1
|
Mu J, Li X, Jia Q. Anchoring Au nanoclusters into coordination polymers: A novel approach toward ATP detection and its application. Talanta 2024; 277:126306. [PMID: 38795592 DOI: 10.1016/j.talanta.2024.126306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Adenosine triphosphate (ATP) is the main source of energy required for all life activities and is used as a biomarker for diseases such as cancer. It is of great significance to design a novel fluorescent probe with favorable performance for monitoring the changes of ATP concentration. Herein, a fluorescence probe named ZnCPs@AuNCs for ATP sensing was designed and fabricated by integrating AuNCs into ZnCPs. The emission intensity of AuNCs was greatly enhanced upon the formation of the ZnCPs@AuNCs nanocomposites, which may be attributed to ZnCPs restricting the molecular motion of AuNCs. Upon the introduction of ATP, the fluorescence intensity at 564 nm of ZnCPs@AuNCs is quenched. According to this phenomenon, a sensitive and reliable ATP sensing platform was established. Moreover, ZnCPs@AuNCs were incorporated into a poly (vinyl alcohol) matrix for the fabrication of fluorescent film, which exhibited solid-state fluorescence. Inspired by the remarkable fluorescent properties of ZnCPs@AuNCs, the fluorescent hydrogel was prepared by mixing ZnCPs@AuNCs with κ-carrageenan, which demonstrated a response to ATP and favorable self-healing ability. This work presents a perspective of ZnCPs@AuNCs in multiple applications such as biosensing, fluorescent film, and hydrogel construction.
Collapse
Affiliation(s)
- Jin Mu
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiqian Li
- Obstetrics & Gynecology, China-Japan Union Hospital of Jilin University, Changchun, 130012, China
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
2
|
Chen LG, Li J, Sun L, Wang HB. Ratiometric fluorometric assay triggered by alkaline phosphatase: Proof-of-concept toward a split-type biosensing strategy for DNA detection. Talanta 2024; 271:125703. [PMID: 38271841 DOI: 10.1016/j.talanta.2024.125703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Herein, a sensitive ratiometric and split-type fluorescent sensing platform has been constructed for DNA detection based on one signal precursor and two fluorescent signal indicators. In this assay, o-phenylenediamine (OPD) was selected as the signal precursor. On one hand, Cu2+ can oxidize OPD to produce 2, 3-diaminophenazine (DAP), which with an emission peak at 555 nm. On the other hand, ascorbic acid (AA) could react with Cu2+ to generate dehydroascorbic acid (DHAA), which could further react with OPD to form 3-(1, 2-dihydroxy ethyl)furo[3, 4-b]quinoxalin-1 (3H)-on (DFQ) with a strong emission peak at 420 nm. As a result, the formation of DAP was inhibited, and leading to the decrease of fluorescence intensity at 555 nm. Alkaline phosphatase (ALP) could catalyze the substrate l-ascorbic acid-2-phosphate (AA2P) to produce AA in situ. Inspired by the successful use of ALP as a biocatalytic marker in bioassay, a split-type ratiometric fluorescent assay has been designed for DNA detection by using H1N1 DNA as the target model. It was realized for ratiometric fluorescent determination of H1N1 in a linear ranging from 50 pM to 1.5 nM with a limit of detection of 10 pM. The novel strategy could reduce the mutual interferences between the biomolecular recognition system and the fluorescence signal conversion system, which improving the accuracy of detection and effectively reducing the background signal. Furthermore, the strategy provided a promising platform for biomarkers detection in the fields of ratiometric fluorescent biosensors and bioanalysis.
Collapse
Affiliation(s)
- Lin-Ge Chen
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, PR China
| | - Jiajun Li
- CNOOC Tianjin Research and Design Institute of Chemical Industry, Tianjin, 300131, PR China
| | - Lu Sun
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, PR China
| | - Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, PR China.
| |
Collapse
|
3
|
Liu L, Chang Y, Lou J, Zhang S, Yi X. Overview on the Development of Alkaline-Phosphatase-Linked Optical Immunoassays. Molecules 2023; 28:6565. [PMID: 37764341 PMCID: PMC10536125 DOI: 10.3390/molecules28186565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The drive to achieve ultrasensitive target detection with exceptional efficiency and accuracy requires the advancement of immunoassays. Optical immunoassays have demonstrated significant potential in clinical diagnosis, food safety, environmental protection, and other fields. Through the innovative and feasible combination of enzyme catalysis and optical immunoassays, notable progress has been made in enhancing analytical performances. Among the kinds of reporter enzymes, alkaline phosphatase (ALP) stands out due to its high catalytic activity, elevated turnover number, and broad substrate specificity, rendering it an excellent candidate for the development of various immunoassays. This review provides a systematic evaluation of the advancements in optical immunoassays by employing ALP as the signal label, encompassing fluorescence, colorimetry, chemiluminescence, and surface-enhanced Raman scattering. Particular emphasis is placed on the fundamental signal amplification strategies employed in ALP-linked immunoassays. Furthermore, this work briefly discusses the proposed solutions and challenges that need to be addressed to further enhance the performances of ALP-linked immunoassays.
