1
|
Oshima S, Kim A, Sun XR, Rifi Z, Cross KA, Fu KA, Salamon N, Ellingson BM, Bari AA, Yao J. Predicting Post-Operative Side Effects in VIM MRgFUS Based on THalamus Optimized Multi Atlas Segmentation (THOMAS) on White-Matter-Nulled MRI: A Retrospective Study. AJNR Am J Neuroradiol 2025; 46:330-340. [PMID: 39730158 PMCID: PMC11878955 DOI: 10.3174/ajnr.a8448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/01/2024] [Indexed: 12/29/2024]
Abstract
BACKGROUND AND PURPOSE Precise and individualized targeting of the ventral intermediate thalamic nucleus for the MR-guided focused ultrasound is crucial for enhancing treatment efficacy and avoiding undesirable side effects. In this study, we tested the hypothesis that the spatial relationships between Thalamus Optimized Multi Atlas Segmentation derived segmentations and the post-focused ultrasound lesion can predict post-operative side effects in patients treated with MR-guided focused ultrasound. MATERIALS AND METHODS We retrospectively analyzed 30 patients (essential tremor, n = 26; tremor-dominant Parkinson's disease, n = 4) who underwent unilateral ventral intermediate thalamic nucleus focused ultrasound treatment. We created ROIs of coordinate-based indirect treatment target, focused ultrasound-induced lesion, and thalamus and ventral intermediate thalamic nucleus segmentations. We extracted imaging features including 1) focused ultrasound-induced lesion volumes, 2) overlap between lesions and thalamus and ventral intermediate thalamic nucleus segmentations, 3) distance between lesions and ventral intermediate thalamic nucleus segmentation and 4) distance between lesions and the indirect standard target. These imaging features were compared between patients with and without post-operative gait/balance side effects using Wilcoxon rank-sum test. Multivariate prediction models of side effects based on the imaging features were evaluated using the receiver operating characteristic analyses. RESULTS Patients with self-reported gait/balance side effects had a significantly larger extent of focused ultrasound-induced edema, a smaller fraction of the lesion within the ventral intermediate thalamic nucleus segmentation, a larger fraction of the off-target lesion outside the thalamus segmentation, a more inferior centroid of the lesion from the ventral intermediate thalamic nucleus segmentation, and a larger distance between the centroid of the lesion and ventral intermediate thalamic nucleus segmentation (p < 0.05). Similar results were found for exam-based side effects. Multivariate regression models based on the imaging features achieved areas under the curve of 0.99 (95% CI: 0.88 to 1.00) and 0.96 (95% CI: 0.73 to 1.00) for predicting self-reported and exam-based side effects, respectively. CONCLUSIONS Thalamus Optimized Multi Atlas Segmentation-based patient-specific segmentation of the ventral intermediate thalamic nucleus can predict post-operative side effects, which has implications for aiding the direct targeting of MR-guided focused ultrasound and reducing side effects.
Collapse
Affiliation(s)
- Sonoko Oshima
- From the UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers (S.O., A.K., B.M.E., J.Y.), University of California, Los Angeles, Los Angeles, California
- Department of Radiological Sciences (S.O., N.S., B.M.E., J.Y.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Asher Kim
- From the UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers (S.O., A.K., B.M.E., J.Y.), University of California, Los Angeles, Los Angeles, California
- Department of Bioengineering (A.K., B.M.E., J.Y.), Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, California
| | - Xiaonan R Sun
- Department of Neurosurgery (X.R.S., Z.R., B.M.E., A.A.B.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Ziad Rifi
- Department of Neurosurgery (X.R.S., Z.R., B.M.E., A.A.B.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Katy A Cross
- Department of Neurology (K.A.C., K.A.F.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Katherine A Fu
- Department of Neurology (K.A.C., K.A.F.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Noriko Salamon
- Department of Radiological Sciences (S.O., N.S., B.M.E., J.Y.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Benjamin M Ellingson
- From the UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers (S.O., A.K., B.M.E., J.Y.), University of California, Los Angeles, Los Angeles, California
- Department of Radiological Sciences (S.O., N.S., B.M.E., J.Y.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Bioengineering (A.K., B.M.E., J.Y.), Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, California
- Department of Neurosurgery (X.R.S., Z.R., B.M.E., A.A.B.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Psychiatry and Biobehavioral Sciences (B.M.E.), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Ausaf A Bari
- Department of Neurosurgery (X.R.S., Z.R., B.M.E., A.A.B.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Jingwen Yao
- From the UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers (S.O., A.K., B.M.E., J.Y.), University of California, Los Angeles, Los Angeles, California
