1
|
Multiple strategies enhance the efficacy of MSCs transplantation for spinal cord injury. Biomed Pharmacother 2023; 157:114011. [PMID: 36410123 DOI: 10.1016/j.biopha.2022.114011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/05/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Spinal cord injury (SCI) is a serious complication of the central nervous system (CNS) after spine injury, often resulting in severe sensory, motor, and autonomic dysfunction below the level of injury. To date, there is no effective treatment strategy for SCI. Recently, stem cell therapy has brought hope to patients with neurological diseases. Mesenchymal stem cells (MSCs) are considered to be the most promising source of cellular therapy after SCI due to their immunomodulatory, neuroprotective and angiogenic potential. Considering the limited therapeutic effect of MSCs due to the complex pathophysiological environment following SCI, this paper not only reviews the specific mechanism of MSCs to facilitate SCI repair, but also further discusses the research status of these pluripotent stem cells combined with other therapeutic approaches to promote anatomical and functional recovery post-SCI.
Collapse
|
2
|
Wang J, Xiao L, Wang W, Zhang D, Ma Y, Zhang Y, Wang X. The Auxiliary Role of Heparin in Bone Regeneration and its Application in Bone Substitute Materials. Front Bioeng Biotechnol 2022; 10:837172. [PMID: 35646879 PMCID: PMC9133562 DOI: 10.3389/fbioe.2022.837172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
Bone regeneration in large segmental defects depends on the action of osteoblasts and the ingrowth of new blood vessels. Therefore, it is important to promote the release of osteogenic/angiogenic growth factors. Since the discovery of heparin, its anticoagulant, anti-inflammatory, and anticancer functions have been extensively studied for over a century. Although the application of heparin is widely used in the orthopedic field, its auxiliary effect on bone regeneration is yet to be unveiled. Specifically, approximately one-third of the transforming growth factor (TGF) superfamily is bound to heparin and heparan sulfate, among which TGF-β1, TGF-β2, and bone morphogenetic protein (BMP) are the most common growth factors used. In addition, heparin can also improve the delivery and retention of BMP-2 in vivo promoting the healing of large bone defects at hyper physiological doses. In blood vessel formation, heparin still plays an integral part of fracture healing by cooperating with the platelet-derived growth factor (PDGF). Importantly, since heparin binds to growth factors and release components in nanomaterials, it can significantly facilitate the controlled release and retention of growth factors [such as fibroblast growth factor (FGF), BMP, and PDGF] in vivo. Consequently, the knowledge of scaffolds or delivery systems composed of heparin and different biomaterials (including organic, inorganic, metal, and natural polymers) is vital for material-guided bone regeneration research. This study systematically reviews the structural properties and auxiliary functions of heparin, with an emphasis on bone regeneration and its application in biomaterials under physiological conditions.
Collapse
Affiliation(s)
- Jing Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lan Xiao
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
- Australia−China Centre for Tissue Engineering and Regenerative Medicine, Brisbane, Australia
| | - Weiqun Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dingmei Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yaping Ma
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yi Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
- Australia−China Centre for Tissue Engineering and Regenerative Medicine, Brisbane, Australia
| |
Collapse
|
3
|
Muheremu A, Shu L, Liang J, Aili A, Jiang K. Sustained delivery of neurotrophic factors to treat spinal cord injury. Transl Neurosci 2021; 12:494-511. [PMID: 34900347 PMCID: PMC8633588 DOI: 10.1515/tnsci-2020-0200] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/16/2022] Open
Abstract
Acute spinal cord injury (SCI) is a devastating condition that results in tremendous physical and psychological harm and a series of socioeconomic problems. Although neurons in the spinal cord need neurotrophic factors for their survival and development to reestablish their connections with their original targets, endogenous neurotrophic factors are scarce and the sustainable delivery of exogeneous neurotrophic factors is challenging. The widely studied neurotrophic factors such as brain-derived neurotrophic factor, neurotrophin-3, nerve growth factor, ciliary neurotrophic factor, basic fibroblast growth factor, and glial cell-derived neurotrophic factor have a relatively short cycle that is not sufficient enough for functionally significant neural regeneration after SCI. In the past decades, scholars have tried a variety of cellular and viral vehicles as well as tissue engineering scaffolds to safely and sustainably deliver those necessary neurotrophic factors to the injury site, and achieved satisfactory neural repair and functional recovery on many occasions. Here, we review the neurotrophic factors that have been used in trials to treat SCI, and vehicles that were commonly used for their sustained delivery.
