1
|
Qu Y, Ding Z, Lu X, Zhang F, Liu S, Liu J, Hou C, Li S. Pt-modified hollow tube-like polyaniline-based NH 3 sensor. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136723. [PMID: 39694010 DOI: 10.1016/j.jhazmat.2024.136723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/16/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024]
Abstract
Polyaniline (PANI) has significant applications in room-temperature NH3 detection due to its unique and reversible doping-dedoping chemical state, stable electrical conductivity and easy and convenient synthesis process. However, pristine PANI still suffers from poor performance in terms of sensitivity, response speed and detection limit. To address issues of low sensitivity and high detection limit, a platinum (Pt)-modified hollow PANI (Pt-PANI) sensor was designed. The Pt-PANI was fabricated by an in-situ sacrificial template method, and Pt-MnO2 nanowires obtained from hydrothermal combined impregnation methods, utilizing the potential generated during the sacrificial reaction with acid to induce the polymerization of aniline on the nanowires' surfaces. This hollow tube-like structure with the unique inlay of Pt particles provides numerous gas diffusion pathways, facilitating the penetration of the target gas into the internal space, enhancing the utilization of the inner surface and accelerating the electron transfer. Meanwhile, the presence of Pt particles not only forms Schottky junctions that cause large changes in the resistance of the composites, but also catalysis and accelerates the gas sensing reaction between the target gas and the sensitive materials. Gas sensitivity tests revealed that the prepared Pt-PANI-3 gas sensor exhibits a low NH3 detection limit of 20.3 ppb, along with reproducibility and long-term stability. Compared to pure PANI-sensor, the sensitivity to 20 ppm NH3 increased by 17 times. This work offers real-time sensing and monitoring of environmental changes, making it highly promising for future applications.
Collapse
Affiliation(s)
- Yuan Qu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Ziwen Ding
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Xiang Lu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Feiyu Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Song Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Jie Liu
- Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, China
| | - Changmin Hou
- Jilin Univ, Coll Chem, State Key Lab Inorgan Synth & Preparat Chem, Changchun 130033, China
| | - Siqi Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
2
|
Zhu S, Fan H, Lei L, Fan Y, Wang W. High sensitivity and selectivity of h-BN/WO 3 n-n heterojunction to triethylamine at low-temperature. CHEMOSPHERE 2024; 366:143522. [PMID: 39395477 DOI: 10.1016/j.chemosphere.2024.143522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/06/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Due to the unique properties of heterojunction interfaces, heterojunction materials have broad application prospects in gas sensors. In this work, a facile and economical two-step synthesis method was employed to fabricate h-BN/WO3 heterojunctions, exhibiting excellent performance in triethylamine (TEA) detection. The results indicate that compared to pure WO3 sensors, h-BN/WO3 sensors exhibit superior TEA sensing capabilities, with an excellent response of 281.45 to 20 ppm TEA at 100 °C, which is 3.4 times higher. Moreover, h-BN/WO3 sensors demonstrate favorable response times, low detection limits, and good stability. These significant enhancements are attributed to the increase in oxygen vacancies and the establishment of heterojunctions between h-BN and WO3. Heterojunctions can regulate the concentration and transport rate of charge carriers, as well as the interface potential barrier, thereby affecting the gas sensing processes. This work may promote the further development of sensing materials and the practical application of WO3 sensors in TEA detection.
Collapse
Affiliation(s)
- Shuwen Zhu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnic University, Xi'an, 710072, China
| | - Huiqing Fan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnic University, Xi'an, 710072, China.
| | - Lin Lei
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnic University, Xi'an, 710072, China
| | - Yongbo Fan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, 100872, Hong Kong, China
| | - Weijia Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnic University, Xi'an, 710072, China.