- Department of Radiological Sciences (S.O., N.S., B.M.E., J.Y.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Bioengineering (A.K., B.M.E., J.Y.), Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
2
|
Stenmark Persson R, Blomstedt Y, Fytagoridis A, Hariz M, Blomstedt P. Awake versus asleep deep brain stimulation targeting the caudal zona incerta for essential tremor. NPJ Parkinsons Dis 2024; 10:226. [PMID: 39578443 PMCID: PMC11584744 DOI: 10.1038/s41531-024-00833-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024] Open
Abstract
To compare awake and asleep deep brain stimulation (DBS) surgery for Essential Tremor (ET), we conducted this retrospective cohort study of patients consecutively operated with DBS targeting the caudal Zona incerta (cZi). 37 underwent surgery awake and 55 asleep. Tremor before surgery and on/off stimulation one year after surgery were evaluated using the Essential Tremor Rating Scale (ETRS). Procedural time, electrode localization, stimulation parameters and adverse events were noted and compared. ETRS scores were similar at baseline between the groups except for contralateral arm tremor, which was slightly worse in the awake group. Total ETRS, contralateral arm tremor and activities of daily living scores showed no significant difference between the groups on-stimulation at one-year follow-up. Compared to the awake group, the asleep group had shorter procedural time and lower stimulation parameters. There were no intracranial haemorrhages nor surgery site-infections. Both groups showed a good improvement of tremor at one-year follow-up. Image-guided DBS surgery targeting the cZi enables safe and efficient asleep surgery for ET.
Collapse
Affiliation(s)
| | - Yulia Blomstedt
- Department of Clinical Science, Neurosciences, Umeå University, Umea, Sweden
- Department of Public Health and Clinical Medicine, Umeå University, Umea, Sweden
| | - Anders Fytagoridis
- Department of Clinical Neuroscience, Neurosurgery, Karolinska Institute, Stockholm, Sweden
| | - Marwan Hariz
- Department of Clinical Science, Neurosciences, Umeå University, Umea, Sweden
- UCL Queen Square Institute of Neurology, London, UK
| | - Patric Blomstedt
- Department of Clinical Science, Neurosciences, Umeå University, Umea, Sweden
| |
Collapse
|
3
|
Pérez-García C, López-Frías A, Arrazola J, Gil L, García-Ramos R, Fernández Revuelta A, Alonso-Frech F, López Valdés E, Trondin A, Yus-Fuertes M. Four-tract probabilistic tractography technique for target selection in essential tremor treatment with magnetic resonance-guided focused ultrasound. Eur Radiol 2024; 34:5167-5178. [PMID: 37950079 DOI: 10.1007/s00330-023-10431-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/20/2023] [Accepted: 09/30/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVES Magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy is a novel, minimally invasive ablative treatment for essential tremor (ET). The use of a four-tract probabilistic tractography technique, targeting the intersection between the dentato-rubro-thalamic tracts (both decussating and non-decussating), while evaluating the corticospinal tract and the medial lemniscus, may obtain immediate clinical results with reduced adverse events. Our aim is to present our experience with the four-tract technique for patients undergoing ET treatment with MRgFUS. METHODS Retrospective analysis of a prospective database of consecutive patients undergoing ET treatment in a single center from February 2022 to February 2023. Procedural parameters were collected, and tremor improvement was assessed with the Clinical Rating Scale for Tremor (CRST) at baseline and at 3 and 6 months. Adverse events were also reported. RESULTS Forty-three patients (median age, 72 years [interquartile range, 66-76]; 22 females) were evaluated. Tremor improved significatively in all CRST subsections at 3 months, including the CRST part A + B treated hand tremor (22 [19-27] vs 4 [2-7], p < 0.001) and CRST part C (16 [13-19] vs 3 [1-4], p < 0.001). Differences persisted significant at 6 months. Adverse events were few (4.1% of paresthesias and 12.5% of objective gait disturbance at follow-up) and recorded as mild. The median number of sonications was 7 [6-8] and mean operative time 68.7 ± 24.2 min. CONCLUSION Our data show support for the feasibility and benefits of systematic targeting approach with four-tract probabilistic tractography for treating ET using MRgFUS. CLINICAL RELEVANCE STATEMENT An approach with four-tract probabilistic tractography for treating essential tremor (ET) patients with magnetic resonance-guided focused ultrasound decreases interindividual variability with good clinical outcomes, low number of sonications, few adverse effects, and short procedure times. KEY POINTS • The optimal target for the treatment of essential tremor with MR-guided focused ultrasound remains unknown. • Four-tract probabilistic tractography is a feasible technique that reduces interindividual variability, with good clinical results, few side effects, and short operative time. • The four-tract tractography approach can be performed using different MRI scanners and post-processing software in comparison with the initial description of the technique.