Collapse
Affiliation(s)
- Aikeremujiang Muheremu
- Department of Spine Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, 39 Wuxing Nan Rd, Tianshan District, Urumqi, Xinjiang, 86830001, People’s Republic of China
| | - Li Shu
- Department of Orthopedics, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 86830001, People’s Republic of China
| | - Jing Liang
- Department of Laboratory Medicine, Sixth Affiliated Hospital of Xinjiang Medical University, 39, Wuxing Nan Rd, Tianshan District, Urumqi, Xinjiang, 86830001, People’s Republic of China
| | - Abudunaibi Aili
- Department of Spine Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, 39 Wuxing Nan Rd, Tianshan District, Urumqi, Xinjiang, 86830001, People’s Republic of China
| | - Kan Jiang
- Department of Orthopedics, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 86830001, People’s Republic of China
| |
Collapse
|
4
|
Abbaszadeh F, Fakhri S, Khan H. Targeting apoptosis and autophagy following spinal cord injury: Therapeutic approaches to polyphenols and candidate phytochemicals. Pharmacol Res 2020; 160:105069. [PMID: 32652198 DOI: 10.1016/j.phrs.2020.105069] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a neurological disorder associated with the loss of sensory and motor function. Understanding the precise dysregulated signaling pathways, especially apoptosis and autophagy following SCI, is of vital importance in developing innovative therapeutic targets and treatments. The present study lies in the fact that it reveals the precise dysregulated signaling mediators of apoptotic and autophagic pathways following SCI and also examines the effects of polyphenols and other candidate phytochemicals. It provides new insights to develop new treatments for post-SCI complications. Accordingly, a comprehensive review was conducted using electronic databases including, Scopus, Web of Science, PubMed, and Medline, along with the authors' expertise in apoptosis and autophagy as well as their knowledge about the effects of polyphenols and other phytochemicals on SCI pathogenesis. The primary mechanical injury to spinal cord is followed by a secondary cascade of apoptosis and autophagy that play critical roles during SCI. In terms of pharmacological mechanisms, caspases, Bax/Bcl-2, TNF-α, and JAK/STAT in apoptosis along with LC3 and Beclin-1 in autophagy have shown a close interconnection with the inflammatory pathways mainly glutamatergic, PI3K/Akt/mTOR, ERK/MAPK, and other cross-linked mediators. Besides, apoptotic pathways have been shown to regulate autophagy mediators and vice versa. Prevailing evidence has highlighted the importance of modulating these signaling mediators/pathways by polyphenols and other candidate phytochemicals post-SCI. The present review provides dysregulated signaling mediators and therapeutic targets of apoptotic and autophagic pathways following SCI, focusing on the modulatory effects of polyphenols and other potential phytochemical candidates.
Collapse
Affiliation(s)
- Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
5
|
Ren J, Liu N, Sun N, Zhang K, Yu L. Mesenchymal Stem Cells and their Exosomes: Promising Therapeutics for Chronic Pain. Curr Stem Cell Res Ther 2019; 14:644-653. [PMID: 31512998 DOI: 10.2174/1574888x14666190912162504] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/27/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022]
Abstract
Chronic pain is a common condition that seriously affects the quality of human life with
variable etiology and complicated symptoms; people who suffer from chronic pain may experience
anxiety, depression, insomnia, and other harmful emotions. Currently, chronic pain treatments are nonsteroidal
anti-inflammatory drugs and opioids; these drugs are demonstrated to be insufficient and
cause severe side effects. Therefore, research into new therapeutic strategies for chronic pain is a top
priority. In recent years, stem cell transplantation has been demonstrated to be a potent alternative for
the treatment of chronic pain. Mesenchymal stem cells (MSCs), a type of pluripotent stem cell, exhibit
multi-directional differentiation, promotion of stem cell implantation, and immune regulation; they
have also been shown to exert analgesic effects in several chronic pain models. Exosomes produced by
MSCs have been demonstrated to relieve painful symptoms with fewer side effects. In this review, we
summarize the therapeutic use of MSCs in various chronic pain studies. We also discuss ways to enhance
the treatment effect of MSCs. We predict in the future, cell-free therapies for chronic pain will
develop from exosomes secreted by MSCs.
