1
|
Yang J, Wang X, Yu Y, Cao Y, Guo M, Hu X, Wang L, Lin B. Ratiometric fluorescence probe based on boric acid-modified carbon dots and alizarin red for sensitive and rapid detection of glyphosate. Mikrochim Acta 2024; 191:661. [PMID: 39387990 DOI: 10.1007/s00604-024-06748-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
By combining boric acid-modified carbon dots (p-CDs) and alizarin red (ARS), a double emission probe p-CDs@ARS with fluorescence at 410 nm and 600 nm is designed for the detection of glyphosate. When Cu2+ is added, it binds with ARS to cause ARS release from p-CDs@ARS, which decreases the fluorescence at 600 nm. However, in the presence of glyphosate, glyphosate competes to the binding of Cu2+, releasing ARS to bind with p-CDs again. Therefore, the fluorescence of 600 nm recovers. Based on this, the fluorescence of 410 nm and 600 nm act as the reference and response signal, respectively, achieving the ratiometric fluorescence detection of glyphosate. The linear range of glyphosate detection is 0.5-50 µM with a limit of detection at 0.37 µM which is well below the maximum residue limit for glyphosate in food. When the probe is used to detect the glyphosate residue in Pearl River water and cucumber, the detection results are well consistent with those detected by HPLC. The established method based on p-CDs@ARS has the advantages that the assembly of ratiometric fluorescence probe is simple, and the detection speed is fast. Additionally, a typical INHIBIT logical system has been successfully constructed based on glyphosate, Cu2+, and the fluorescence signal of p-CDs@ARS.
Collapse
Affiliation(s)
- Jingqi Yang
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Xinru Wang
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Ying Yu
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Yujuan Cao
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Manli Guo
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Xiaogang Hu
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Li Wang
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Bixia Lin
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
2
|
Wang Y, Shen J, Song R, Xu Q, Hu X, Shu Y. Highly bright and stable CsPbBr 3 perovskite nanocrystals with amphiphilic polymer binding based dual-readout lateral flow immunoassay for detection of carcinoembryonic antigen. Talanta 2024; 266:125017. [PMID: 37541002 DOI: 10.1016/j.talanta.2023.125017] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
Rapid and highly sensitive detection of tumor marker (TM) is critical for the early diagnosis and treatment of cancers. Herein, utilizing highly bright and water-stable CsPbBr3 perovskite nanocrystals (NCs) capped with amphiphilic polymer ligand of octylamine-modified polyacrylic acid (OPA) and gold nanoparticles (AuNPs) as reporters, a lateral flow immunoassay (LFIA) strip is developed for fluorescence and colorimetric dual-mode detection of carcinoembryonic antigen (CEA). The prepared CsPbBr3 NCs capped by an amphiphilic polymeric of OPA ligand showed high stability and bright fluorescence. Moreover, the AuNPs immunoprobes were captured with CEA antigen and quench the green fluorescence of CsPbBr3/OPA NCs on the T line due to the inner filter effect (IFE). Therefore, CEA could be quantitative analyzed by the dual-readout of fluorescence and colorimetric signal. The detection limits of CEA can reach as low as 0.023 ng/mL and 0.027 ng/mL for the fluorescence and colorimetric mode, respectively. Good specificity and reproducibility were also demonstrated for this method. Finally, the CsPbBr3/OPA NCs-based LFIA showed good accuracy in detection of CEA level from clinical serum samples. This work firstly enables the application of CsPbBr3 perovskite NCs in a LFIA, displaying great potential in point-of-care clinical diagnosis.
Collapse
Affiliation(s)
- Yan Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Jin Shen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Ruilong Song
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225002, PR China
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Yun Shu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China.
