1
|
Manjula R, Pavithra C, Kumar AR, Durgadevi K, Balraj B, Selvaraj S. Exploring structural and spectroscopic aspects, solvent effect (polar and non-polar) on electronic properties, topological insights, ADME and molecular docking study of thiocolchicoside: A promising candidate for antiviral and antitumor pharmacotherapy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 331:125807. [PMID: 39892361 DOI: 10.1016/j.saa.2025.125807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/03/2025] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
Thiocolchicoside (TCS), a colchicine derivative, was analyzed using experimental and theoretical spectroscopic methods. The bond angle C24-C30-C32 showed a simulated value of 136.0° and an observed value of 132.9°, higher than the standard value of 120°, due to the electronic or steric effects of the oxygen atom (O10). The vibrational spectra identified the stretching and deformation modes of several functional groups, including O-H, N-H, C-H, CH2, CH3, CO, C-O, C-C, and C-S. In polar solvents like water, DMSO, and acetone, the HOMO and LUMO energies were more stabilized compared to non-polar solvents like toluene, indicating stronger solvent-solute interactions. The FMO energy gap was largest in water and DMSO (3.53 eV) and smallest in toluene (3.51 eV), suggesting greater reactivity in non-polar solvents. Electron donation by nitrogen (N12) and oxygen (O10) lone pairs to the electron acceptors O11-C34 and N12-C34 resulted in the highest stabilization in NBO analysis, with energies of 44.62 and 25.34 kJ/mol, respectively, due to L(2)-π* and L(2)-σ* transitions. Topological analysis showed hydrogen atoms H54 and H43 in the sugar moiety, methoxy (O-CH3), and acetyl (CO-CH3) marked in red, indicating electron localization, while blue around C13, C15, and C32 indicated delocalized electron regions. ADME prediction shows that TCS has low GI absorption and no permeability across the BBB, with five hydrogen bond donors and ten acceptors. Molecular docking analysis confirmed TCS's biological activity, demonstrating binding affinities for COVID-19 main proteases 6LU7, spike protein 6VXX, and SMAD proteins 1U7V (SMAD4) and 1U7F (SMAD3) with binding energies of -9.52, -3.59, -5.18, and -5.85 kcal/mol, indicating its potential antiviral and antitumor effects.
Collapse
Affiliation(s)
- R Manjula
- PG and Research Department of Physics, Marudhar Kesari Jain College for Women, Vaniyambadi 635751, Tamil Nadu, India; Department of Physics, Sri Aandal Arts and Science College for Women, Kilmurungai, Ambur 635812, Tamil Nadu, India
| | - C Pavithra
- PG and Research Department of Physics, Marudhar Kesari Jain College for Women, Vaniyambadi 635751, Tamil Nadu, India.
| | - A Ram Kumar
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105, Tamil Nadu, India
| | - K Durgadevi
- PG and Research Department of Physics, Arignar Anna Government Arts College, Cheyyar 604407, Tamil Nadu, India
| | - Babu Balraj
- Department of Physics, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai 600062, Tamil Nadu, India
| | - S Selvaraj
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105, Tamil Nadu, India.
| |
Collapse
|
2
|
Fesli R, Kuru Bektaşoğlu P, Gürer B, Arıkök AT, Öztürk ÖÇ, Bozkurt H, Kertmen H. Amelioration of Cerebral Vasospasm and Secondary Injury by Vigabatrin After Experimental Subarachnoid Hemorrhage in the Rabbit. World Neurosurg 2020; 141:e559-e565. [PMID: 32492538 DOI: 10.1016/j.wneu.2020.05.230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Vigabatrin, an antiepileptic drug, increases the level of gamma aminobutyric acid in the brain by inhibiting its catabolism. Because gamma aminobutyric acid has been proved to have vasodilatory effects, in the present study, we investigated the effect of vigabatrin to treat experimental subarachnoid hemorrhage (SAH)-induced vasospasm. METHODS A total of 30 New Zealand white rabbits were divided into 3 groups of 10 each: the control group, SAH group, and vigabatrin group. Experimental SAH was established by injection of autologous arterial blood into the cisterna magna. In the vigabatrin group, the rabbits were administered vigabatrin for 3 days after induction of the SAH. The first dose of vigabatrin was given 2 hours after SAH induction. A daily dose of 500 mg/kg vigabatrin was administered intraperitoneally. After 3 days, the rabbits were sacrificed, and the brains were removed, together with the cerebellum and brainstem. The basilar artery wall thickness and lumen areas were measured. The neuronal degeneration in the hippocampus (CA1, CA3, and dentate gyrus) was also evaluated. RESULTS The arterial wall thickness of the vigabatrin group was less than that in the SAH group (P < 0.001), and the mean luminal area of the vigabatrin group was greater than that in the SAH group (P < 0.001). Additionally, the hippocampal neuronal degeneration score of the vigabatrin group was lower than that of the SAH group (P < 0.001). CONCLUSION These findings have indicated that vigabatrin has a vasodilatory effect in an experimental SAH model in the rabbit. Moreover, it showed a neuroprotective effect in the hippocampal neurons against secondary injury induced by SAH.
