1
|
Gong H, Hou X, Li B, Shen S, Wang C, Ma Q, Liu T, Wang X. Inbuilt self-cascade catalysis of the bimetal-confined structural nanozyme CoNi@CNTs-N/GO for increased bienzymatic activity and H 2O 2-free smartphone-based visual assay of total antioxidant capacity in foods. Food Chem 2025; 485:144588. [PMID: 40319598 DOI: 10.1016/j.foodchem.2025.144588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/11/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
The level of total antioxidant capacity (TAC) reflects the overall ability of food to resist oxidative damage, maintain quality and nutritional stability. In this work, we pioneered a CoNi alloy-confined N-doped carbon nanozyme (CoNi@CNT-N/GO) with a self-cascade catalysis. Compared to other nanozymes, the synergistic effect of OXD and POD realized self-sustained generation of H2O2, eliminating the need of exogenous addition, and further decomposition of H2O2 into ·OH and oxidizes colorless 3,3',5,5'- tetramethylbenzidine (TMB) to blue oxTMB as an efficient catalyst. The integration of multiple components and the built-in unique mechanism enhance bienzymatic activity. A "Thing Identify" APP was utilized to construct a smartphone-based visualization platform, demonstrating satisfactory linearity (0.01-1.2 mM) and low detection limit (3.3 μM) in TAC detection of real-world foods. This platform yielded data comparable to those from commercially colorimetric kits. Overall, it proposes a novel idea for engineering multi-functional and non-additional H2O2 nanozymes in on-site food-quality monitoring.
Collapse
Affiliation(s)
- Hailong Gong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiaofeng Hou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Binrong Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Siyu Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chen Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qinqin Ma
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Tingting Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
2
|
Wang N, Li Z, Zhao Y, Wu X, Zhou C, Su X. A novel robust hydrogel-assisted paper-based sensor based on fluorescence UiO-66-NH 2@ZIF-8 for the dual-channel detection of captopril. Talanta 2024; 277:126400. [PMID: 38876031 DOI: 10.1016/j.talanta.2024.126400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Captopril (CP) is commonly used as an active enzyme inhibitor for the treatment of coronary heart disease, hypertension and angina pectoris. The development of sensitive and efficient method for CP analysis is of great importance in biomedical research. Herein, we fabricated a sensitive and robust hydrogel-assisted paper-based sensor based on fluorescence UiO-66-NH2@ZIF-8 and Co, N-doped carbon nanozymes with oxidase-mimicking activity for accurate monitoring of captopril. The hydrogel-assisted paper-based sensor appeared a visible pink signal due to the catalytic oxidation of colorless N,N-diethyl-p-phenylenediamine (DPD) to oxDPD by Co, N-doped carbon-based nanozymes, and resulted in the fluorescence quenching of UiO-66-NH2@ZIF-8. In the presence of captopril, the oxidation of chromogenic substrate DPD by Co, N-doped nanozymes in the hydrogel-assisted paper-based sensor was hindered and accompanied by a change in the visible color, leading to recovery of the fluorescence of UiO-66-NH2@ZIF-8, and the change in the fluorescence color could also be observed. Therefore, the quantitative detection of captopril is achieved by taking a smartphone photograph and converting the image parameters into data information using ImageJ software. The portable hydrogel-assisted paper sensor provided sensitive detection of captopril in two modes based on visible color change as well as fluorescence color change with limits of detection of 0.45 μM and 0.47 μM, respectively. This hydrogel-assisted paper-based sensor has been successfully applied to the accurate monitoring of captopril in human serum, providing a potential avenue for in situ detection of captopril.