| |
Collapse
|
3
|
Gao L, Chen R, Li H, Xu D, Zheng D. Time-resolved fluorescence nanoprobe of acetylcholinesterase based on ZnGeO:Mn luminescence nanorod modified with metal ions. Anal Bioanal Chem 2023; 415:7047-7055. [PMID: 37889311 DOI: 10.1007/s00216-023-05007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
A novel time-resolved fluorescence nanoprobe (PBMO, PLNR-BSA-Mn2+-OPD) is fabricated for the label-free determination of acetylcholinesterase (AChE). The ZnGeO:Mn persistent luminescence nanorod (PLNR) and Mn(II) are, respectively, exploited as the signal molecule and quencher to construct the PBMO nanopobe using bovine serum albumin (BSA) as the surface-modified shell and o-phenylenediamine (OPD) as the reducing agent. In the presence of H2O2, the persistent luminescence of PBMO at 530 nm is enhanced remarkably within 30 s due to the oxidation of Mn(II). H2O2 can react with thiocholine (TCh), which is produced through the enzymatic degradation of acetylcholine (ATCh) by AChE. The PBMO nanoprobe is successfully applied to the determination of AChE in the linear range of 0.08-10 U L-1, with a detection limit of 0.03 U L-1 (3σ/s). The practicability of this PBMO nanoprobe is confirmed by accurately monitoring AChE contents in human serum samples, giving rise to satisfactory spiking recoveries of 96.2-103.6%.
Collapse
Affiliation(s)
- Lifang Gao
- School of Pharmacy, Hainan Medical University, Haikou, 571199, China.
| | - Rong Chen
- School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Haixia Li
- School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Dan Xu
- School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Danning Zheng
- School of Pharmacy, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
4
|
Chen T, Qin Y, Wang B, Lai R, Tan G, Liu JW. Enzymatic reaction modulated DNA assembly on graphitic carbon nitride nanosheets for sensitive fluorescence detection of acetylcholinesterase activity and inhibition. Mikrochim Acta 2023; 190:268. [PMID: 37338607 DOI: 10.1007/s00604-023-05850-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/26/2023] [Indexed: 06/21/2023]
Abstract
A novel fluorescent strategy has been developed by using an enzymatic reaction modulated DNA assembly on graphitic carbon nitride nanosheets (CNNS) for the detection of acetylcholinesterase (AChE) activity and its inhibitors. The two-dimensional and ultrathin-layer CNNS-material was successfully synthesized through a chemical oxidation and ultrasound exfoliation method. Because of its excellent adsorption selectivity to ssDNA over dsDNA and superior quenching ability toward the fluorophore labels, CNNS were employed to construct a sensitive fluorescence sensing platform for the detection of AChE activity and inhibition. The detection was based on enzymatic reaction modulated DNA assembly on CNNS, which involved the specific AChE-catalyzed reaction-mediated DNA/Hg2+ conformational change and subsequent signal transduction and amplification via hybridization chain reaction (HCR). Under the excitation at 485 nm, the fluorescence signal from 500 to 650 nm (λmax = 518 nm) of the developed sensing system was gradually increased with increasing concentration of AChE. The quantitative determination range of AChE is from 0.02 to 1 mU/mL and the detection limit was 0.006 mU/mL. The developed strategy was successfully applied to the assay of AChE in human serum samples, and can also be used to effectively screen AChE inhibitors, showing great promise providing a robust and effective platform for AChE-related diagnosis, drug screening, and therapy.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Human Anatomy, Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, Guangxi Health Commission Key Laboratory of Basic Research on Brain Function and Disease, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Yingfeng Qin
- Key Laboratory of Biological Molecular Medicine Research (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, People's Republic of China.
| | - Beibei Wang
- Key Laboratory of Biological Molecular Medicine Research (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, People's Republic of China
| | - Rongji Lai
- Key Laboratory of Biological Molecular Medicine Research (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, People's Republic of China
| | - Guohe Tan
- Department of Human Anatomy, Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, Guangxi Health Commission Key Laboratory of Basic Research on Brain Function and Disease, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China.
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Nanning, 530021, Guangxi, People's Republic of China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, Nanning, 530021, Guangxi, People's Republic of China.
- China-ASEAN Research Center for Innovation and Development in Brain Science, Nanning, Nanning, 530021, People's Republic of China.
| | - Jin-Wen Liu
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Nanning, 530021, Guangxi, People's Republic of China.
- Key Laboratory of Biological Molecular Medicine Research (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
5
|
Jiang X, Liu X, Wu M, Ma Y, Xu X, Chen L, Niu N. Facile off-on fluorescence biosensing of human papillomavirus using DNA probe coupled with sunflower seed shells carbon dots. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|