1
|
Albrecht C, Baumgart L, Schroeder A, Wiestler B, Meyer B, Krieg SM, Ille S. Impact of function-guided glioma treatment on oncological outcome in the elderly. BRAIN & SPINE 2024; 4:102742. [PMID: 38510620 PMCID: PMC10951774 DOI: 10.1016/j.bas.2023.102742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 03/22/2024]
Abstract
Introduction Many patients with high-grade gliomas (HGG) are of older age. Research question We hypothesize that pre- and intraoperative mapping and monitoring preserve functional status in elderly patients while gross total resection (GTR) is the aim, resulting in overall survival (OS) rates comparable to the general population with HGG. Material and methods We subdivided a prospective cohort of 168 patients above 65 years with eloquent high-grade gliomas into four groups ([years/cases] 1: 65-69/58; 2: 70-74/47; 3: 75-79/43; 4: >79/20). All patients underwent preoperative noninvasive mapping, which was also used for decision-making, intraoperative neuromonitoring in 138 cases, direct cortical and/or subcortical motor mapping in 66 and 50 cases, and awake language mapping in 11 cases. Results GTR and subtotal resection (STR) could be achieved in 65% and 28%, respectively. Stereotactic biopsy was performed in 8% of cases. Postoperatively, we found transient and permanent functional deficits in 13% and 11% of cases. Postoperative Karnofsky Performance Scale (KPS) did not differ between subgroups. Patients with long-term follow-up (51%) had a progression-free survival of 5.5 (1-47) months and an overall survival of 10.5 (0-86) months. Discussion and conclusion The interdisciplinary glioma treatment in the elderly is less age-dependent but must be adjusted to the functional status. Function-guided surgical resections could be performed as usual, with maximal tumor resection being the primary goal. However, less network capacity in the elderly to compensate for deficits might cause higher rates of permanent deficits in this group of patients with more fast-growing malignant gliomas.
Collapse
Affiliation(s)
- Carolin Albrecht
- Department of Neurosurgery, Technical University of Munich, Germany
- School of Medicine, Klinikum Rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany
| | - Lea Baumgart
- Department of Neurosurgery, Technical University of Munich, Germany
- School of Medicine, Klinikum Rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany
| | - Axel Schroeder
- Department of Neurosurgery, Technical University of Munich, Germany
- School of Medicine, Klinikum Rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany
| | - Benedikt Wiestler
- Section of Diagnostic and Interventional Neuroradiology Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technische Universität München, Germany
- School of Medicine, Klinikum Rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Technical University of Munich, Germany
- School of Medicine, Klinikum Rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany
| | - Sandro M. Krieg
- Department of Neurosurgery, Technical University of Munich, Germany
- School of Medicine, Klinikum Rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany
| | - Sebastian Ille
- Department of Neurosurgery, Technical University of Munich, Germany
- School of Medicine, Klinikum Rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany
| |
Collapse
|
2
|
Lai YM, Boer C, Eijgelaar RS, van den Brom CE, de Witt Hamer P, Schober P. Predictors for time to awake in patients undergoing awake craniotomies. J Neurosurg 2021:1-7. [PMID: 34678766 DOI: 10.3171/2021.6.jns21320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/07/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Awake craniotomies are often characterized by alternating asleep-awake-asleep periods. Preceding the awake phase, patients are weaned from anesthesia and mechanical ventilation. Although clinicians aim to minimize the time to awake for patient safety and operating room efficiency, in some patients, the time to awake exceeds 20 minutes. The goal of this study was to determine the average time to awake and the factors associated with prolonged time to awake (> 20 minutes) in patients undergoing awake craniotomy. METHODS Records of patients who underwent awake craniotomy between 2003 and 2020 were evaluated. Time to awake was defined as the time between discontinuation of propofol and remifentanil infusion and the time of extubation. Patient and perioperative characteristics were explored as predictors for time to awake using logistic regression analyses. RESULTS Data of 307 patients were analyzed. The median (IQR) time to awake was 13 (10-20) minutes and exceeded 20 minutes in 17% (95% CI 13%-21%) of the patients. In both univariate and multivariable analyses, increased age, nonsmoker status, and American Society of Anesthesiologists (ASA) class III versus II were associated with a time to awake exceeding 20 minutes. BMI, as well as the use of alcohol, drugs, dexamethasone, or antiepileptic agents, was not significantly associated with the time to awake. CONCLUSIONS While most patients undergoing awake craniotomy are awake within a reasonable time frame after discontinuation of propofol and remifentanil infusion, time to awake exceeded 20 minutes in 17% of the patients. Increasing age, nonsmoker status, and higher ASA classification were found to be associated with a prolonged time to awake.