Collapse
Affiliation(s)
- Nan Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| | - Zhengxuan Li
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, PR China
| | - Yihan Zhao
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Xushuo Wu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Chenyu Zhou
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
3
|
Tian L, Cao M, Cheng H, Wang Y, He C, Shi X, Li T, Li Z. Plasmon-Stimulated Colorimetry Biosensor Array for the Identification of Multiple Metabolites. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6849-6858. [PMID: 38293917 DOI: 10.1021/acsami.3c16561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Rationally designing highly catalytic and stable nanozymes for metabolite monitoring is of great importance because of their huge potential in early disease diagnosis. Herein, a novel nanozyme based on hierarchically structured CuS/ZnS with a highly efficient peroxidase (POD)-mimic capability was developed and synthesized for multiple metabolite determination and recognition via the plasmon-stimulated biosensor array strategy. The designed nanozyme can simultaneously harvest plasmon triggered hot electron-hole pairs and generate photothermal properties, leading to a sharply boosted POD-mimic capability under 808 nm laser irradiation. Interestingly, because of the interaction diversity of the metabolite with POD-like nanomaterials, the unique inhibitory effect of metabolites on the POD-mimic activity could be the signal response as the differentiation. Thus, utilizing TMB as a typical chromogenic substrate in the addition of H2O2, the designed colorimetric biosensor array can produce diverse fingerprints for the three vital metabolisms (cysteine (Cys), ascorbic acid (AA), and glutathione (GSH)), which can be precisely identified by principal component analysis (PCA). Notably, a distinct fingerprint of a single metabolite with different levels and metabolite mixtures is also achieved with a detection limit of 1 μM. Most importantly, cell lysis could be effectively discriminated by the biosensor assay, implying its great potential in clinical diagnosis.
Collapse
Affiliation(s)
- Lin Tian
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
- School of Food (Biology) Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Ming Cao
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Haorong Cheng
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Yanfei Wang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Changchun He
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Xinxin Shi
- School of Food (Biology) Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Tongxiang Li
- School of Food (Biology) Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Zhao Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
- School of Food (Biology) Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| |
Collapse
|
4
|
Li T, Wang D, Hu J, Fu X, Ji Y, Li R. A promising tool for clinical diagnostics: Dual-emissive carbonized polymer dots based cross-linking enhanced emission for sensitive detection of alkaline phosphatase and butyrylcholinesterase. Biosens Bioelectron 2023; 238:115576. [PMID: 37557027 DOI: 10.1016/j.bios.2023.115576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Compared with single signal readout, dual-signal readout commendably corrects the impact of systematic or background error, achieving more accurate results for the diagnosis of many diseases. This work aimed to design and prepare dual-emissive fluorescent probes for the construction of ratiometric fluorescence biosensors to detect liver disease biomarkers. Sodium alginate (SA) with numerous potential sub-fluorophores and active sites and 4,4',4'',4'''-(porphine-5,10,15,20-tetrayl) tetrakis (benzoic acid) (TCPP) with macrocyclic conjugated structures were introduced to prepare the carbonized polymer dots (CPDs) with red/blue dual emission based on the cross-linking enhanced emission (CEE) effect and the luminescence of macrocyclic conjugated structures. The ratiometric fluorescence sensing systems were constructed by integrating the specific response of CPDs to Cu2+ and the affinity difference of Cu2+ to substrates or products of enzymes. The sensing systems, CPDs/Cu2+/PPi and CPDs/Cu2+/BTCh, were designed to detect liver disease biomarkers, alkaline phosphatase (ALP) and butyrylcholinesterase (BChE), respectively. The limit of detection for ALP and BChE was 0.35 U/L and 0.19 U/L, respectively. The proposed sensors were successfully applied to human serum samples from different health stages with satisfactory recoveries. These results demonstrate the successful design of a novel dual-emissive fluorescent probe and provide a feasible strategy for clinical detection.
Collapse
Affiliation(s)
- Tingting Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China
| | - Dan Wang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China
| | - Jing Hu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China
| | - Xu Fu
- Laboratory of Emergency Medicine, Lanzhou University Second Hospital, Gansu, Lanzhou, 730000, China.
| | - Yibing Ji
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China.
| | - Ruijun Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China.