Collapse
Affiliation(s)
- Carlos Pérez-García
- Department of Interventional Neuroradiology, Hospital Clínico Universitario San Carlos, 28040, Madrid, Spain.
| | - Alfonso López-Frías
- Department of Interventional Neuroradiology, Hospital Clínico Universitario San Carlos, 28040, Madrid, Spain
| | - Juan Arrazola
- Department of Radiology, Hospital Clínico Universitario San Carlos, Madrid, Spain
| | - Lidia Gil
- Department of Radiology, Hospital Clínico Universitario San Carlos, Madrid, Spain
| | - Rocio García-Ramos
- Department of Neurology, Hospital Clínico Universitario San Carlos, Madrid, Spain
| | | | | | - Eva López Valdés
- Department of Neurology, Hospital Clínico Universitario San Carlos, Madrid, Spain
| | - Albert Trondin
- Department of Neurosurgery, Hospital Clínico Universitario San Carlos, Madrid, Spain
| | - Miguel Yus-Fuertes
- Department of Neuroradiology, Hospital Clínico Universitario San Carlos, Madrid, Spain
| |
Collapse
|
4
|
Bancel T, Béranger B, Daniel M, Didier M, Santin M, Rachmilevitch I, Shapira Y, Tanter M, Bardinet E, Fernandez Vidal S, Attali D, Galléa C, Dizeux A, Vidailhet M, Lehéricy S, Grabli D, Pyatigorskaya N, Karachi C, Hainque E, Aubry JF. Sustained reduction of essential tremor with low-power non-thermal transcranial focused ultrasound stimulations in humans. Brain Stimul 2024; 17:636-647. [PMID: 38734066 DOI: 10.1016/j.brs.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Transcranial ultrasound stimulation (TUS) is a non-invasive brain stimulation technique; when skull aberrations are compensated for, this technique allows, with millimetric accuracy, circumvention of the invasive surgical procedure associated with deep brain stimulation (DBS) and the limited spatial specificity of transcranial magnetic stimulation. OBJECTIVE /hypothesis: We hypothesize that MR-guided low-power TUS can induce a sustained decrease of tremor power in patients suffering from medically refractive essential tremor. METHODS The dominant hand only was targeted, and two anatomical sites were sonicated in this exploratory study: the ventral intermediate nucleus of the thalamus (VIM) and the dentato-rubro-thalamic tract (DRT). Patients (N = 9) were equipped with MR-compatible accelerometers attached to their hands to monitor their tremor in real-time during TUS. RESULTS VIM neurostimulations followed by a low-duty cycle (5 %) DRT stimulation induced a substantial decrease in the tremor power in four patients, with a minimum of 89.9 % reduction when compared with the baseline power a few minutes after the DRT stimulation. The only patient stimulated in the VIM only and with a low duty cycle (5 %) also experienced a sustained reduction of the tremor (up to 93.4 %). Four patients (N = 4) did not respond. The temperature at target was 37.2 ± 1.4 °C compared to 36.8 ± 1.4 °C for a 3 cm away control point. CONCLUSIONS MR-guided low power TUS can induce a substantial and sustained decrease of tremor power. Follow-up studies need to be conducted to reproduce the effect and better to understand the variability of the response amongst patients. MR thermometry during neurostimulations showed no significant thermal rise, supporting a mechanical effect.