Collapse
Affiliation(s)
| | | | - Roelant S Eijgelaar
- 3Neurosurgical Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, The Netherlands
| | | | - Philip de Witt Hamer
- 2Neurosurgery, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam; and
| | | |
Collapse
|
3
|
Rossi M, Puglisi G, Conti Nibali M, Viganò L, Sciortino T, Gay L, Leonetti A, Zito P, Riva M, Bello L. Asleep or awake motor mapping for resection of perirolandic glioma in the nondominant hemisphere? Development and validation of a multimodal score to tailor the surgical strategy. J Neurosurg 2021; 136:16-29. [PMID: 34144525 DOI: 10.3171/2020.11.jns202715] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/02/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Resection of glioma in the nondominant hemisphere involving the motor areas and pathways requires the use of brain-mapping techniques to spare essential sites subserving motor control. No clear indications are available for performing motor mapping under either awake or asleep conditions or for the best mapping paradigm (e.g., resting or active, high-frequency [HF] or low-frequency [LF] stimulation) that provides the best oncological and functional outcomes when tailored to the clinical context. This work aimed to identify clinical and imaging factors that influence surgical strategy (asleep motor mapping vs awake motor mapping) and that are associated with the best functional and oncological outcomes and to design a "motor mapping score" for guiding tumor resection in this area. METHODS The authors evaluated a retrospective series of patients with nondominant-hemisphere glioma-located or infiltrating within 2 cm anteriorly or posteriorly to the central sulcus and affecting the primary motor cortex, its fibers, and/or the praxis network-who underwent operations with asleep (HF monopolar probe) or awake (LF and HF probes) motor mapping. Clinical and imaging variables were used to design a motor mapping score. A prospective series of patients was used to validate this motor mapping score. RESULTS One hundred thirty-five patients were retrospectively analyzed: 69 underwent operations with asleep (HF stimulation) motor mapping, and 66 underwent awake (LF and HF stimulation and praxis task evaluation) motor mapping. Previous motor (strength) deficit, previous treatment (surgery/radiotherapy), tumor volume > 30 cm3, and tumor involvement of the praxis network (on MRI) were identified and used to design the mapping score. Motor deficit, previous treatment, and location within or close to the central sulcus favor use of asleep motor mapping; large tumor volume and involvement of the praxis network favor use of awake motor mapping. The motor mapping score was validated in a prospective series of 52 patients-35 underwent operations with awake motor mapping and 17 with asleep motor mapping on the basis of the score indications-who had a low rate of postoperative motor-praxis deficit (3%) and a high extent of resection (median 97%; complete resection in > 70% of patients). CONCLUSIONS Extensive resection of tumor involving the eloquent areas for motor control is feasible, and when an appropriate mapping strategy is applied, the incidence of postoperative motor-praxis deficit is low. Asleep (HF stimulation) motor mapping is preferable for lesions close to or involving the central sulcus and/or in patients with preoperative strength deficit and/or history of previous treatment. When a patient has no motor deficit or previous treatment and has a lesion (> 30 cm3) involving the praxis network, awake mapping is preferable.