| |
Collapse
|
5
|
Zhao H, Liu K, Zhou L, Zhang T, Han Z, Wang L, Ji X, Cui Y, Hu J, Ma G. Platinum Palladium Bimetallic Nanozymes Stabilized with Vancomycin for the Sensitive Colorimetric Determination of L-cysteine. Biomolecules 2023; 13:1254. [PMID: 37627319 PMCID: PMC10452367 DOI: 10.3390/biom13081254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/05/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Many diseases in the human body are related to the level of L-cysteine. Therefore, it is crucial to establish an efficient, simple and sensitive platform for L-cysteine detection. In this work, we synthesized platinum palladium bimetallic nanoparticles (Van-Ptm/Pdn NPs) using vancomycin hydrochloride (Van) as a stabilizer, which exhibited high oxidase-like catalytic activity. In addition, the catalytic kinetics of the Van-Pt1/Pd1 NPs followed the typical Michaelis-Menten equation, exhibiting a strong affinity for 3,3',5,5'-tetramethylbenzidine substrates. More importantly, we developed a simple and effective strategy for the sensitive colorimetric detection of L-cysteine using biocompatible Van-Pt1/Pd1 NPs. The detection limit was low, at 0.07 μM, which was lower than the values for many previously reported enzyme-like detection systems. The colorimetric method of the L-cysteine assay had good selectivity. The established method for the detection of L-cysteine showed promise for biomedical analysis.
Collapse
Affiliation(s)
- Han Zhao
- Hebei Key Laboratory of Nano-Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (H.Z.); (K.L.); (L.Z.); (T.Z.); (J.H.)
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Kai Liu
- Hebei Key Laboratory of Nano-Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (H.Z.); (K.L.); (L.Z.); (T.Z.); (J.H.)
| | - Lijie Zhou
- Hebei Key Laboratory of Nano-Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (H.Z.); (K.L.); (L.Z.); (T.Z.); (J.H.)
| | - Tingting Zhang
- Hebei Key Laboratory of Nano-Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (H.Z.); (K.L.); (L.Z.); (T.Z.); (J.H.)
| | - Zengsheng Han
- Hebei Key Laboratory of Nano-Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (H.Z.); (K.L.); (L.Z.); (T.Z.); (J.H.)
| | - Longgang Wang
- Hebei Key Laboratory of Nano-Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (H.Z.); (K.L.); (L.Z.); (T.Z.); (J.H.)
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Xianbing Ji
- Department of Environmental Engineering, Hebei University of Environmental Engineering, Qinhuangdao 066102, China; (X.J.); (Y.C.)
| | - Yanshuai Cui
- Department of Environmental Engineering, Hebei University of Environmental Engineering, Qinhuangdao 066102, China; (X.J.); (Y.C.)
| | - Jie Hu
- Hebei Key Laboratory of Nano-Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (H.Z.); (K.L.); (L.Z.); (T.Z.); (J.H.)
| | - Guanglong Ma
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
| |
Collapse
|
6
|
Kurup CP, Ahmed MU. Nanozymes towards Personalized Diagnostics: A Recent Progress in Biosensing. BIOSENSORS 2023; 13:bios13040461. [PMID: 37185536 PMCID: PMC10136715 DOI: 10.3390/bios13040461] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023]
Abstract
This review highlights the recent advancements in the field of nanozymes and their applications in the development of point-of-care biosensors. The use of nanozymes as enzyme-mimicking components in biosensing systems has led to improved performance and miniaturization of these sensors. The unique properties of nanozymes, such as high stability, robustness, and surface tunability, make them an attractive alternative to traditional enzymes in biosensing applications. Researchers have explored a wide range of nanomaterials, including metals, metal oxides, and metal-organic frameworks, for the development of nanozyme-based biosensors. Different sensing strategies, such as colorimetric, fluorescent, electrochemical and SERS, have been implemented using nanozymes as signal-producing components. Despite the numerous advantages, there are also challenges associated with nanozyme-based biosensors, including stability and specificity, which need to be addressed for their wider applications. The future of nanozyme-based biosensors looks promising, with the potential to bring a paradigm shift in biomolecular sensing. The development of highly specific, multi-enzyme mimicking nanozymes could lead to the creation of highly sensitive and low-biofouling biosensors. Integration of nanozymes into point-of-care diagnostics promises to revolutionize healthcare by improving patient outcomes and reducing costs while enhancing the accuracy and sensitivity of diagnostic tools.
Collapse
Affiliation(s)
- Chitra Padmakumari Kurup
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
| |
Collapse
|
7
|
Cobalt nanoparticles decorated bamboo-like N-doped carbon nanotube as nanozyme sensor for efficient biosensing. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|