1
|
Qian X, Chen Z, Zhang F, Yan Z. Electrochemically Active Materials for Tissue-Interfaced Soft Biochemical Sensing. ACS Sens 2025; 10:3274-3301. [PMID: 40256874 DOI: 10.1021/acssensors.5c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Tissue-interfaced soft biochemical sensing represents a crucial approach to personalized healthcare by employing electrochemically active materials to monitor biochemical signals at the tissue interface in real time, either noninvasively or through implantation. These soft biochemical sensors can be integrated with various biological tissues, such as neural, gastrointestinal, ocular, cardiac, skin, muscle, and bone, adapting to their unique mechanical and biochemical environments. Sensors employing materials like conductive polymers, composites, metals, metal oxides, and carbon-based nanomaterials have demonstrated capabilities in applications, such as continuous glucose monitoring, neural activity mapping, and real-time metabolite detection, enhancing diagnostics and treatment monitoring across a range of medical fields. Next-generation tissue-interfaced biosensors that enable multimodal and multiplexed measurement of biochemical markers and physiological parameters could be transformative for personalized medicine, allowing for high-resolution, time-resolved historical monitoring of an individual's health status. In this review, we summarize current trends in the field to provide insights into the challenges and future trajectory of tissue-interfaced soft biochemical sensors, highlighting their potential to revolutionize personalized medicine and improve patient outcomes.
Collapse
Affiliation(s)
- Xiaoyan Qian
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Zehua Chen
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Feng Zhang
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Zheng Yan
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65211, United States
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211, United States
- NextGen Precision Health, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
2
|
Ghorbani Siavashani A, Rehan M, Travas-Sejdic J, Thomas D, Diller E, Stine J, Ghodssi R, Avci E. Ingestible Smart Capsules for Chemical Sensing in the Gut. Anal Chem 2025; 97:5343-5354. [PMID: 40047504 DOI: 10.1021/acs.analchem.4c04683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The development of novel ingestible sensors can aid physicians and patients in obtaining precise data on the health status of the gut at a local level. This in turn can facilitate earlier and more accurate disease diagnosis, improve the delivery of point-of-care medicine, and allow monitoring of the gastrointestinal (GI) tract status. This Tutorial overviews characteristics of the gut for inexpert readers and reviews emerging chemical sensing technologies for the GI tract from an analytical chemistry viewpoint.
Collapse
Affiliation(s)
| | - Muhammad Rehan
- Sir Syed University of Engineering and Technology, Karachi 75300, Pakistan
| | - Jadranka Travas-Sejdic
- Centre for Innovative Materials for Health, School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - David Thomas
- School of Agriculture and Environment, Massey University, Palmerston North 4410, New Zealand
| | - Eric Diller
- Microrobotics Lab, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College St., Toronto, ON M5S 3G8, Canada
| | - Justin Stine
- Department of Electrical and Computer Engineering, Institute for Systems Research, and Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Reza Ghodssi
- Department of Electrical and Computer Engineering, Institute for Systems Research, and Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Ebubekir Avci
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
3
|
Marchianò V, Tricase A, Cimino A, Cassano B, Catacchio M, Macchia E, Torsi L, Bollella P. Inside out: Exploring edible biocatalytic biosensors for health monitoring. Bioelectrochemistry 2025; 161:108830. [PMID: 39362018 DOI: 10.1016/j.bioelechem.2024.108830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
Edible biosensors can measure a wide range of physiological and biochemical parameters, including temperature, pH, gases, gastrointestinal biomarkers, enzymes, hormones, glucose, and drug levels, providing real-time data. Edible biocatalytic biosensors represent a new frontier within healthcare technology available for remote medical diagnosis. The main challenges to develop edible biosensors are: i) finding edible materials (i.e. redox mediators, conductive materials, binders and biorecognition elements such as enzymes) complying with Food and Drug Administration (FDA), European Food Safety Authority (EFSA) and European Medicines Agency (EMEA) regulations; ii) developing bioelectronics able to operate in extreme working conditions such as low pH (∼pH 1.5 gastric fluids etc.), body temperature (between 37 °C and 40 °C) and highly viscous bodily fluids that may cause surface biofouling issues. Nowadays, advanced printing techniques can revolutionize the design and manufacturing of edible biocatalytic biosensors. This review outlines recent research on biomaterials suitable for creating edible biocatalytic biosensors, focusing on their electrochemical properties such as electrical conductivity and redox potential. It also examines biomaterials as substrates for printing and discusses various printing methods, highlighting challenges and perspectives for edible biocatalytic biosensors.