| |
Collapse
|
3
|
Qu X, Li M, Mu H, Jin B, Song M, Zhang K, Wu Y, Li L, Yu Y. Facile Fabrication of Lilac-Like Multiple Self-Supporting WO 3 Nanoneedle Arrays with Cubic/Hexagonal Phase Junctions for Highly Sensitive Ethylene Glycol Gas Sensors. ACS Sens 2024; 9:3604-3615. [PMID: 39016238 DOI: 10.1021/acssensors.4c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Metal oxides with nanoarray structures have been demonstrated to be prospective materials for the design of gas sensors with high sensitivity. In this work, the WO3 nanoneedle array structures were synthesized by a one-step hydrothermal method and subsequent calcination. It was demonstrated that the calcination of the sample at 400 °C facilitated the construction of lilac-like multiple self-supporting WO3 arrays, with appropriate c/h-WO3 heterophase junction and highly oriented nanoneedles. Sensors with this structure exhibited the highest sensitivity (2305) to 100 ppm ethylene glycol at 160 °C and outstanding selectivity. The enhanced ethylene glycol gas sensing can be attributed to the abundant transport channels and active sites provided by this unique structure. In addition, the more oxygen adsorption caused by the heterophase junction and the aggregation of reaction medium induced by tip effect are both in favor of the improvement on the gas sensing performance.
Collapse
Affiliation(s)
- Xiaohan Qu
- College of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Mingchun Li
- College of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Hanlin Mu
- College of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Bingbing Jin
- College of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Minggao Song
- College of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Kunlong Zhang
- College of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Yusheng Wu
- College of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Laishi Li
- College of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Yan Yu
- College of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
| |
Collapse
|
4
|
Wei Z, Qin C, Yang X, Zhu L, Zhao X, Cao J, Wang Y. Surface modification of Co 3O 4 nanosheets through Cd-doping for enhanced CO sensing performance. Mikrochim Acta 2024; 191:234. [PMID: 38568389 DOI: 10.1007/s00604-024-06326-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/23/2024] [Indexed: 05/12/2024]
Abstract
The detection of hazardous CO gas is an important research content in the domain of the Internet of Things (IoT). Herein, we introduced a facile metal-organic frameworks (MOFs)-templated strategy to synthesize Cd-doped Co3O4 nanosheets (Cd-Co3O4 NSs) aimed at boosting the CO-sensing performance. The synthesized Cd-Co3O4 NSs feature a multihole nanomeshes structure and a large specific surface area (106.579 m2·g-1), which endows the sensing materials with favorable gas diffusion and interaction ability. Furthermore, compared with unadulterated Co3O4, the 2 mol % Cd-doped Co3O4 (2% Cd-Co3O4) sensor exhibits enhanced sensitivity (244%) to 100 ppm CO at 200 °C and a comparatively low experimental limit of detection (0.5 ppm/experimental value). The 2% Cd-Co3O4 NSs show good selectivity, reproducibility, and long-term stability. The improved CO sensitivity signal is probably owing to the stable nanomeshes construction, high surface area, and rich oxygen vacancies caused by cadmium doping. This study presents a facile avenue to promote the sensing performance of p-type metal oxide semiconductors by enhancing the surface activity of Co3O4 combined with morphology control and component regulation.
Collapse
Affiliation(s)
- Zhanxiang Wei
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Cong Qin
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Xuhui Yang
- President's Office, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Linghao Zhu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Xiaoyan Zhao
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Jianliang Cao
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Yan Wang
- College of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, China.
- State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Henan Polytechnic University, Jiaozuo, 454000, China.
| |
Collapse
|
5
|
Dong J, Shao J, Sun C, Pan G, Yang X. Preparation of Pt/WO 3@ZnO hollow spheres for low-temperature and high-efficiency detection of triethylamine. Dalton Trans 2024. [PMID: 38251435 DOI: 10.1039/d3dt03493c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
In this work, hollow spherical Pt-loaded WO3/ZnO heterostructured composites were prepared by a chemical liquid phase synthesis method. The morphology, crystal structure and components of the composites were characterized by SEM, TEM, XRD, XPS, etc. The sensing performance for various gases was also tested. Compared with the pristine WO3 (S = 44@225 °C, 50 ppm) gas sensor, the gas sensor that is functionalized with 1 wt% Pt and 0.5 mmol ZnO (1Pt/WZ-2) has a high response of 842-50 ppm at a relatively low temperature of 100 °C for TEA, with a quick response/recovery time of 34/120 s, a lower detection limit of 50 ppb, and good selectivity and moisture resistance. This study provides a highly efficient synthesis method of composite materials for TEA gas detection and the sensitivity mechanism is also discussed in detail.