Collapse
Affiliation(s)
- Ramazan Fesli
- Department of Neurosurgery, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| | - Pınar Kuru Bektaşoğlu
- Department of Neurosurgery, University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey; Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| | - Bora Gürer
- Department of Neurosurgery, University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey.
| | - Ata Türker Arıkök
- Department of Pathology, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| | - Özden Çağlar Öztürk
- Department of Neurosurgery, University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey
| | - Hüseyin Bozkurt
- Department of Neurosurgery, Cumhuriyet University School of Medicine, Sivas, Turkey
| | - Hayri Kertmen
- Department of Neurosurgery, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| |
Collapse
|
3
|
Gürer B, Kertmen H, Kuru Bektaşoğlu P, Öztürk ÖÇ, Bozkurt H, Karakoç A, Arıkök AT, Çelikoğlu E. The effects of Cinnamaldehyde on early brain injury and cerebral vasospasm following experimental subarachnoid hemorrhage in rabbits. Metab Brain Dis 2019; 34:1737-1746. [PMID: 31444631 DOI: 10.1007/s11011-019-00480-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/08/2019] [Indexed: 12/26/2022]
Abstract
The neuroprotective and vasodilatory effects of cinnamaldehyde have been widely studied and documented. On the basis of these findings, we hypothesized that cinnamaldehyde exhibits therapeutic effects on subarachnoid hemorrhage-induced early brain injury and cerebral vasospasm. Thirty-two adult male New Zealand white rabbits were randomly divided into four groups of eight rabbits: control, subarachnoid hemorrhage, subarachnoid hemorrhage + vehicle, and subarachnoid hemorrhage + cinnamaldehyde. An intraperitoneal dose of 50 mg/kg cinnamaldehyde was administered 5 min following an intracisternal blood injection, followed by three further daily injections at identical doses. The animals were sacrificed 72 h after subarachnoid hemorrhage was induced. The cross-sectional areas and arterial wall thicknesses of the basilar artery were measured and hippocampal degeneration scores were evaluated. Treatment with cinnamaldehyde was effective in providing neuroprotection and attenuating cerebral vasospasm after subarachnoid hemorrhage in rabbits. It effectively increased the cross-sectional areas of the basilar artery and reduced the arterial wall thickness; in addition, hippocampal degeneration scores were lower in the cinnamaldehyde group. The findings of this study showed, for the first time to our knowledge, that cinnamaldehyde exhibits neuroprotective activity against subarachnoid hemorrhage-induced early brain injury and that it can prevent vasospasm. Potential mechanisms underlying the neuroprotection and vasodilation were discussed. Cinnamaldehyde could play a role in subarachnoid hemorrhage treatment.
Collapse
Affiliation(s)
- Bora Gürer
- Fatih Sultan Mehmet Education and Research Hospital, Department of Neurosurgery, University of Health Sciences, Zümrütevler mh. Emek cad. Nish Adalar Sitesi 36. Blok Daire 38, 34852, Maltepe, İstanbul, Turkey.