Collapse
Affiliation(s)
- Verdiana Marchianò
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy; Centre for Colloid and Surface Science, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy
| | - Angelo Tricase
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy; Centre for Colloid and Surface Science, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy
| | - Alessandra Cimino
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy
| | - Blanca Cassano
- Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy
| | - Michele Catacchio
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy
| | - Eleonora Macchia
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy; Centre for Colloid and Surface Science, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy; Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Luisa Torsi
- Centre for Colloid and Surface Science, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy; Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy
| | - Paolo Bollella
- Centre for Colloid and Surface Science, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy; Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy.
| |
Collapse
|
4
|
Thwaites PA, Yao CK, Halmos EP, Muir JG, Burgell RE, Berean KJ, Kalantar‐zadeh K, Gibson PR. Review article: Current status and future directions of ingestible electronic devices in gastroenterology. Aliment Pharmacol Ther 2024; 59:459-474. [PMID: 38168738 PMCID: PMC10952964 DOI: 10.1111/apt.17844] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/15/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Advances in microelectronics have greatly expanded the capabilities and clinical potential of ingestible electronic devices. AIM To provide an overview of the structure and potential impact of ingestible devices in development that are relevant to the gastrointestinal tract. METHODS We performed a detailed literature search to inform this narrative review. RESULTS Technical success of ingestible electronic devices relies on the ability to miniaturise the microelectronic circuits, sensors and components for interventional functions while being sufficiently powered to fulfil the intended function. These devices offer the advantages of being convenient and minimally invasive, with real-time assessment often possible and with minimal interference to normal physiology. Safety has not been a limitation, but defining and controlling device location in the gastrointestinal tract remains challenging. The success of capsule endoscopy has buoyed enthusiasm for the concepts, but few ingestible devices have reached clinical practice to date, partly due to the novelty of the information they provide and also due to the challenges of adding this novel technology to established clinical paradigms. Nonetheless, with ongoing technological advancement and as understanding of their potential impact emerges, acceptance of such technology will grow. These devices have the capacity to provide unique insight into gastrointestinal physiology and pathophysiology. Interventional functions, such as sampling of tissue or luminal contents and delivery of therapies, may further enhance their ability to sharpen gastroenterological diagnoses, monitoring and treatment. CONCLUSIONS The development of miniaturised ingestible microelectronic-based devices offers exciting prospects for enhancing gastroenterological research and the delivery of personalised, point-of-care medicine.
Collapse
Affiliation(s)
- Phoebe A. Thwaites
- Department of Gastroenterology, Central Clinical SchoolMonash University and Alfred HealthMelbourneVictoriaAustralia
| | - Chu K. Yao
- Department of Gastroenterology, Central Clinical SchoolMonash University and Alfred HealthMelbourneVictoriaAustralia
| | - Emma P. Halmos
- Department of Gastroenterology, Central Clinical SchoolMonash University and Alfred HealthMelbourneVictoriaAustralia
| | - Jane G. Muir
- Department of Gastroenterology, Central Clinical SchoolMonash University and Alfred HealthMelbourneVictoriaAustralia
| | - Rebecca E. Burgell
- Department of Gastroenterology, Central Clinical SchoolMonash University and Alfred HealthMelbourneVictoriaAustralia
| | - Kyle J. Berean
- Atmo BiosciencesMelbourneVictoriaAustralia
- School of Engineering, RMIT UniversityMelbourneVictoriaAustralia
| | - Kourosh Kalantar‐zadeh
- Faculty of Engineering, School of Chemical and Biomolecular EngineeringThe University of SydneyCamperdownNew South WalesAustralia
| | - Peter R. Gibson
- Department of Gastroenterology, Central Clinical SchoolMonash University and Alfred HealthMelbourneVictoriaAustralia
| |
Collapse
|