1
|
Hong Y, Chen Z, Huang Z, Zheng C, Liu J, Zeng C, Kong X, Zhang C, Huang M. Leveraging big data to elucidate the impact of heavy metal nanoparticles on anammox processes in wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125243. [PMID: 40245740 DOI: 10.1016/j.jenvman.2025.125243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/19/2025]
Abstract
Anammox is a highly efficient nitrogen removal process, yet the effects of metal/metal-oxide nanoparticles (M/MONPs) on these systems remain underexplored. This study investigates the impact of various M/MONPs on the nitrogen removal rate (NRR). Pearson correlation analysis and statistical evaluation indicates that silver and copper oxide nanoparticles exhibit the highest inhibitory effect, with an inhibition rate of 83.4 % and 73.7 %, respectively. Furthermore, Machine learning models, particularly extreme gradient boost (XGBoost), demonstrate superior performance, with R2 values exceeding 0.91. SHapley Additive exPlanations (SHAP) feature importance analysis highlighted nanoparticles concentration, influent ammonia nitrogen concentration as the most influential factors. Additionally, Partial Dependence Plots (PDP) analysis of key features provided further clarity on the optimal ranges for these critical variables. The present study provides a novel predictive methodology and optimization strategies for enhancing the NRR of anammox system under M/MONPs stress, informed by comprehensive big data analysis.
Collapse
Affiliation(s)
- Yiqun Hong
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; SCNU (NAN'AN) Green and Low-carbon Innovation Center, Nan'an SCNU Institute of Green and Low-carbon Research, Quanzhou, 362300, PR China
| | - Zhenguo Chen
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; SCNU (NAN'AN) Green and Low-carbon Innovation Center, Nan'an SCNU Institute of Green and Low-carbon Research, Quanzhou, 362300, PR China.
| | - Zehua Huang
- SCNU (NAN'AN) Green and Low-carbon Innovation Center, Nan'an SCNU Institute of Green and Low-carbon Research, Quanzhou, 362300, PR China
| | - Chunying Zheng
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Junxing Liu
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; SCNU (NAN'AN) Green and Low-carbon Innovation Center, Nan'an SCNU Institute of Green and Low-carbon Research, Quanzhou, 362300, PR China
| | - Chenxi Zeng
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; SCNU (NAN'AN) Green and Low-carbon Innovation Center, Nan'an SCNU Institute of Green and Low-carbon Research, Quanzhou, 362300, PR China
| | - Xiangfa Kong
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; SCNU (NAN'AN) Green and Low-carbon Innovation Center, Nan'an SCNU Institute of Green and Low-carbon Research, Quanzhou, 362300, PR China
| | - Chao Zhang
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; SCNU (NAN'AN) Green and Low-carbon Innovation Center, Nan'an SCNU Institute of Green and Low-carbon Research, Quanzhou, 362300, PR China
| | - Mingzhi Huang
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; SCNU (NAN'AN) Green and Low-carbon Innovation Center, Nan'an SCNU Institute of Green and Low-carbon Research, Quanzhou, 362300, PR China.
| |
Collapse
|
2
|
Virumbrales C, Hernández-Ruiz R, Trigo-López M, Vallejos S, García JM. Sensory Polymers: Trends, Challenges, and Prospects Ahead. SENSORS (BASEL, SWITZERLAND) 2024; 24:3852. [PMID: 38931634 PMCID: PMC11207698 DOI: 10.3390/s24123852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
In recent years, sensory polymers have evolved significantly, emerging as versatile and cost-effective materials valued for their flexibility and lightweight nature. These polymers have transformed into sophisticated, active systems capable of precise detection and interaction, driving innovation across various domains, including smart materials, biomedical diagnostics, environmental monitoring, and industrial safety. Their unique responsiveness to specific stimuli has sparked considerable interest and exploration in numerous applications. However, along with these advancements, notable challenges need to be addressed. Issues such as wearable technology integration, biocompatibility, selectivity and sensitivity enhancement, stability and reliability improvement, signal processing optimization, IoT integration, and data analysis pose significant hurdles. When considered collectively, these challenges present formidable barriers to the commercial viability of sensory polymer-based technologies. Addressing these challenges requires a multifaceted approach encompassing technological innovation, regulatory compliance, market analysis, and commercialization strategies. Successfully navigating these complexities is essential for unlocking the full potential of sensory polymers and ensuring their widespread adoption and impact across industries, while also providing guidance to the scientific community to focus their research on the challenges of polymeric sensors and to understand the future prospects where research efforts need to be directed.
Collapse
Affiliation(s)
- Cintia Virumbrales
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain; (M.T.-L.); (S.V.); (J.M.G.)
| | - Raquel Hernández-Ruiz
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain; (M.T.-L.); (S.V.); (J.M.G.)
| | | | | | | |
Collapse
|
3
|
Dubourg G, Pavlović Z, Bajac B, Kukkar M, Finčur N, Novaković Z, Radović M. Advancement of metal oxide nanomaterials on agri-food fronts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172048. [PMID: 38580125 DOI: 10.1016/j.scitotenv.2024.172048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/03/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
The application of metal oxide nanomaterials (MOx NMs) in the agrifood industry offers innovative solutions that can facilitate a paradigm shift in a sector that is currently facing challenges in meeting the growing requirements for food production, while safeguarding the environment from the impacts of current agriculture practices. This review comprehensively illustrates recent advancements and applications of MOx for sustainable practices in the food and agricultural industries and environmental preservation. Relevant published data point out that MOx NMs can be tailored for specific properties, enabling advanced design concepts with improved features for various applications in the agrifood industry. Applications include nano-agrochemical formulation, control of food quality through nanosensors, and smart food packaging. Furthermore, recent research suggests MOx's vital role in addressing environmental challenges by removing toxic elements from contaminated soil and water. This mitigates the environmental effects of widespread agrichemical use and creates a more favorable environment for plant growth. The review also discusses potential barriers, particularly regarding MOx toxicity and risk evaluation. Fundamental concerns about possible adverse effects on human health and the environment must be addressed to establish an appropriate regulatory framework for nano metal oxide-based food and agricultural products.
Collapse
Affiliation(s)
- Georges Dubourg
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia.
| | - Zoran Pavlović
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Branimir Bajac
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Manil Kukkar
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Nina Finčur
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Zorica Novaković
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Marko Radović
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| |
Collapse
|