Collapse
Affiliation(s)
- Marco Rossi
- 1Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, and.,2Neurosurgical Oncology Unit, IRCCS Istituto Ortopedico Galeazzi, Milano; and
| | - Guglielmo Puglisi
- 2Neurosurgical Oncology Unit, IRCCS Istituto Ortopedico Galeazzi, Milano; and.,3Neurosurgical Oncology Unit, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano
| | - Marco Conti Nibali
- 1Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, and.,2Neurosurgical Oncology Unit, IRCCS Istituto Ortopedico Galeazzi, Milano; and
| | - Luca Viganò
- 1Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, and.,2Neurosurgical Oncology Unit, IRCCS Istituto Ortopedico Galeazzi, Milano; and
| | - Tommaso Sciortino
- 1Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, and.,2Neurosurgical Oncology Unit, IRCCS Istituto Ortopedico Galeazzi, Milano; and
| | - Lorenzo Gay
- 1Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, and.,2Neurosurgical Oncology Unit, IRCCS Istituto Ortopedico Galeazzi, Milano; and
| | - Antonella Leonetti
- 2Neurosurgical Oncology Unit, IRCCS Istituto Ortopedico Galeazzi, Milano; and.,3Neurosurgical Oncology Unit, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano
| | - Paola Zito
- 4Department of Anesthesia and Intensive Care, Humanitas Research Hospital, IRCCS, Rozzano, Italy
| | - Marco Riva
- 2Neurosurgical Oncology Unit, IRCCS Istituto Ortopedico Galeazzi, Milano; and.,3Neurosurgical Oncology Unit, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano
| | - Lorenzo Bello
- 1Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, and.,2Neurosurgical Oncology Unit, IRCCS Istituto Ortopedico Galeazzi, Milano; and
| |
Collapse
|
4
|
Ille S, Schroeder A, Albers L, Kelm A, Droese D, Meyer B, Krieg SM. Non-Invasive Mapping for Effective Preoperative Guidance to Approach Highly Language-Eloquent Gliomas-A Large Scale Comparative Cohort Study Using a New Classification for Language Eloquence. Cancers (Basel) 2021; 13:cancers13020207. [PMID: 33430112 PMCID: PMC7827798 DOI: 10.3390/cancers13020207] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/20/2020] [Accepted: 01/06/2021] [Indexed: 11/16/2022] Open
Abstract
Objective: A considerable number of gliomas require resection via direct electrical stimulation (DES) during awake craniotomy. Likewise, the feasibility of resecting language-eloquent gliomas purely based on navigated repetitive transcranial magnetic stimulation (nrTMS) has been shown. This study analyzes the outcomes after preoperative nrTMS-based and intraoperative DES-based glioma resection in a large cohort. Due to the necessity of making location comparable, a classification for language eloquence for gliomas is introduced. Methods: Between March 2015 and May 2019, we prospectively enrolled 100 consecutive cases that were resected based on preoperative nrTMS language mapping (nrTMS group), and 47 cases via intraoperative DES mapping during awake craniotomy (awake group) following a standardized clinical workflow. Outcome measures were determined preoperatively, 5 days after surgery, and 3 months after surgery. To make functional eloquence comparable, we developed a classification based on prior publications and clinical experience. Groups and classification scores were correlated with clinical outcomes. Results: The functional outcome did not differ between groups. Gross total resection was achieved in more cases in the nrTMS group (87%, vs. 72% in the awake group, p = 0.04). Nonetheless, the awake group showed significantly higher scores for eloquence than the nrTMS group (median 7 points; interquartile range 6-8 vs. 5 points; 3-6.75; p < 0.0001). Conclusion: Resecting language-eloquent gliomas purely based on nrTMS data is feasible in a high percentage of cases if the described clinical workflow is followed. Moreover, the proposed classification for language eloquence makes language-eloquent tumors comparable, as shown by its correlation with functional and radiological outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sandro M. Krieg
- Correspondence: ; Tel.: +49-89-4140-2151; Fax: +49-89-4140-4889
| |
Collapse
|
5
|
