification of screen-printed carbon electrode (SPCE) with MoSe2/reduced graphene oxide (rGO) nanocomposite (MoSe2-rGO/SPCE) to voltammetrically co-detect amitriptyline and carbamazepine. Different techniques such as field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) were employed to characterize MoSe2-rGO nanocomposite morphology and structure. Moreover, chronoamperometry, differential pulse voltammetry (DPV) and linear sweep voltammetry (LSV) were utilized to explore the electrochemical oxidation of amitriptyline. Data revealed a great current sensitivity for the MoSe2-rGO/SPCE towards amitriptyline. The peak currents of amitriptyline oxidation on the MoSe2-rGO/SPCE had linear dynamic range (0.02-380.0 μM) and a narrow limit of detection (0.007 μM). The MoSe2-rGO/SPCE was successful in sensing carbamazepine and amitriptyline in real specimens, with appreciable recovery rates.
Collapse
Affiliation(s)
- Matineh Hasanpour
- Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, P.O. Box: 76175-493, 76169-11319, Kerman, Iran.
| | - Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
8
|
Kalidasan K, Mallapur S, Vishwa P, Kandaiah S. Type II NdWO 3/g-C 3N 4n– n Heterojunction for Visible-Light-Driven Photocatalyst: Exploration of Charge Transfer in Nd 3+ Ion-Doped WO 3/g-C 3N 4 Composite. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kavya Kalidasan
- Department of Chemistry, REVA University, Kattigenahalli, Yelahanka, Bangalore560064, India
| | - Srinivas Mallapur
- Department of Chemistry, REVA University, Kattigenahalli, Yelahanka, Bangalore560064, India
| | - Prashanth Vishwa
- Department of Chemistry, REVA University, Kattigenahalli, Yelahanka, Bangalore560064, India
| | - Sakthivel Kandaiah
- Department of Chemistry, REVA University, Kattigenahalli, Yelahanka, Bangalore560064, India
| |
Collapse
|
9
|
Recent advances in the use of graphitic carbon nitride-based composites for the electrochemical detection of hazardous contaminants. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Three-dimensional manganese cobaltate: a highly conductive electrocatalyst for paraoxon-ethyl detection. Mikrochim Acta 2022; 189:315. [PMID: 35927374 DOI: 10.1007/s00604-022-05416-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/10/2022] [Indexed: 10/16/2022]
Abstract
The synthesis of manganese cobaltate (MnCo2O4) with the hybrid three-dimensional architecture has been developed as an electrocatalyst for the electrochemical sensing of paraoxon-ethyl (PEL). The detailed physicochemical and structural characterization of MnCo2O4 is meticulously examined. The MnCo2O4-modified screen-printed carbon electrode (SPCE) exhibits good electrocatalytic activity for the reduction of PEL compared with the bare SPCE due to numerous unique properties. By profiting from these advantages, the proposed MnCo2O4/SPCE shows superior sensing performance toward the determination of PEL, including low cathodic peak potential (- 0.64 V), wide detection range (0.015-435 µM), low limit of detection (0.002 µM), high detection sensitivity (2.30 µA µM-1 cm-2), excellent selectivity, and good reproducibility. Notably, the electrochemical performance of the MnCo2O4-based electrocatalyst is superior to those previously reported in the literatures. The practical application of the MnCo2O4/SPCE is effectively assessed in the analysis of food and water samples with satisfied recoveries of 96.00-99.35%. The superior performance of the proposed MnCo2O4 electrocatalyst holds considerable potential for future development of electrochemical sensing platforms.
Collapse
|
11
|
Highly sensitive electrochemical detection of paraoxon ethyl in water and fruit samples based on defect-engineered graphene nanoribbons modified electrode. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01366-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|