Collapse
Affiliation(s)
- Thomas Bancel
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR 8063, PSL University, Paris, France
| | - Benoît Béranger
- ICM-Paris Brain Institute, Centre de NeuroImagerie de Recherche-CENIR, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France
| | - Maxime Daniel
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR 8063, PSL University, Paris, France
| | - Mélanie Didier
- ICM-Paris Brain Institute, Centre de NeuroImagerie de Recherche-CENIR, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France
| | - Mathieu Santin
- ICM-Paris Brain Institute, Centre de NeuroImagerie de Recherche-CENIR, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France
| | | | | | - Mickael Tanter
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR 8063, PSL University, Paris, France
| | - Eric Bardinet
- ICM-Paris Brain Institute, Centre de NeuroImagerie de Recherche-CENIR, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France
| | - Sara Fernandez Vidal
- ICM-Paris Brain Institute, Centre de NeuroImagerie de Recherche-CENIR, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France
| | - David Attali
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR 8063, PSL University, Paris, France; Université Paris Cité, GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014, Paris, France
| | - Cécile Galléa
- ICM-Paris Brain Institute, Centre de NeuroImagerie de Recherche-CENIR, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France
| | - Alexandre Dizeux
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR 8063, PSL University, Paris, France
| | - Marie Vidailhet
- ICM-Paris Brain Institute, Centre de NeuroImagerie de Recherche-CENIR, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France; Department of Neurology, Hôpital de la Pitié Salpêtrière, Sorbonne Université, AP-HP, Paris, France
| | - Stéphane Lehéricy
- ICM-Paris Brain Institute, Centre de NeuroImagerie de Recherche-CENIR, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France; Department of Neuroradiology, Hôpital de la Pitié Salpêtrière, Sorbonne Université, AP-HP, Paris, France
| | - David Grabli
- Department of Neurology, Hôpital de la Pitié Salpêtrière, Sorbonne Université, AP-HP, Paris, France
| | - Nadya Pyatigorskaya
- ICM-Paris Brain Institute, Centre de NeuroImagerie de Recherche-CENIR, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France; Department of Neuroradiology, Hôpital de la Pitié Salpêtrière, Sorbonne Université, AP-HP, Paris, France
| | - Carine Karachi
- Department of Neurosurgery, Hôpital de la Pitié Salpêtrière, Sorbonne Université, AP-HP, Paris, France
| | - Elodie Hainque
- Department of Neurology, Hôpital de la Pitié Salpêtrière, Sorbonne Université, AP-HP, Paris, France
| | - Jean-François Aubry
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR 8063, PSL University, Paris, France.
| |
Collapse
|
5
|
Sajonz BEA, Frommer ML, Reisert M, Blazhenets G, Schröter N, Rau A, Prokop T, Reinacher PC, Rijntjes M, Urbach H, Meyer PT, Coenen VA. Disbalanced recruitment of crossed and uncrossed cerebello-thalamic pathways during deep brain stimulation is predictive of delayed therapy escape in essential tremor. Neuroimage Clin 2024; 41:103576. [PMID: 38367597 PMCID: PMC10944187 DOI: 10.1016/j.nicl.2024.103576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/23/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Thalamic deep brain stimulation (DBS) is an efficacious treatment for drug-resistant essential tremor (ET) and the dentato-rubro-thalamic tract (DRT) constitutes an important target structure. However, up to 40% of patients habituate and lose treatment efficacy over time, frequently accompanied by a stimulation-induced cerebellar syndrome. The phenomenon termed delayed therapy escape (DTE) is insufficiently understood. Our previous work showed that DTE clinically is pronounced on the non-dominant side and suggested that differential involvement of crossed versus uncrossed DRT (DRTx/DRTu) might play a role in DTE development. METHODS We retrospectively enrolled right-handed patients under bilateral thalamic DBS >12 months for ET from a cross-sectional study. They were characterized with the Fahn-Tolosa-Marin Tremor Rating Scale (FTMTRS) and Scale for the Assessment and Rating of Ataxia (SARA) scores at different timepoints. Normative fiber tractographic evaluations of crossed and uncrossed cerebellothalamic pathways and volume of activated tissue (VAT) studies together with [18F]Fluorodeoxyglucose positron emission tomography were applied. RESULTS A total of 29 patients met the inclusion criteria. Favoring DRTu over DRTx in the non-dominant VAT was associated with DTE (R2 = 0.4463, p < 0.01) and ataxia (R2 = 0.2319, p < 0.01). Moreover, increasing VAT size on the right (non-dominant) side was associated at trend level with more asymmetric glucose metabolism shifting towards the right (dominant) dentate nucleus. CONCLUSION Our results suggest that a disbalanced recruitment of DRTu in the non-dominant VAT induces detrimental stimulation effects on the dominant cerebellar outflow (together with contralateral stimulation) leading to DTE and thus hampering the overall treatment efficacy.