Collapse
Affiliation(s)
- Jinxuan Ren
- Department of Anesthesiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Na Liu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Na Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Kehan Zhang
- Department of Anesthesiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lina Yu
- Department of Anesthesiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Ding D, Zhu Q. Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:1041-1060. [DOI: 10.1016/j.msec.2017.12.036] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/18/2017] [Accepted: 12/30/2017] [Indexed: 01/06/2023]
|
7
|
Ham TR, Leipzig ND. Biomaterial strategies for limiting the impact of secondary events following spinal cord injury. Biomed Mater 2018; 13:024105. [PMID: 29155409 PMCID: PMC5824690 DOI: 10.1088/1748-605x/aa9bbb] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The nature of traumatic spinal cord injury (SCI) often involves limited recovery and long-term quality of life complications. The initial injury sets off a variety of secondary cascades, which result in an expanded lesion area. Ultimately, the native tissue fails to regenerate. As treatments are developed in the laboratory, the management of this secondary cascade is an important first step in achieving recovery of normal function. Current literature identifies four broad targets for intervention: inflammation, oxidative stress, disruption of the blood-spinal cord barrier, and formation of an inhibitory glial scar. Because of the complex and interconnected nature of these events, strategies that combine multiple therapies together show much promise. Specifically, approaches that rely on biomaterials to perform a variety of functions are generating intense research interest. In this review, we examine each target and discuss how biomaterials are currently used to address them. Overall, we show that there are an impressive amount of biomaterials and combinatorial treatments which show good promise for slowing secondary events and improving outcomes. If more emphasis is placed on growing our understanding of how materials can manage secondary events, treatments for SCI can be designed in an increasingly rational manner, ultimately improving their potential for translation to the clinic.
Collapse
Affiliation(s)
- Trevor R Ham
- Department of Biomedical Engineering, Auburn Science and Engineering Center 275, West Tower, University of Akron, Akron, OH 44325-3908, United States of America
| | | |
Collapse
|
8
|
Nagashima K, Miwa T, Soumiya H, Ushiro D, Takeda-Kawaguchi T, Tamaoki N, Ishiguro S, Sato Y, Miyamoto K, Ohno T, Osawa M, Kunisada T, Shibata T, Tezuka KI, Furukawa S, Fukumitsu H. Priming with FGF2 stimulates human dental pulp cells to promote axonal regeneration and locomotor function recovery after spinal cord injury. Sci Rep 2017; 7:13500. [PMID: 29044129 PMCID: PMC5647367 DOI: 10.1038/s41598-017-13373-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 09/22/2017] [Indexed: 12/31/2022] Open
Abstract
Human dental pulp cells (DPCs), adherent cells derived from dental pulp tissues, are potential tools for cell transplantation therapy. However, little work has been done to optimize such transplantation. In this study, DPCs were treated with fibroblast growth factor-2 (FGF2) for 5-6 consecutive serial passages and were transplanted into the injury site immediately after complete transection of the rat spinal cord. FGF2 priming facilitated the DPCs to promote axonal regeneration and to improve locomotor function in the rat with spinal cord injury (SCI). Additional analyses revealed that FGF2 priming protected cultured DPCs from hydrogen-peroxide-induced cell death and increased the number of DPCs in the SCI rat spinal cord even 7 weeks after transplantation. The production of major neurotrophic factors was equivalent in FGF2-treated and untreated DPCs. These observations suggest that FGF2 priming might protect DPCs from the post-trauma microenvironment in which DPCs infiltrate and resident immune cells generate cytotoxic reactive oxygen species. Surviving DPCs could increase the availability of neurotrophic factors in the lesion site, thereby promoting axonal regeneration and locomotor function recovery.
Collapse
Affiliation(s)
- Kosuke Nagashima
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu, 501-1196, Japan
| | - Takahiro Miwa
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu, 501-1196, Japan
| | - Hitomi Soumiya
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu, 501-1196, Japan
| | - Daisuke Ushiro
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu, 501-1196, Japan
| | - Tomoko Takeda-Kawaguchi
- Department of Oral and Maxillofacial Science, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Naritaka Tamaoki
- Department of Oral and Maxillofacial Science, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Saho Ishiguro
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu, 501-1196, Japan
| | - Yumi Sato
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu, 501-1196, Japan
| | - Kei Miyamoto
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
- Department of Orthopaedic Surgery and Spine Center, Gifu Municipal Hospital, 7-1 Kashima, Gifu, 500-8323, Japan
| | - Takatoshi Ohno
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
- Department of Orthopaedic Surgery, Gifu Red Cross Hospital, 3-36 Iwakura, Gifu, 502-0844, Japan
| | - Masatake Osawa
- Department of Regeneration Technology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Takahiro Kunisada
- Department of Tissue and Organ Development, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Toshiyuki Shibata
- Department of Oral and Maxillofacial Science, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Ken-Ichi Tezuka
- Department of Tissue and Organ Development, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Shoei Furukawa
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu, 501-1196, Japan
| | - Hidefumi Fukumitsu
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu, 501-1196, Japan.