Experience with awake throughout craniotomy in tumour surgery: technique and outcomes of a prospective, consecutive case series with patient perception data. Acta Neurochir (Wien) 2020; 162:3055-3065. [PMID: 33006649 DOI: 10.1007/s00701-020-04561-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Awake craniotomy is the standard of care in surgery of tumours located in eloquent parts of the brain. However, high variability is recorded in multiple parameters, including anaesthetic techniques, mapping paradigms and technology adjuncts. The current study is focused primarily on patients' level of consciousness, surgical technique, and experience based on a cohort of 50 consecutive cases undergoing awake throughout craniotomy (ATC). METHODS Data was collected prospectively for 46 patients undergoing 50 operations over 14-month period, by the senior author, including demographics, extent of resection (EOR), adverse intraoperative events, surgical morbidity, surgery duration, levels of O2 saturation and brain oedema. A prospective, patient experience questionnaire was delivered to 38 patients. RESULTS The ATC technique was well tolerated in all patients. Once TCI stopped, all patients were immediately assessable for mapping. Despite > 75% of cases being considered inoperable/high risk, gross total resection (GTR) was achieved in 68% patients and subtotal resection in 20%. The average duration of surgery was 220 min with no episodes of hypoxia. Early and late severe deficits recorded in 12% and 2%, respectively. No stimulation-induced seizures or failed ATCs were recorded. Patient-recorded data showed absent/minimal pain during (1) clamp placement in 95.6% of patients; (2) drilling in 94.7% of patients; (3) surgery in 78.9% of patients. Post-operatively, 92.3% of patients reported willingness to repeat the ATC, if necessary. CONCLUSIONS The current ATC paradigm allows immediate brain mapping, maximising patient comfort during self-positioning. Despite the cohort of challenging tumour location, satisfactory EOR was achieved with acceptable morbidity and no adverse intraoperative events.
Collapse
|
6
|
Conti Nibali M, Leonetti A, Puglisi G, Rossi M, Sciortino T, Gay LG, Arcidiacono UA, Howells H, Viganò L, Zito PC, Riva M, Bello L. Preserving Visual Functions During Gliomas Resection: Feasibility and Efficacy of a Novel Intraoperative Task for Awake Brain Surgery. Front Oncol 2020; 10:1485. [PMID: 32983985 PMCID: PMC7492569 DOI: 10.3389/fonc.2020.01485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/13/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: The intraoperative identification and preservation of optic radiations (OR) during tumor resection requires the patient to be awake. Different tasks are used. However, they do not grant the maintenance of foveal vision during all testing, limiting the ability to constantly monitor the peripheral vision and to inform about the portion of the peripheral field that is encountered. Although hemianopia can be prevented, quadrantanopia cannot be properly avoided. To overcome these limitations, we developed an intra-operative Visual field Task (iVT) to monitor the foveal vision, alerting about the likelihood of injuring the OR during task administration, and to inform about the portion of the peripheral field that is explored. Data on feasibility and efficacy in preventing visual field deficits are reported, comparing the outcome with the standard available task (Double-Picture-Naming-Task, DPNT). Methods: Patients with a temporal and/or parietal lobe tumor in close morphological relationship with the OR, or where the resection can involve the OR at any extent, without pre-operative visual-field deficits (Humphrey) were enrolled. Fifty-four patients were submitted to iVT, 38 to DPNT during awake surgery with brain mapping neurophysiological techniques. Feasibility was assessed as ease of administration, training and mapping time, and ability to alert about the loss of foveal vision. Type and location of evoked interferences were registered. Functional outcome was evaluated by manual and Humphrey test; extent of resection was recorded. Tractography was performed in a sample of patients to compare patient anatomy with intraoperative stimulation site(s). Results: The test was easy to administer and detected the loss of foveal vision in all cases. Stimulation induced visual-field interferences, detected in all patients, classified as detection or discrimination errors. Detection was mostly observed in temporal tumors, discrimination in temporo-parietal ones. Immediate visual disturbances in DPNT group were registered in 84 vs. 24% of iVT group. At 1-month Humphrey evaluation, 26% of iVT vs. 63% of DPNT had quadrantanopia (32% symptomatic); 10% of DPNT had hemianopia. EOR was similar. Detection errors were induced for stimulation of OR; discrimination also for other visual processing tract (ILF). Conclusion: iVT was feasible and sensitive to preserve the functional integrity of the OR.