Collapse
Affiliation(s)
- Junyi Dong
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin Key Laboratory of Electronic Materials and Devices, Hebei Engineering Research Center of Microelectronic Materials and Devices (ERC), 5340 Xiping Road, Beichen District, Tianjin, 300401, China.
| | - Junkai Shao
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin Key Laboratory of Electronic Materials and Devices, Hebei Engineering Research Center of Microelectronic Materials and Devices (ERC), 5340 Xiping Road, Beichen District, Tianjin, 300401, China.
| | - Caixuan Sun
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin Key Laboratory of Electronic Materials and Devices, Hebei Engineering Research Center of Microelectronic Materials and Devices (ERC), 5340 Xiping Road, Beichen District, Tianjin, 300401, China.
| | - Guofeng Pan
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin Key Laboratory of Electronic Materials and Devices, Hebei Engineering Research Center of Microelectronic Materials and Devices (ERC), 5340 Xiping Road, Beichen District, Tianjin, 300401, China.
| | - Xueli Yang
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin Key Laboratory of Electronic Materials and Devices, Hebei Engineering Research Center of Microelectronic Materials and Devices (ERC), 5340 Xiping Road, Beichen District, Tianjin, 300401, China.
| |
Collapse
|
6
|
Zhang R, Qin C, Bala H, Wang Y, Cao J. Recent Progress in Spinel Ferrite (MFe 2O 4) Chemiresistive Based Gas Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2188. [PMID: 37570506 PMCID: PMC10421214 DOI: 10.3390/nano13152188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Gas-sensing technology has gained significant attention in recent years due to the increasing concern for environmental safety and human health caused by reactive gases. In particular, spinel ferrite (MFe2O4), a metal oxide semiconductor with a spinel structure, has emerged as a promising material for gas-sensing applications. This review article aims to provide an overview of the latest developments in spinel-ferrite-based gas sensors. It begins by discussing the gas-sensing mechanism of spinel ferrite sensors, which involves the interaction between the target gas molecules and the surface of the sensor material. The unique properties of spinel ferrite, such as its high surface area, tunable bandgap, and excellent stability, contribute to its gas-sensing capabilities. The article then delves into recent advancements in gas sensors based on spinel ferrite, focusing on various aspects such as microstructures, element doping, and heterostructure materials. The microstructure of spinel ferrite can be tailored to enhance the gas-sensing performance by controlling factors such as the grain size, porosity, and surface area. Element doping, such as incorporating transition metal ions, can further enhance the gas-sensing properties by modifying the electronic structure and surface chemistry of the sensor material. Additionally, the integration of spinel ferrite with other semiconductors in heterostructure configurations has shown potential for improving the selectivity and overall sensing performance. Furthermore, the article suggests that the combination of spinel ferrite and semiconductors can enhance the selectivity, stability, and sensing performance of gas sensors at room or low temperatures. This is particularly important for practical applications where real-time and accurate gas detection is crucial. In conclusion, this review highlights the potential of spinel-ferrite-based gas sensors and provides insights into the latest advancements in this field. The combination of spinel ferrite with other materials and the optimization of sensor parameters offer opportunities for the development of highly efficient and reliable gas-sensing devices for early detection and warning systems.
Collapse
Affiliation(s)
- Run Zhang
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China; (R.Z.); (H.B.)
| | - Cong Qin
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China;
| | - Hari Bala
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China; (R.Z.); (H.B.)
| | - Yan Wang
- College of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
- State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Henan Polytechnic University, Jiaozuo 454003, China
| | - Jianliang Cao
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China;
- State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Henan Polytechnic University, Jiaozuo 454003, China
| |
Collapse
|