Collapse
Affiliation(s)
- Bastian E A Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.
| | - Marvin L Frommer
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Ganna Blazhenets
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Nils Schröter
- Department of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Alexander Rau
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Thomas Prokop
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Peter C Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; Fraunhofer Institute for Laser Technology (ILT), Aachen, Germany
| | - Michel Rijntjes
- Department of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Philipp T Meyer
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; Center for Deep Brain Stimulation, University of Freiburg, Germany
| |
Collapse
|
6
|
Carl B, Bopp M, SAß B, Waldthaler J, Timmermann L, Nimsky C. Visualization of volume of tissue activated modeling in a clinical planning system for deep brain stimulation. J Neurosurg Sci 2024; 68:59-69. [PMID: 32031356 DOI: 10.23736/s0390-5616.19.04827-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Pathway activating models try to describe stimulation spread in deep brain stimulation (DBS). Volume of tissue activated (VTA) models are simplified model variants allowing faster and easier computation. Our study aimed to investigate, how VTA visualization can be integrated into a clinical workflow applying directional electrodes using a standard clinical DBS planning system. METHODS Twelve patients underwent DBS, using directional electrodes for bilateral subthalamic nucleus (STN) stimulation in Parkinson's disease. Preoperative 3T magnetic resonance imaging was used for automatic visualization of the STN outline, as well as for fiber tractography. Intraoperative computed tomography was used for automatic lead detection. The Guide XT software, closely integrated into the DBS planning software environment, was used for VTA calculation and visualization. RESULTS VTA visualization was possible in all cases. The percentage of VTA covering the STN volume ranged from 25% to 100% (mean: 60±25%) on the left side and from 0% to 98% (51±30%) on the right side. The mean coordinate of all VTA centers was: 12.6±1.2 mm lateral, 2.1±1.2 mm posterior, and 2.3±1.4 mm inferior in relation to the midcommissural point. Stimulation effects can be compared to the VTA visualization in relation to surrounding structures, potentially facilitating programming, which might be especially beneficial in case of suboptimal lead placement. CONCLUSIONS VTA visualization in a clinical planning system allows an intuitive adjustment of the stimulation parameters, supports programming, and enhances understanding of effects and side effects of DBS.
Collapse
Affiliation(s)
- Barbara Carl
- Department of Neurosurgery, University of Marburg, Marburg, Germany
- Department of Neurosurgery, Helios Dr. Horst Schmidt Kliniken, Wiesbaden, Germany
| | - Miriam Bopp
- Department of Neurosurgery, University of Marburg, Marburg, Germany
- Marburg Center for Mind, Brain and Behavior (MCMBB), Marburg, Germany
| | - Benjamin SAß
- Department of Neurosurgery, University of Marburg, Marburg, Germany
| | | | - Lars Timmermann
- Marburg Center for Mind, Brain and Behavior (MCMBB), Marburg, Germany
- Department of Neurology, University Marburg, Marburg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, University of Marburg, Marburg, Germany -
- Marburg Center for Mind, Brain and Behavior (MCMBB), Marburg, Germany
| |
Collapse
|
7
|