Collapse
Affiliation(s)
- Marco Conti Nibali
- Neurosurgical Oncological Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Antonella Leonetti
- Neurosurgical Oncological Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy.,Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milano, Italy
| | - Guglielmo Puglisi
- Neurosurgical Oncological Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy.,Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milano, Italy
| | - Marco Rossi
- Neurosurgical Oncological Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Tommaso Sciortino
- Neurosurgical Oncological Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Lorenzo Gabriel Gay
- Neurosurgical Oncological Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Umberto Aldo Arcidiacono
- Neurosurgical Oncological Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Henrietta Howells
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milano, Italy
| | - Luca Viganò
- Neurosurgical Oncological Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy.,Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milano, Italy
| | - Paola Cosma Zito
- Department of Anesthesia and Intensive Care, Humanitas Research Hospital, IRCCS, Rozzano, Italy
| | - Marco Riva
- Neurosurgical Oncological Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Lorenzo Bello
- Neurosurgical Oncological Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
7
|
Abdulrauf SI, Urquiaga JF, Patel R, Albers JA, Sampat VB, Baumer M, Marvin E, Pierson M, Kragel R, Walsh J. Awake Microvascular Decompression for Trigeminal Neuralgia: Concept and Initial Results. World Neurosurg 2018; 113:e309-e313. [PMID: 29452326 DOI: 10.1016/j.wneu.2018.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND In this initial series, we evaluated the use of microvascular decompression (MVD) under an awake anesthesia protocol ("awake" MVD) to assess whether intraoperative pain evaluation can identify and mitigate insufficient decompression of the trigeminal nerve, improving surgical outcomes, and possibly expand the indications of MVD in patients with comorbidities that would preclude the use of general endotracheal anesthesia (GEA). METHODS An Institutional Review Board-approved prospective study of 10 consecutive adults who underwent MVD for trigeminal neuralgia (TN) was conducted. The primary outcome measure was postoperative TN pain quantified on the Barrow Neurological Institute (BNI) Pain Severity Scale. RESULTS The median patient age was 65.5 years, with a female:male ratio of 6:4. All 10 patients tolerated the procedure well and did not require GEA intraoperatively or postoperatively. Nine patients had a successful surgical outcome (BNI score I, n = 5; BNI score II, n = 4). One patient did not have pain relief (BNI score IV). This same patient also developed a pseudomeningocele, which was the sole surgical complication observed in this series. One patient experienced recurrence of pain at 11 months, with BNI score increasing from I to II. The median duration of follow-up was 16.5 months. Two patients did not experienced resolution of evoked pain during intraoperative awake testing following decompression. Further intraoperative exploration revealed secondary offending vessels that were subsequently decompressed, leading to resolution of pain. CONCLUSIONS Intraoperative awake testing for treatment efficacy may increase the success rate of MVD by rapidly identifying and mitigating insufficient cranial nerve V decompression.
Collapse
Affiliation(s)
- Saleem I Abdulrauf
- Department of Neurosurgery, Saint Louis University School of Medicine, St Louis, Missouri, USA.
| | - Jorge F Urquiaga
- Department of Neurosurgery, Saint Louis University School of Medicine, St Louis, Missouri, USA
| | - Ritesh Patel
- Department of Anesthesiology and Critical Care, Saint Louis University School of Medicine, St Louis, Missouri, USA
| | - J Andrew Albers
- Department of Neurosurgery, Saint Louis University School of Medicine, St Louis, Missouri, USA
| | - Varun B Sampat
- Department of Neurosurgery, Saint Louis University School of Medicine, St Louis, Missouri, USA
| | - Meghan Baumer
- Department of Neurosurgery, Saint Louis University School of Medicine, St Louis, Missouri, USA
| | - Eric Marvin
- Department of Neurosurgery, Saint Louis University School of Medicine, St Louis, Missouri, USA
| | - Matthew Pierson
- Department of Neurosurgery, Saint Louis University School of Medicine, St Louis, Missouri, USA
| | - Raquel Kragel
- Department of Neurosurgery, Saint Louis University School of Medicine, St Louis, Missouri, USA
| | - Jodi Walsh
- Department of Neurosurgery, Saint Louis University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
8
|
Pallud J, Mandonnet E, Corns R, Dezamis E, Parraga E, Zanello M, Spena G. Technical principles of direct bipolar electrostimulation for cortical and subcortical mapping in awake craniotomy. Neurochirurgie 2017; 63:158-163. [DOI: 10.1016/j.neuchi.2016.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 11/24/2016] [Accepted: 12/04/2016] [Indexed: 12/01/2022]