| | - Hayri Kertmen
- Diskapi Yildirim Beyazit Education and Research Hospital, Department of Neurosurgery, University of Health Sciences, Ankara, Turkey
| | - Pınar Kuru Bektaşoğlu
- Fatih Sultan Mehmet Education and Research Hospital, Department of Neurosurgery, University of Health Sciences, Zümrütevler mh. Emek cad. Nish Adalar Sitesi 36. Blok Daire 38, 34852, Maltepe, İstanbul, Turkey
- Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| | - Özden Çağlar Öztürk
- Fatih Sultan Mehmet Education and Research Hospital, Department of Neurosurgery, University of Health Sciences, Zümrütevler mh. Emek cad. Nish Adalar Sitesi 36. Blok Daire 38, 34852, Maltepe, İstanbul, Turkey
| | - Hüseyin Bozkurt
- Department of Neurosurgery, Sivas Cumhuriyet University, Sivas, Turkey
| | | | - Ata Türker Arıkök
- Diskapi Yildirim Beyazit Education and Research Hospital, Department of Pathology, University of Health Sciences, Ankara, Turkey
| | - Erhan Çelikoğlu
- Fatih Sultan Mehmet Education and Research Hospital, Department of Neurosurgery, University of Health Sciences, Zümrütevler mh. Emek cad. Nish Adalar Sitesi 36. Blok Daire 38, 34852, Maltepe, İstanbul, Turkey
| |
Collapse
|
4
|
Akin Y, Gulmez H, Ates M, Ates E, Baykara M. Impact of using thiocolchicoside during endoscopic ureteral calculi removal: A preliminary study. MINIM INVASIV THER 2015; 25:29-34. [PMID: 26174074 DOI: 10.3109/13645706.2015.1067627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To evaluate the effects of thiocolchicoside during endoscopic treatment of ureteral calculus. MATERIAL AND METHODS Between May 2014 and December 2014, 498 consecutive patients were enrolled. Exclusion criteria were operations under general anaesthesia, chancing laser lithotripter settings, and urinary tract infection. All patients were divided into three groups: Group 1 consisted of patients who were not administered thiocolchicoside, group 2 consisted of patients who were administered 5 mg thiocolchicoside, and group 3 consisted of patients who were administered 10 mg thiocolchicoside. Demographic, perioperative, and postoperative data were recorded. Complications were noted according to Clavien-Dindo classifications. A p value of p ≤ 0.05 was considered statistically significant. RESULTS A total of 427 patients (319 male and 108 female) with full data were investigated. Mean age was 43.3 ± 13.3 years. There were 157 patients in group 1, 141 patients in group 2, and 129 patients in group 3. Stone migration and operation time were significantly lower in groups 2 and 3 than in group 1 (respectively; p < 0.001, p = 0.03). However, usage of jj stents was significantly lower in group 3 than in the other groups (p < 0.001). CONCLUSION Stone migration can be decreased by using locally administered thiocolchicoside in irrigation solution during endoscopic treatment of ureteral calculus. Additional doses may decrease usage of jj stents and operation time.
Collapse
Affiliation(s)
- Yigit Akin
- a 1 Department of Urology, Harran University School of Medicine , Sanliurfa, Turkey
| | - Hakan Gulmez
- b 2 Department of Family Medicine, Duzce University School of Medicine , Duzce, Turkey
| | - Mutlu Ates
- c 3 Department of Urology, Memorial Antalya Hospital , Antalya, Turkey
| | - Erhan Ates
- d 4 Department of Urology, Kahramanmaras State Hospital , Kahramanmaras, Turkey
| | - Mehmet Baykara
- e 5 Department of Urology, Akdeniz University School of Medicine , Antalya, Turkey
| |
Collapse
|
5
|
Kikkawa Y, Kurogi R, Sasaki T. The single and double blood injection rabbit subarachnoid hemorrhage model. Transl Stroke Res 2014; 6:88-97. [PMID: 25381219 DOI: 10.1007/s12975-014-0375-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/25/2014] [Accepted: 10/22/2014] [Indexed: 12/27/2022]
Abstract
Over the past 30 years, the rabbit subarachnoid hemorrhage model (SAH) has been used for investigating the post-hemorrhage pathology, especially with respect to understanding of the mechanisms of cerebral vasospasm. However, the molecular mechanisms of cerebral vasospasm remain to be elucidated. Furthermore, it is not clear whether the rabbit SAH model is suitable for the investigation of pathological conditions other than cerebral vasospasm, such as early brain injury. Therefore, the properties of the rabbit SAH model need to be validated, and the reasons for using the rabbit should be clarified. This review explores the settings and technical issues of establishing a rabbit cisterna magna single and double blood injection SAH model and discusses the characteristics and feasibilities of the models.