Middlebrooks EH, Popple RA, Greco E, Okromelidze L, Walker HC, Lakhani DA, Anderson AR, Thomas EM, Deshpande HD, McCullough BA, Stover NP, Sung VW, Nicholas AP, Standaert DG, Yacoubian T, Dean MN, Roper JA, Grewal SS, Holland MT, Bentley JN, Guthrie BL, Bredel M. Connectomic Basis for Tremor Control in Stereotactic Radiosurgical Thalamotomy. AJNR Am J Neuroradiol 2023; 44:157-164. [PMID: 36702499 PMCID: PMC9891328 DOI: 10.3174/ajnr.a7778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/30/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND AND PURPOSE Given the increased use of stereotactic radiosurgical thalamotomy and other ablative therapies for tremor, new biomarkers are needed to improve outcomes. Using resting-state fMRI and MR tractography, we hypothesized that a "connectome fingerprint" can predict tremor outcomes and potentially serve as a targeting biomarker for stereotactic radiosurgical thalamotomy. MATERIALS AND METHODS We evaluated 27 patients who underwent unilateral stereotactic radiosurgical thalamotomy for essential tremor or tremor-predominant Parkinson disease. Percentage postoperative improvement in the contralateral limb Fahn-Tolosa-Marin Clinical Tremor Rating Scale (TRS) was the primary end point. Connectome-style resting-state fMRI and MR tractography were performed before stereotactic radiosurgery. Using the final lesion volume as a seed, "connectivity fingerprints" representing ideal connectivity maps were generated as whole-brain R-maps using a voxelwise nonparametric Spearman correlation. A leave-one-out cross-validation was performed using the generated R-maps. RESULTS The mean improvement in the contralateral tremor score was 55.1% (SD, 38.9%) at a mean follow-up of 10.0 (SD, 5.0) months. Structural connectivity correlated with contralateral TRS improvement (r = 0.52; P = .006) and explained 27.0% of the variance in outcome. Functional connectivity correlated with contralateral TRS improvement (r = 0.50; P = .008) and explained 25.0% of the variance in outcome. Nodes most correlated with tremor improvement corresponded to areas of known network dysfunction in tremor, including the cerebello-thalamo-cortical pathway and the primary and extrastriate visual cortices. CONCLUSIONS Stereotactic radiosurgical targets with a distinct connectivity profile predict improvement in tremor after treatment. Such connectomic fingerprints show promise for developing patient-specific biomarkers to guide therapy with stereotactic radiosurgical thalamotomy.
Collapse
Affiliation(s)
- E H Middlebrooks
- From the Departments of Radiology (E.H.M., E.G., L.O., D.A.L.)
- Neurosurgery (E.H.M., S.S.G.), Mayo Clinic, Jacksonville, Florida
| | - R A Popple
- Departments of Radiation Oncology (R.A.P., A.R.A., E.M.T., M.B.)
| | - E Greco
- From the Departments of Radiology (E.H.M., E.G., L.O., D.A.L.)
| | - L Okromelidze
- From the Departments of Radiology (E.H.M., E.G., L.O., D.A.L.)
| | - H C Walker
- Neurology (H.C.W., B.A.M., N.P.S., V.W.S., A.P.N., D.G.S., T.Y., M.N.D.)
| | - D A Lakhani
- From the Departments of Radiology (E.H.M., E.G., L.O., D.A.L.)
- Department of Radiology (D.A.L.), West Virginia University, Morgantown, West Virginia
| | - A R Anderson
- Departments of Radiation Oncology (R.A.P., A.R.A., E.M.T., M.B.)
| | - E M Thomas
- Departments of Radiation Oncology (R.A.P., A.R.A., E.M.T., M.B.)
- Department of Radiation Oncology (E.M.T.), Ohio State University, Columbus, Ohio
| | | | - B A McCullough
- Neurology (H.C.W., B.A.M., N.P.S., V.W.S., A.P.N., D.G.S., T.Y., M.N.D.)
| | - N P Stover
- Neurology (H.C.W., B.A.M., N.P.S., V.W.S., A.P.N., D.G.S., T.Y., M.N.D.)
| | - V W Sung
- Neurology (H.C.W., B.A.M., N.P.S., V.W.S., A.P.N., D.G.S., T.Y., M.N.D.)
| | - A P Nicholas
- Neurology (H.C.W., B.A.M., N.P.S., V.W.S., A.P.N., D.G.S., T.Y., M.N.D.)
| | - D G Standaert
- Neurology (H.C.W., B.A.M., N.P.S., V.W.S., A.P.N., D.G.S., T.Y., M.N.D.)