|
9
|
Murrone D, Maduri R, Afif A, Chirchiglia D, Pelissou-Guyotat I, Guyotat J, Signorelli F. Insular gliomas: a surgical reappraisal based on a systematic review of the literature. J Neurosurg Sci 2017; 63:566-580. [PMID: 28548479 DOI: 10.23736/s0390-5616.17.04045-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Insular gliomas are heterogeneous lesions whose management presents multiple challenges for their tendency to affect young patients in good neurological and cognitive conditions, their deep anatomic location and proximity with critical functional and vascular structures. The appropriate management of insular gliomas requires a multidisciplinary evidence-centred teamwork grounded on the best anatomic, neurophysiological and oncological knowledge. The present study provides a reappraisal of the management of insular gliomas based on a systematic review of the literature with the aim of guiding clinicians in the management of such tumors. EVIDENCE ACQUISITION A systematic review of the literature from the Medline, Embase and Cochrane Central databases was performed. From 2006 to 2016, all articles meeting specific inclusion criteria were included. EVIDENCE SYNTHESIS The present work summarizes the most relevant evidence about insular gliomas management. The anatomy and physiology of the insula, the new WHO 2016 classification and clinico-radiological presentation of insular gliomas are reviewed. Surgical pearls of insular gliomas resection as well as oncologic and functional outcomes after insular gliomas treatment are discussed. CONCLUSIONS Management of insular gliomas remains challenging despite improvement in surgical and oncological techniques. However, the literature review supports a growing evidence that recent developments in the multidisciplinary care account for constant improvements of survival and quality of life.
Collapse
Affiliation(s)
- Domenico Murrone
- Service of Neurosurgery, "Di Venere" Hospital of Bari, Bari, Italy
| | - Rodolfo Maduri
- Department of Clinical Neurosciences, Service of Neurosurgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Afif Afif
- Service of Neurosurgery A, "Pierre Wertheimer" Neurological Neurosurgical Hospital of Lyon, Lyon, France
| | - Domenico Chirchiglia
- Department of Medical Sciences, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Isabelle Pelissou-Guyotat
- Service of Neurosurgery A, "Pierre Wertheimer" Neurological Neurosurgical Hospital of Lyon, Lyon, France
| | - Jacques Guyotat
- Service of Neurosurgery A, "Pierre Wertheimer" Neurological Neurosurgical Hospital of Lyon, Lyon, France
| | - Francesco Signorelli
- Department of Basic Medical Sciences, Neurosciences and Sense Organs "Aldo Moro" University, Bari, Italy -
| |
Collapse
|
10
|
Awake High-Flow Extracranial to Intracranial Bypass for Complex Cerebral Aneurysms: Institutional Clinical Trial Results. World Neurosurg 2017; 105:557-567. [PMID: 28416411 DOI: 10.1016/j.wneu.2017.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/01/2017] [Accepted: 04/05/2017] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Assess the potential added benefit to patient outcomes of "awake" neurological testing when compared with standard neurophysiologic testing performed under general endotracheal anesthesia. METHODS Prospective study of 30 consecutive adult patients who underwent awake high flow extracranial to intracranial (HFEC-IC) bypass. Clinical neurological and neurophysiologic findings were recorded. Primary outcome measures were the incidence of stroke/cerebrovascular accident (CVA), length of stay, discharge to rehabilitation, 30-day modified Rankin scale score, and death. An analysis was also performed of a retrospective control cohort (n = 110 patients who underwent HFEC-IC for internal carotid artery (ICA) aneurysms under standard general endotracheal anesthesia). RESULTS Five patients (16.6%) developed clinical awake neurological changes (4, contralateral hemiparesis; 1, ipsilateral visual changes) during the 10-minute ICA occlusion test. These patients had 2 kinks in the graft, 1 vasospasm, 1 requiring reconstruction of the distal anastomosis, and 1 developed blurring of vision that reversed after the removal of the distal permanent clip on the ICA. Three of these 5 patients had asynchronous clinical "awake" neurological and neurophysiologic changes. Two patients (7%) developed CVA. Median length of stay was 4 days. Twenty-eight of 30 patients were discharged to home. Median modified Rankin scale score was 1. There were no deaths in this series. Absolute risk reduction in the awake craniotomy group (n = 30) relative to control retrospective group (n = 110) was 7% for CVA, 9% for discharge to rehabilitation, and 10% for graft patency. CONCLUSIONS Temporary ICA occlusion during HFEC-IC bypass for ICA aneurysms in conjunction with awake intraoperative clinical testing was effective in detecting a subset of patients (n = 3, 10%) in whom neurological deficit was not detected by neurophysiologic monitoring alone.
