1
|
Kadi Z, Slim C, Griveau S. Activation Methods of Carboxyl Functions for Enhanced Aptamer Immobilization on Glassy Carbon for Application to Electrochemical Biosensing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4796-4805. [PMID: 39937185 DOI: 10.1021/acs.langmuir.4c04835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Electrochemical aptasensors are an attractive class of biosensors for target detection in several complex matrices. The immobilization procedure of the aptamers is currently one of the technological bottlenecks affecting biosensors' performance. It must ensure both the preservation of its affinity toward the target and its stability. Herein, we evaluate carboxyl function activation methods for further aptamer immobilization in the design of glassy carbon-based aptasensors in a three steps strategy. Aptamer immobilization at the glassy carbon surface was conducted in three steps: (i) electrografting of diazonium salts for the functionalization of the electrode with carboxyl groups, (ii) activation of the carboxylic groups, and (iii) immobilization of a DNA aptamer sequence. We focused on the activation step of carboxylic groups by evaluating three coupling agents: the widely reported EDC/NHS carbodiimide agent, bromotripyrrolidinophosphonium hexafluorophosphate (PyBroP), and 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethylaminium tetrafluoroborate (TBTU). Cyclic voltammetry, electrochemical impedance spectroscopy, X-ray photoelectron spectroscopy, and water contact angle were used to characterize and confirm each surface modification step, specifically the activation step, which, to our knowledge, has not been investigated before using these activation agents. Aminoferrocene was first used as an electroactive molecule to electrochemically evaluate its coupling with activated carboxylic groups using the different agents. The developed approach for designing this electrochemical aptasensor was subsequently applied to the immobilization of an aptamer sequence for the detection of diclofenac. This work is part of a proof-of-concept study that could be further developed for the design of an electrochemical aptasensor.
Collapse
Affiliation(s)
- Zeinab Kadi
- CNRS 8060, Institute of Chemistry for Life and Health (i-CLeHS), Chimie ParisTech PSL, Paris 75231, France
| | - Cyrine Slim
- CNRS 8060, Institute of Chemistry for Life and Health (i-CLeHS), Chimie ParisTech PSL, Paris 75231, France
| | - Sophie Griveau
- CNRS 8060, Institute of Chemistry for Life and Health (i-CLeHS), Chimie ParisTech PSL, Paris 75231, France
| |
Collapse
|
2
|
Ram TB, Krishnan S, Jeevanandam J, Danquah MK, Thomas S. Emerging Biohybrids of Aptamer-Based Nano-Biosensing Technologies for Effective Early Cancer Detection. Mol Diagn Ther 2024; 28:425-453. [PMID: 38775897 DOI: 10.1007/s40291-024-00717-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 06/28/2024]
Abstract
Cancer is a leading global cause of mortality, which underscores the imperative of early detection for improved patient outcomes. Biorecognition molecules, especially aptamers, have emerged as highly effective tools for early and accurate cancer cell identification. Aptamers, with superior versatility in synthesis and modification, offer enhanced binding specificity and stability compared with conventional antibodies. Hence, this article reviews diagnostic strategies employing aptamer-based biohybrid nano-biosensing technologies, focusing on their utility in detecting cancer biomarkers and abnormal cells. Recent developments include the synthesis of nano-aptamers using diverse nanomaterials, such as metallic nanoparticles, metal oxide nanoparticles, carbon-derived substances, and biohybrid nanostructures. The integration of these nanomaterials with aptamers significantly enhances sensitivity and specificity, promising innovative and efficient approaches for cancer diagnosis. This convergence of nanotechnology with aptamer research holds the potential to revolutionize cancer treatment through rapid, accurate, and non-invasive diagnostic methods.
Collapse
Affiliation(s)
| | | | - Jaison Jeevanandam
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Madeira, Portugal.
| | - Michael K Danquah
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | - Sabu Thomas
- School of Polymer Science and Technology and School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India
| |
Collapse
|
3
|
Abedi R, Raoof JB, Mohseni M, Bagheri Hashkavayi A. Sandwich-type electrochemical aptasensor based on hemin-graphite oxide as a signal label and rGO/MWCNTs/chitosan/carbon quantum dot modified electrode for sensitive detection of Acinetobacter baumannii bacteria. Anal Chim Acta 2024; 1303:342491. [PMID: 38609258 DOI: 10.1016/j.aca.2024.342491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
Acinetobacter baumannii (A. baumannii) is a pathogenic bacterium that causes severe infections and its rapid and reliable diagnosis is essential for effective control and treatment. In this study, we present an electrochemical aptasensor based on a signal amplification strategy for the detection of A. baumannii, the high specificity and affinity of the aptamer for the target make it favorable for signal amplification. This allows for a highly sensitive and selective detection of the target. The aptasensor is based on a carbon screen-printed electrode (CSPE) that has been modified with a nanocomposite consisting of multi-walled carbon nanotubes (MWCNTs), reduced graphene oxide (rGO), chitosan (CS), and a synthesized carbon quantum dot (CQD) from CS. Additionally, the self-assembled aptamers were immobilized on hemin-graphite oxide (H-GO) as a signal probe. The composition of the nanocomposite (rGO-MWCNT/CS/CQD) provides high conductivity and stability, facilitating the efficient capture of A. baumannii onto the surface of the aptasensor. Also, aptamer immobilized on Hemin-graphite oxide (H-GO/Aptamer) was utilized as an electrochemical signal reporter probe by H reduction. This approach improved the detection sensitivity and the aptamer surface density for detecting A. baumannii. Furthermore, under optimized experimental conditions, the aptasensor was demonstrated to be capable of detecting A. baumannii with a linear range of (10 - 1 × 107 Colony-forming unit (CFU)/mL) and a limit of detection (LOD) of 1 CFU/mL (σ = 3). One of the key features of this aptasensor is its ability to distinguish between live and dead bacteria cells, which is very important and critical for clinical applications. In addition, we have successfully detected A. baumannii bacteria in healthy human serum and skim milk powder samples provided using the prepared electrochemical aptasensor. The functional groups present in the synthetic CQD, rGO-MWCNT, and chitosan facilitate biomolecule immobilization and enhance stability and activity. The fast electron-transfer kinetics and high conductivity of these materials contribute to improved sensitivity and selectivity. Furthermore, The H-GO/Aptamer composite's large surface area increases the number of immobilized secondary aptamers and enables a more stable structure. This large surface area also facilitates more H loading, leading to signal amplification.