| |
Collapse
|
9
|
Hodgetts SI, Harvey AR. Neurotrophic Factors Used to Treat Spinal Cord Injury. VITAMINS AND HORMONES 2016; 104:405-457. [PMID: 28215303 DOI: 10.1016/bs.vh.2016.11.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The application of neurotrophic factors as a therapy to improve morphological and behavioral outcomes after experimental spinal cord injury (SCI) has been the focus of many studies. These studies vary markedly in the type of neurotrophic factor that is delivered, the mode of administration, and the location, timing, and duration of the treatment. Generally, the majority of studies have had significant success if neurotrophic factors are applied in or close to the lesion site during the acute or the subacute phase after SCI. Comparatively fewer studies have administered neurotrophic factors in order to directly target the somata of injured neurons. The mode of delivery varies between acute injection of recombinant proteins, subacute or chronic delivery using a variety of strategies including osmotic minipumps, cell-mediated delivery, delivery using polymer release vehicles or supporting bridges of some sort, or the use of gene therapy to modify neurons, glial cells, or precursor/stem cells. In this brief review, we summarize the state of play of many of the therapies using these factors, most of which have been undertaken in rodent models of SCI.
Collapse
Affiliation(s)
- S I Hodgetts
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, WA, Australia; Western Australian Neuroscience Research Institute, Perth, WA, Australia.
| | - A R Harvey
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, WA, Australia; Western Australian Neuroscience Research Institute, Perth, WA, Australia
| |
Collapse
|
10
|
Oh SK, Choi KH, Yoo JY, Kim DY, Kim SJ, Jeon SR. A Phase III Clinical Trial Showing Limited Efficacy of Autologous Mesenchymal Stem Cell Therapy for Spinal Cord Injury. Neurosurgery 2016; 78:436-47; discussion 447. [PMID: 26891377 DOI: 10.1227/neu.0000000000001056] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In our previous report, 3 of 10 patients with spinal cord injury who were injected with autologous mesenchymal stem cells (MSCs) showed motor improvement in the upper extremities and in activities of daily living. OBJECTIVE To report on the results of a phase III clinical trial of autologous MSCs therapy. METHODS Patients were selected based on the following criteria: chronic American Spinal Injury Association B status patients who had more than 12 months of cervical injury, and no neurological changes during the recent 3 months of vigorous rehabilitation. We injected 1.6 × 10 autologous MSCs into the intramedullary area at the injured level and 3.2 × 10 autologous MSCs into the subdural space. Outcome data were collected over 6 months regarding neurological examination, magnetic resonance imaging with diffusion tensor imaging, and electrophysiological analyses. RESULTS Among the 16 patients, only 2 showed improvement in neurological status (unilateral right C8 segment from grade 1 to grade 3 in 1 patient and bilateral C6 from grade 3 to grade 4 and unilateral right C8 from grade 0 to grade 1 in 1 patient). Both patients with neurological improvement showed the appearance of continuity in the spinal cord tract by diffusion tensor imaging. There were no adverse effects associated with MSCs injection. CONCLUSION Single MSCs application to intramedullary and intradural space is safe, but has a very weak therapeutic effect compared with multiple MSCs injection. Further clinical trials to enhance the effect of MSCs injection are necessary.
Collapse
Affiliation(s)
- Sun Kyu Oh
- Departments of *Neurological Surgery,‡Rehabilitation Medicine, and§Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
11
|
Zuidema JM, Gilbert RJ, Osterhout DJ. Nanoparticle Technologies in the Spinal Cord. Cells Tissues Organs 2016; 202:102-115. [PMID: 27701150 DOI: 10.1159/000446647] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2016] [Indexed: 11/19/2022] Open
Abstract
Nanoparticles are increasingly being studied within experimental models of spinal cord injury (SCI). They are used to image cells and tissue, move cells to specific regions of the spinal cord, and deliver therapeutic agents locally. The focus of this article is to provide a brief overview of the different types of nanoparticles being studied for spinal cord applications and present data showing the capability of nanoparticles to deliver the chondroitinase ABC (chABC) enzyme locally following acute SCI in rats. Nanoparticles releasing chABC helped promote axonal regeneration following injury, and the nanoparticles also protected the enzyme from rapid degradation. In summary, nanoparticles are viable materials for diagnostic or therapeutic applications within experimental models of SCI and have potential for future clinical use.