Collapse
|
11
|
Freyschlag CF, Kerschbaumer J, Eisner W, Pinggera D, Brawanski KR, Petr O, Bauer M, Grams AE, Bodner T, Seiz M, Thomé C. Optical Neuronavigation without Rigid Head Fixation During Awake Surgery. World Neurosurg 2016; 97:669-673. [PMID: 27989983 DOI: 10.1016/j.wneu.2016.10.091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/18/2016] [Accepted: 10/20/2016] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Optical neuronavigation without rigid pin fixation of the head may lead to inaccurate results because of the patient's movements during awake surgery. In this study, we report our results using a skull-mounted reference array for optical tracking in patients undergoing awake craniotomy for eloquent gliomas. METHODS Between March 2013 and December 2014, 18 consecutive patients (10 men, 8 women) with frontotemporal (n = 16) or frontoparietal (perirolandic; n = 2) lesions underwent awake craniotomy without rigid pin fixation. All patients had a skull-mounted reference array for optical tracking placed on the forehead. Accuracy of navigation was determined with pointer tip deviation measurements on superficial and bony anatomic structures. Good accuracy was defined as a tip deviation <2 mm. RESULTS Gross total resection (>98%) was achieved in 7 patients (38%); >90% of tumor was resected in 8 patients (44%). In 3 patients, only subtotal resection or biopsy was performed secondary to stimulation results. In all patients, good accuracy of the optical neuronavigation system could be demonstrated without intraoperative peculiarities or complications. The reference array had to be repositioned because of loosening in 1 patient. Neuronavigation could be reliably applied to support stimulation-based resection. CONCLUSIONS A skull-mounted reference array is a simple and safe method for optical neuronavigation tracking without rigid pin fixation of the patient's head.
Collapse
Affiliation(s)
| | | | - Wilhelm Eisner
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniel Pinggera
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Ondra Petr
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Marlies Bauer
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Astrid E Grams
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Bodner
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Marcel Seiz
- Department of Neurosurgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
Abdulrauf SI, Vuong P, Patel R, Sampath R, Ashour AM, Germany LM, Lebovitz J, Brunson C, Nijjar Y, Dryden JK, Khan MQ, Stefan MG, Wiley E, Cleary RT, Reis C, Walsh J, Buchanan P. "Awake" clipping of cerebral aneurysms: report of initial series. J Neurosurg 2016; 127:311-318. [PMID: 27767401 DOI: 10.3171/2015.12.jns152140] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Risk of ischemia during aneurysm surgery is significantly related to temporary clipping time and final clipping that might incorporate a perforator. In this study, the authors attempted to assess the potential added benefit to patient outcomes of "awake" neurological testing when compared with standard neurophysiological testing performed under general anesthesia. The procedure is performed after the induction of conscious sedation, and for the neurological testing, the patient is fully awake. METHODS The authors conducted an institutional review board-approved prospective study of clipping unruptured intracranial aneurysms (UIAs) in 30 consecutive adult patients who underwent awake clipping. The end points were the incidence of stroke/cerebrovascular accident (CVA), death, discharge to a long-term facility, length of stay, and 30-day modified Rankin Scale score. All clinical and neurophysiological intraoperative monitoring data were recorded. RESULTS The median patient age was 52 years (range 27-63 years); 19 (63%) female and 11 (37%) male patients were included. Twenty-seven (90%) aneurysms were anterior, and 3 (10%) were posterior circulation aneurysms. Five (17%) had been coiled previously, 3 (10%) had been clipped previously, 2 (7%) were partially calcified, and 2 (7%) were fusiform aneurysms. Three patients developed synchronous clinical neurological and neurophysiological changes during temporary clipping with consequent removal of the temporary clip and reversal of those clinical and neurophysiological changes. Three patients developed asynchronous clinical neurological and neurophysiological changes. These 3 patients developed hemiparesis without changes in neurophysiological monitoring results. One patient