| | - T Yacoubian
- Neurology (H.C.W., B.A.M., N.P.S., V.W.S., A.P.N., D.G.S., T.Y., M.N.D.)
| | - M N Dean
- Neurology (H.C.W., B.A.M., N.P.S., V.W.S., A.P.N., D.G.S., T.Y., M.N.D.)
| | - J A Roper
- School of Kinesiology (J.A.R.), Auburn University, Auburn, Alabama
| | - S S Grewal
- Neurosurgery (E.H.M., S.S.G.), Mayo Clinic, Jacksonville, Florida
| | - M T Holland
- Neurosurgery (M.T.H., J.N.B., B.L.G.), University of Alabama at Birmingham, Birmingham, Alabama
| | - J N Bentley
- Neurosurgery (M.T.H., J.N.B., B.L.G.), University of Alabama at Birmingham, Birmingham, Alabama
| | - B L Guthrie
- Neurosurgery (M.T.H., J.N.B., B.L.G.), University of Alabama at Birmingham, Birmingham, Alabama
| | - M Bredel
- Departments of Radiation Oncology (R.A.P., A.R.A., E.M.T., M.B.)
| |
Collapse
|
8
|
Sajonz BE, Frommer ML, Walz ID, Reisert M, Maurer C, Rijntjes M, Piroth T, Schröter N, Jenkner C, Reinacher PC, Brumberg J, Meyer PT, Blazhenets G, Coenen VA. Unravelling delayed therapy escape after thalamic deep brain stimulation for essential tremor? - Additional clinical and neuroimaging evidence. Neuroimage Clin 2022; 36:103150. [PMID: 35988341 PMCID: PMC9402391 DOI: 10.1016/j.nicl.2022.103150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/15/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Delayed therapy escape after thalamic deep brain stimulation (DBS) for essential tremor is a serious yet frequent condition. It is often difficult to detect this process at onset due to its gradual evolution. OBJECTIVE Here we aim to identify clinical and neuroimaging hallmarks of delayed therapy escape. METHODS We retrospectively studied operationalized and quantitative analyses of tremor and gait, as well as [18F]fluorodeoxyglucose (FDG) PET of 12 patients affected by therapy escape. All examinations were carried out with activated DBS (ON) and 72 h after deactivation (OFF72h); gait and tremor were also analyzed directly after deactivation (OFF0h). Changes of normalized glucose metabolism between stimulation conditions were assessed using within-subject analysis of variance and statistical parametric mapping. Additionally, a comparison to the [18F]FDG PET of an age-matched control group was performed. Exploratory correlation analyses were conducted with operationalized and parametric clinical data. RESULTS Of the immediately accessible parametric tremor data (i.e. ON or OFF0h) only the rebound (i.e. OFF0h) frequency of postural tremor showed possible correlations with signs of ataxia at ON. Regional glucose metabolism was significantly increased bilaterally in the thalamus and dentate nucleus in ON compared to OFF72h. No differences in regional glucose metabolism were found in patients in ON and OFF72h compared with the healthy controls. CONCLUSIONS Rebound frequency of postural tremor seems to be a good diagnostic marker for delayed therapy escape. Regional glucose metabolism suggests that this phenomenon may be associated with increased metabolic activity in the thalamus and dentate nucleus possibly due to antidromic stimulation effects. We see reasons to interpret the delayed therapy escape phenomenon as being related to long term and chronic DBS.
Collapse
Affiliation(s)
- Bastian E.A. Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany,Corresponding author at: Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Breisacher Strasse 64 – 79106 Freiburg, i.Br., Germany.
