Xue Y, Li Q, Wang Y, Shen H, Yu S. A magnetic nanozyme platform for bacterial colorimetric detection and chemodynamic/photothermal synergistic antibacterial therapy.
Mikrochim Acta 2024;
191:214. [PMID:
38512502 DOI:
10.1007/s00604-024-06270-y]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/19/2024] [Indexed: 03/23/2024]
Abstract
Rapid, convenient, and sensitive detection of bacteria and development of novel antibacterial materials are conducive to accurate treatment of bacterial infection and reducing the generation of drug-resistant bacteria caused by overuse of antibiotics. A dual-function magnetic nanozyme, Fc-MBL@rGO@Fe3O4, has been constructed with broad-spectrum bacterial affinity and good peroxidase-like activity. Detection signal amplification was realized in the presence of 3,3',5,5'-tetramethylbenzidine (TMB) with a detection limit of 26 CFU/mL. In addition, the excellent photothermal properties of Fc-MBL@rGO@Fe3O4 could realize synergistic chemodynamic/photothermal antibacterial therapy. Furthermore, the good bacterial affinity of Fc-MBL@rGO@Fe3O4 enhances the accurate and rapid attack of hydroxyl radical (·OH) on the bacterial membrane and achieves efficient sterilization (100%) at low concentration (40 µg/mL) and mild temperature (47℃). Notably, Fc-MBL@rGO@Fe3O4 has a broad spectrum of antibacterial activity against Gram-negative, Gram-positive, and drug-resistant bacteria. The magnetic nanoplatform integrating detection-sterilization not only meets the need for highly sensitive and accurate detection in different scenarios, but can realize low power density NIR-II light-responsive chemodynamic/photothermal antibacterial therapy, which has broad application prospects.
Collapse