Collapse
|
12
|
Comparative Analysis of Human Mesenchymal Stem Cells from Umbilical Cord, Dental Pulp, and Menstrual Blood as Sources for Cell Therapy. Stem Cells Int 2016; 2016:3516574. [PMID: 26880954 PMCID: PMC4736971 DOI: 10.1155/2016/3516574] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/30/2015] [Accepted: 12/09/2015] [Indexed: 02/06/2023] Open
Abstract
Although mesenchymal stem cells (MSCs) based therapy has been considered as a promising tool for tissue repair and regeneration, the optimal cell source remains unknown. Umbilical cord (UC), dental pulp (DP), and menstrual blood (MB) are easily accessible sources, which make them attractive candidates for MSCs. The goal of this study was to compare the biological characteristics, including morphology, proliferation, antiapoptosis, multilineage differentiation capacity, and immunophenotype of UC-, DP-, and MB-MSCs in order to provide a theoretical basis for clinical selection and application of these cells. As a result, all UC-, DP-, and MB-MSCs have self-renewal capacity and multipotentiality. However, the UC-MSCs seemed to have higher cell proliferation ability, while DP-MSCs may have significant advantages for osteogenic differentiation, lower cell apoptosis, and senescence. These differences may be associated with the different expression level of cytokines, including vascular endothelial growth factor, fibroblast growth factor, keratinocyte growth factor, and hepatocyte growth factor in each of the MSCs. Comprehensively, our results suggest DP-MSCs may be a desired source for clinical applications of cell therapy.
Collapse
|
13
|
Abstract
In the last year, the promising features of mesenchymal stem cells (MSCs), including their regenerative properties and ability to differentiate into diverse cell lineages, have generated great interest among researchers whose work has offered intriguing perspectives on cell-based therapies for various diseases. Currently the most commonly used adult stem cells in regenerative medicine, MSCs, can be isolated from several tissues, exhibit a strong capacity for replication in vitro, and can differentiate into osteoblasts, chondrocytes, and adipocytes. However, heterogeneous procedures for isolating and cultivating MSCs among laboratories have prompted the International Society for Cellular Therapy (ISCT) to issue criteria for identifying unique populations of these cells. Consequently, the isolation of MSCs according to ISCT criteria has produced heterogeneous, nonclonal cultures of stromal cells containing stem cells with different multipotent properties, committed progenitors, and differentiated cells. Though the nature and functions of MSCs remain unclear, nonclonal stromal cultures obtained from bone marrow and other tissues currently serve as sources of putative MSCs for therapeutic purposes, and several findings underscore their effectiveness in treating different diseases. To date, 493 MSC-based clinical trials, either complete or ongoing, appear in the database of the US National Institutes of Health. In the present article, we provide a comprehensive review of MSC-based clinical trials conducted worldwide that scrutinizes biological properties of MSCs, elucidates recent clinical findings and clinical trial phases of investigation, highlights therapeutic effects of MSCs, and identifies principal criticisms of the use of these cells. In particular, we analyze clinical trials using MSCs for representative diseases, including hematological disease, graft-versus-host disease, organ transplantation, diabetes, inflammatory diseases, and diseases in the liver, kidney, and lung, as well as cardiovascular, bone and cartilage, neurological, and autoimmune diseases.
Collapse
Affiliation(s)
- Tiziana Squillaro
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Naples, Italy
| | | | | |
Collapse
|
14
|
Walthers CM, Seidlits SK. Gene delivery strategies to promote spinal cord repair. Biomark Insights 2015; 10:11-29. [PMID: 25922572 PMCID: PMC4395076 DOI: 10.4137/bmi.s20063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 12/21/2022] Open
Abstract
Gene therapies hold great promise for the treatment of many neurodegenerative disorders and traumatic injuries in the central nervous system. However, development of effective methods to deliver such therapies in a controlled manner to the spinal cord is a necessity for their translation to the clinic. Although essential progress has been made to improve efficiency of transgene delivery and reduce the immunogenicity of genetic vectors, there is still much work to be done to achieve clinical strategies capable of reversing neurodegeneration and mediating tissue regeneration. In particular, strategies to achieve localized, robust expression of therapeutic transgenes by target cell types, at controlled levels over defined time periods, will be necessary to fully regenerate functional spinal cord tissues. This review summarizes the progress over the last decade toward the development of effective gene therapies in the spinal cord, including identification of appropriate target genes, improvements to design of genetic vectors, advances in delivery methods, and strategies for delivery of multiple transgenes with synergistic actions. The potential of biomaterials to mediate gene delivery while simultaneously providing inductive scaffolding to facilitate tissue regeneration is also discussed.