Collapse
Affiliation(s)
- Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Jiaxin Lou
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Shuo Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
4
|
Ding Y, Lin T, Shen J, Wei Y, Wang C. In situ reaction-based ratiometric fluorescent assay for alkaline phosphatase activity and bioimaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121698. [PMID: 35940067 DOI: 10.1016/j.saa.2022.121698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/27/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Alkaline phosphatase (ALP) is an important biomarker, it is of great significance to develop a sensitive and efficient analytical method for ALP. In this study, an in situ reaction based ratiometric fluorescence assay for ALP was proposed. l-ascorbic acid-2-phosphate (AA2P) was used as a substrate for ALP, and Cu2+/o-phenylenediamine (OPD) were involved in this system. Cu2+ can oxidize OPD to 2,3-diaminophenazine (OPDox) with an emission centered at 566 nm. The presence of ALP can catalyze the hydrolysis of AA2P to ascorbic acid (AA), which will inhibit the production of OPDox and reduce the corresponding fluorescence intensity, and AA will react with OPD to generate 3-(dihydroxyethyl)furan[3,4-b]quinoxalin-1-one (DFQ) with an emission peak at 447 nm. The fluorescence ratio of F447/F566 has a linear relationship with ALP activity. The proposed method is highly sensitive, finely selective, cost efficiency and easy to operate, it exhibits good linearity in the range of 0.5-22 and 22-40 mU·mL-1, with a detection limit as low as 0.06 mU·mL-1. The excellent applicability of this strategy in human serum samples and MCF-7 cells imaging suggests that this method has promising prospects for biomedical research.
Collapse
Affiliation(s)
- Yu Ding
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Tianxia Lin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Jiwei Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Chaozhan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China.
| |
Collapse
|
5
|
Wu S, Zhang X, Chen W, Zhang G, Zhang Q, Yang H, Zhou Y. Alkaline phosphatase triggered ratiometric fluorescence immunoassay for detection of zearalenone. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Li Y, Huang Z, Liu B, Huang ZZ, Yang H, Tan H. Portable hydrogel test kit integrated dual-emission coordination polymer nanocomposite for on-site detection of organophosphate pesticides. Biosens Bioelectron 2022; 220:114890. [DOI: 10.1016/j.bios.2022.114890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2022]
|
7
|
Kaur J, Mirgane HA, Bhosale SV, Singh PK. A cationic AIEgen and hexametaphosphate based simple and convenient fluorometric assay for alkaline phosphatase and its inhibitor. Org Biomol Chem 2022; 20:4599-4607. [PMID: 35603784 DOI: 10.1039/d2ob00367h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Alkaline phosphatase (ALP) is an important biomarker to diagnose a number of diseases, such as anaemia, hepatobiliary diseases, chronic nephritis, and hypothyroidism. Therefore, the development of simple and convenient assays to monitor levels of ALP is highly desirable. In the present study, an aggregation-induced emission based simple, real-time, and direct fluorescence detection platform has been developed, by using a tetracationic pyridinium derivative of tetraphenylethylene (TPy-TPE) and anionic sodium hexametaphosphate (HMP) as component units. The sensing system, based on the TPy-TPE-HMP assembly, is highly responsive to the ALP dependent disintegration of the TPy-TPE-HMP aggregation complex, owing to HMP digestion by ALP. The sensing platform has an ALP detection limit of 16 mU mL-1 and linear range of 0-742 mU mL-1, respectively. The enzyme kinetic parameters, Km and Vmax, have been evaluated. In addition, the potential applicability of the TPy-TPE-HMP sensing system has also been shown with diluted human serum samples. Moreover, the TPy-TPE-HMP probe system is also useful for screening inhibitors of ALP.
Collapse
Affiliation(s)
- Jasvir Kaur
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - Harshad A Mirgane
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa 403 206, India
| | - Sheshanath V Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa 403 206, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400085, India
| |
Collapse
|