Collapse
Affiliation(s)
- Yuichiro Kikkawa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan,
| | | | | |
Collapse
|
6
|
Gürer B, Turkoglu E, Kertmen H, Karavelioglu E, Arikok AT, Sekerci Z. Attenuation of cerebral vasospasm and secondary injury by testosterone following experimental subarachnoid hemorrhage in rabbit. Acta Neurochir (Wien) 2014; 156:2111-20; discussion 2120. [PMID: 25194970 DOI: 10.1007/s00701-014-2211-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/19/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND The vasodilatator effects of testosterone have been widely studied and demonstrated. Based on previous studies of these vasodilatatory activities, we hypothesized that testosterone might have potential effects on subarachnoid hemorrhage-induced cerebral vasospasm. METHODS Thirty-two adult male New Zealand white rabbits were randomly divided into four groups of eight rabbits in each group: group 1 (control); group 2 (subarachnoid hemorrhage); group 3 (subarachnoid hemorrhage + vehicle); and group 4 (subarachnoid hemorrhage + testosterone). Testosterone (15 mg/kg, intraperitoneally) was administered 5 min after the intracisternal blood injection and continued for 72 h once per day in the same dose for group 4. Animals were killed 72 h after subarachnoid hemorrhage. Basilar artery cross-sectional areas, arterial wall thicknesses, and hippocampal degeneration scores were evaluated in all groups. RESULTS Intraperitoneal administration of testosterone was found to attenuate cerebral vasospasm and provide neuroprotection after subarachnoid hemorrhage in rabbits. Testosterone treatment was determined to be effective at increasing the luminal area and reducing the wall thickness of the basilar artery. CONCLUSIONS Our findings show that testosterone has some preventive effects on SAH-induced vasospasm and secondary neuronal injury in rabbits. We propose that the vasodilatatory activity of testosterone is due to its effects on inhibiting calcium channels, activating potassium channels, augmenting nitric oxide synthesis, and inhibiting oxidant stress and inflammation.
Collapse
|
7
|
Kertmen H, Gürer B, Yilmaz ER, Arikok AT, Kanat MA, Ergüder BI, Sekerci Z. The comparative effects of recombinant human erythropoietin and darbepoetin-alpha on cerebral vasospasm following experimental subarachnoid hemorrhage in the rabbit. Acta Neurochir (Wien) 2014; 156:951-62. [PMID: 24497025 DOI: 10.1007/s00701-014-2008-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/18/2014] [Indexed: 01/24/2023]
Abstract
BACKGROUND Darbepoetin alpha is a hypersialylated analogue of erythropoietin effective for activating erythropoietin-receptors. This study investigated the vasodilator and neuroprotective effects of darbepoetin alpha on an experimental subarachnoid hemorrhage model and compared it with erythropoietin. METHODS Forty adult male New Zealand white rabbits were randomly divided into four groups of ten rabbits each: group 1 (control), group 2 (subarachnoid hemorrhage), group 3 (erythropoietin), and group 4 (darbepoetin alpha). Recombinant human erythropoietin was administered at a dose of 1,000 U/kg intraperitoneally after the induction of subarachnoid hemorrhage and continued every 8 h up to 72 h. Darbepoetin alpha was administered at a single intraperitoneal dose of 30 μg/kg. Animals were killed 72 h after subarachnoid hemorrhage. Basilar artery cross-sectional areas, arterial wall thicknesses, hippocampal degeneration scores and biochemical analyses were measured in all groups. RESULTS Both erythropoietin and darbepoetin alpha treatments were found to attenuate cerebral vasospasm and provide neuroprotection after subarachnoid hemorrhage in rabbits. Darbepoetin alpha revealed better morphometric and histopathological results than erythropoietin among experimental subarachnoid hemorrhage-induced vasospasm. CONCLUSIONS Our findings, for the first time, showed that darbepoetin alpha can prevent vasospasm and provides neuroprotection following experimental subarachnoid hemorrhage. Moreover, darbepoetin alpha showed better results when compared with erythropoietin.
Collapse
Affiliation(s)
- Hayri Kertmen
- Neurosurgery Clinic, Ministry of Health, Diskapi Yildirim Beyazit Education and Research Hospital, Ankara, Turkey
| | | | | | | | | | | | | |
Collapse
|