Collapse
|
15
|
Harvey AR, Lovett SJ, Majda BT, Yoon JH, Wheeler LPG, Hodgetts SI. Neurotrophic factors for spinal cord repair: Which, where, how and when to apply, and for what period of time? Brain Res 2014; 1619:36-71. [PMID: 25451132 DOI: 10.1016/j.brainres.2014.10.049] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/20/2014] [Accepted: 10/23/2014] [Indexed: 12/22/2022]
Abstract
A variety of neurotrophic factors have been used in attempts to improve morphological and behavioural outcomes after experimental spinal cord injury (SCI). Here we review many of these factors, their cellular targets, and their therapeutic impact on spinal cord repair in different, primarily rodent, models of SCI. A majority of studies report favourable outcomes but results are by no means consistent, thus a major aim of this review is to consider how best to apply neurotrophic factors after SCI to optimize their therapeutic potential. In addition to which factors are chosen, many variables need be considered when delivering trophic support, including where and when to apply a given factor or factors, how such factors are administered, at what dose, and for how long. Overall, the majority of studies have applied neurotrophic support in or close to the spinal cord lesion site, in the acute or sub-acute phase (0-14 days post-injury). Far fewer chronic SCI studies have been undertaken. In addition, comparatively fewer studies have administered neurotrophic factors directly to the cell bodies of injured neurons; yet in other instructive rodent models of CNS injury, for example optic nerve crush or transection, therapies are targeted directly at the injured neurons themselves, the retinal ganglion cells. The mode of delivery of neurotrophic factors is also an important variable, whether delivered by acute injection of recombinant proteins, sub-acute or chronic delivery using osmotic minipumps, cell-mediated delivery, delivery using polymer release vehicles or supporting bridges of some sort, or the use of gene therapy to modify neurons, glial cells or precursor/stem cells. Neurotrophic factors are often used in combination with cell or tissue grafts and/or other pharmacotherapeutic agents. Finally, the dose and time-course of delivery of trophic support should ideally be tailored to suit specific biological requirements, whether they relate to neuronal survival, axonal sparing/sprouting, or the long-distance regeneration of axons ending in a different mode of growth associated with terminal arborization and renewed synaptogenesis. This article is part of a Special Issue entitled SI: Spinal cord injury.
Collapse
Affiliation(s)
- Alan R Harvey
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Sarah J Lovett
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Bernadette T Majda
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Jun H Yoon
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Lachlan P G Wheeler
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Stuart I Hodgetts
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
16
|
Li Y, Shu LH, Yan M, Dai WY, Li JJ, Zhang GD, Yu JH. Adult stem cell-based apexogenesis. World J Methodol 2014; 4:99-108. [PMID: 25332909 PMCID: PMC4202485 DOI: 10.5662/wjm.v4.i2.99] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 01/04/2014] [Accepted: 03/14/2014] [Indexed: 02/06/2023] Open
Abstract
Generally, the dental pulp needs to be removed when it is infected, and root canal therapy (RCT) is usually required in which infected dental pulp is replaced with inorganic materials (paste and gutta percha). This treatment approach ultimately brings about a dead tooth. However, pulp vitality is extremely important to the tooth itself, since it provides nutrition and acts as a biosensor to detect the potential pathogenic stimuli. Despite the reported clinical success rate, RCT-treated teeth are destined to be devitalized, brittle and susceptible to postoperative fracture. Recently, the advances and achievements in the field of stem cell biology and regenerative medicine have inspired novel biological approaches to apexogenesis in young patients suffering from pulpitis or periapical periodontitis. This review mainly focuses on the benchtop and clinical regeneration of root apex mediated by adult stem cells. Moreover, current strategies for infected pulp therapy are also discussed here.
Collapse
|