Collapse
Affiliation(s)
- Rokhsareh Abedi
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Jahan Bakhsh Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| | - Mojtaba Mohseni
- Department of Microbiology, Faculty of Science, University of Mazandaran, Iran
| | - Ayemeh Bagheri Hashkavayi
- Department of Applied Physical Sciences, University of North Carolina- Chapel Hill, 1112 Murray Hall, CB#3050, Chapel Hill, NC, 27599-2100, USA
| |
Collapse
|
4
|
P U A, Raj G, John J, Mohan K M, John F, George J. Aptamers: Features, Synthesis and Applications. Chem Biodivers 2023; 20:e202301008. [PMID: 37709723 DOI: 10.1002/cbdv.202301008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
Aptamers have become a topic of interest among the researchers and scientists since they not only possess all of the benefits of antibodies but also possess special qualities including heat stability, low cost, and limitless uses⋅ Here we give a review about the features, applications, and challenges of aptamers and also how they are beneficial over the antibodies for biomedical applications. Their unique features make aptamers a prominent tool in therapeutics, diagnostics, biosensors and targeted drug delivery. In conclusion, aptamers represent exciting materials for a variety of applications and can be modified to improve their properties and to extend their applications in biomedical field.
Collapse
Affiliation(s)
- Aiswarya P U
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Gopika Raj
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Jinju John
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Malavika Mohan K
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Franklin John
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Jinu George
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| |
Collapse
|
5
|
Erkmen C, Aydoğdu Tig G, Uslu B. Evaluation of aptamer and molecularly imprinted polymers as a first hybrid sensor for leptin detection at femtogram levels. Talanta 2023; 265:124809. [PMID: 37331044 DOI: 10.1016/j.talanta.2023.124809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023]
Abstract
Selective and sensitive determination of macromolecules maintains its importance in diagnosing and determining diseases to protect human health. In this study, a hybrid sensor designed with dual recognition elements consisting of both aptamers (Apt) and molecularly imprinted polymers (MIPs) was carried out for the ultra-sensitive determination of Leptin. Firstly, the screen-printed electrode (SPE) surface was coated with platinum nanospheres (Pt NSs) and gold nanoparticles (Au NPs) to provide immobilization of the Apt[Leptin] complex on the surface. In the next step, the formed polymer layer around the complex using the electropolymerization of orthophenilendiamine (oPD) kept the Apt molecules on the surface more effectively. As expected, a synergistic effect occurred between the formed MIP cavities by removing Leptin from the surface and the embedded Apt molecules to fabricate a hybrid sensor. Under optimal conditions, responses in differential pulse voltammetry (DPV) currents showed a linear response over a wide concentration range from 1.0 fg/mL to 10.0 pg/mL with a limit of detection (LOD) of 0.31 fg/mL for Leptin detection. Moreover, the effectiveness of the hybrid sensor was assessed using real samples, such as human serum and plasma samples, and satisfactory recovery findings (106.2-109.0%) were found.
Collapse
Affiliation(s)
- Cem Erkmen
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey; Ankara University, The Graduate School of Health Sciences, 06110, Ankara, Turkey
| | - Gözde Aydoğdu Tig
- Ankara University, Faculty of Science, Department of Chemistry, 06100, Ankara, Turkey
| | - Bengi Uslu
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey.
| |
Collapse
|
6
|
Negahdary M, Angnes L. Recent advances in electrochemical nanomaterial-based aptasensors for the detection of cancer biomarkers. Talanta 2023; 259:124548. [PMID: 37062088 DOI: 10.1016/j.talanta.2023.124548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
New technologies have provided suitable tools for rapid diagnosis of cancer which can reduce treatment costs and even increase patients' survival rates. Recently, the development of electrochemical aptamer-based nanobiosensors has raised great hopes for early, sensitive, selective, and low-cost cancer diagnosis. Here, we reviewed the flagged recent research (2021-2023) developed as a series of biosensors equipped with nanomaterials and aptamer sequences (nanoaptasensors) to diagnose/prognosis of various types of cancers. Equipping these aptasensors with nanomaterials and using advanced biomolecular technologies have provided specified biosensing interfaces for more optimal and reliable detection of cancer biomarkers. The primary intention of this review was to present and categorize the latest innovations used in the design of these diagnostic tools, including the hottest surface modifications and assembly of sensing bioplatforms considering diagnostic mechanisms. The main classification is based on applying various nanomaterials and sub-classifications considered based on the type of analyte and other vital features. This review may help design subsequent electrochemical aptasensors. Likewise, the up-to-date status, remaining limitations, and possible paths for translating aptasensors to clinical cancer assay tools can be clarified.
Collapse
Affiliation(s)
- Masoud Negahdary
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil.
| | - Lúcio Angnes
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil.
| |
Collapse
|