developed linked clinical neurological and neurophysiological changes during final clipping that were not reversed by reapplication of the clip, and the patient had a CVA. Four patients with internal carotid artery ophthalmic segment aneurysms underwent visual testing with final clipping, and 1 of these patients required repositioning of the clip. Three patients who required permanent occlusion of a vessel as part of their aneurysm treatment underwent a 10-minute intraoperative clinical respective-vessel test occlusion. The median length of stay was 3 days (range 1-5 days). The median modified Rankin Scale score was 1 (range 0-3). All of the patients were discharged to home from the hospital except for 1 who developed a CVA and was discharged to a rehabilitation facility. There were no deaths in this series. CONCLUSIONS The 3 patients who developed neurological deterioration without a concomitant neurophysiological finding during temporary clipping revealed a potential advantage of awake aneurysm surgery (i.e., in decreasing the risk of ischemic injury).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jodi Walsh
- Saint Louis University Hospital Database
| | - Paula Buchanan
- Saint Louis University Center for Outcomes Research, St. Louis University, Missouri
| |
Collapse
|
13
|
Sollmann N, Kubitscheck A, Maurer S, Ille S, Hauck T, Kirschke JS, Ringel F, Meyer B, Krieg SM. Preoperative language mapping by repetitive navigated transcranial magnetic stimulation and diffusion tensor imaging fiber tracking and their comparison to intraoperative stimulation. Neuroradiology 2016; 58:807-18. [PMID: 27079196 DOI: 10.1007/s00234-016-1685-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/04/2016] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Repetitive navigated transcranial magnetic stimulation (rTMS) can be used for preoperative language mapping, but it still suffers from comparatively high sensitivity and low specificity when compared to direct cortical stimulation (DCS). Therefore, this study evaluates whether the additional consideration of rTMS-based diffusion tensor imaging fiber tracking (DTI FT) for identifying language-positive brain regions improves specificity when compared to DCS. METHODS We performed rTMS, rTMS-based DTI FT, and DCS during awake surgery combined with object naming in 20 patients suffering from left-sided perisylvian brain lesions. For rTMS, different error rate thresholds (ERTs) and error types were considered, and DTI FT was conducted with individualized fractional anisotropy thresholds (FATs). Then, receiver operating characteristics (ROC) for rTMS vs. DCS, rTMS-based DTI FT vs. DCS, and rTMS spots confirmed by rTMS-based DTI FT vs. DCS were calculated. RESULTS In general, rTMS vs. DCS was in good accordance with previous literature (sensitivity/specificity: 92.7/13.3 % for all naming errors without ERT). In addition, rTMS-based DTI FT vs. DCS led to balanced results when tracking was based on all errors as well (sensitivity/specificity: 62.8/64.3 % for 100 % FAT). However, rTMS combined with rTMS-based DTI FT vs. DCS did not lead to any improvement in specificity when compared to rTMS vs. DCS alone. CONCLUSION The additional use of rTMS-based DTI FT to rTMS did not improve the identification of DCS-positive language areas during awake surgery. Yet, concerning rTMS-based DTI FT, this new technique must be validated itself by intraoperative subcortical stimulation.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, München, 81675, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Antonia Kubitscheck
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, München, 81675, Germany
| | - Stefanie Maurer
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, München, 81675, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Sebastian Ille
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, München, 81675, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Theresa Hauck
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, München, 81675, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Jan S Kirschke
- Section of Neuroradiology, Department of Radiology, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Florian Ringel
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, München, 81675, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, München, 81675, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, München, 81675, Germany. .,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, München, Germany.
| |
Collapse
|