| | - Marvin L. Frommer
- Department of Stereotactic and Functional Neurosurgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Isabelle D. Walz
- Department of Neurology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany,Department of Sport and Sport Science, University of Freiburg, Freiburg im Breisgau, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Christoph Maurer
- Department of Neurology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Michel Rijntjes
- Department of Neurology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Tobias Piroth
- Department of Neurology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany,Department of Neurology, Kantonsspital Aarau, Aarau, Switzerland
| | - Nils Schröter
- Department of Neurology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Carolin Jenkner
- Clinical Trials Unit, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Peter C. Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany,Fraunhofer Institute for Laser Technology (ILT), Aachen, Germany
| | - Joachim Brumberg
- Department of Nuclear Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Philipp T. Meyer
- Department of Nuclear Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ganna Blazhenets
- Department of Nuclear Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Volker A. Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany,Center for Deep Brain Stimulation, University of Freiburg, Germany,Center for Basics in Neuromodulation (Neuromod Basics), Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
9
|
Kochanski RB, Slavin KV. The future perspectives of psychiatric neurosurgery. PROGRESS IN BRAIN RESEARCH 2022; 270:211-228. [PMID: 35396029 DOI: 10.1016/bs.pbr.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The future of psychiatric neurosurgery can be viewed from two separate perspectives: the immediate future and the distant future. Both show promise, but the treatment strategy for mental diseases and the technology utilized during these separate periods will likely differ dramatically. It can be expected that the initial advancements will be built upon progress of neuroimaging and stereotactic targeting while surgical technology becomes adapted to patient-specific symptomatology and structural/functional imaging parameters. This individualized approach has already begun to show significant promise when applied to deep brain stimulation for treatment-resistant depression and obsessive-compulsive disorder. If effectiveness of these strategies is confirmed by well designed, double-blind, placebo-controlled clinical studies, further technological advances will continue into the distant future, and will likely involve precise neuromodulation at the cellular level, perhaps using wireless technology with or without closed-loop design. This approach, being theoretically less invasive and carrying less risk, may ultimately propel psychiatric neurosurgery to the forefront in the treatment algorithm of mental illness. Despite prominent development of non-invasive therapeutic options, such as stereotactic radiosurgery or transcranial magnetic resonance-guided focused ultrasound, chances are there will still be a need in surgical management of patients with most intractable psychiatric conditions.
Collapse
Affiliation(s)
- Ryan B Kochanski
- Neurosurgery, Methodist Healthcare System, San Antonio, TX, United States
| | - Konstantin V Slavin
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, United States; Neurology Service, Jesse Brown Veterans Administration Medical Center, Chicago, IL, United States.
| |
Collapse
|
10
|
Connectivity correlates to predict essential tremor deep brain stimulation outcome: Evidence for a common treatment pathway. NEUROIMAGE-CLINICAL 2021; 32:102846. [PMID: 34624639 PMCID: PMC8503569 DOI: 10.1016/j.nicl.2021.102846] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/14/2021] [Accepted: 09/27/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND PURPOSE Deep brain stimulation (DBS) is the most common surgical treatment for essential tremor (ET), yet there is variation in outcome and stimulation targets. This study seeks to consolidate proposed stimulation "sweet spots," as well as assess the value of structural connectivity in predicting treatment outcomes. MATERIALS AND METHODS Ninety-seven ET individuals with unilateral thalamic DBS were retrospectively included. Using normative brain connectomes, structural connectivity measures were correlated with the percentage improvement in contralateral tremor, based on the Fahn-Tolosa-Marin tremor rating scale (TRS), after parameter optimization (range 3.1-12.9 months) using a leave-one-out cross-validation in 83 individuals. The predictive feature map was used for cross-validation in a separate cohort of 14 ET individuals treated at another center. Lastly, estimated volumes of tissue activated (VTA) were used to assess a treatment "sweet spot," which was compared to seven previously reported stimulation sweet spots and their relationship to the tract identified by the predictive feature map. RESULTS In the training cohort, structural connectivity between the VTA and dentato-rubro-thalamic tract (DRTT) correlated with contralateral tremor improvement (R = 0.41; p < 0.0001). The same connectivity profile predicted outcomes in a separate validation cohort (R = 0.59; p = 0.028). The predictive feature map represented the anatomical course of the DRTT, and all seven analyzed sweet spots overlapped the predictive tract (DRTT). CONCLUSIONS Our results strongly support the possibility that structural connectivity is a predictor of contralateral tremor improvement in ET DBS. The results suggest the future potential for a patient-specific functionally based surgical target. Finally, the results showed convergence in "sweet spots" suggesting the importance of the DRTT to the outcome.
Collapse
|
11
|
Middlebrooks EH, Okromelidze L, Carter RE, Jain A, Lin C, Westerhold E, Peña AB, Quiñones-Hinojosa A, Uitti RJ, Grewal SS. Directed stimulation of the dentato-rubro-thalamic tract for deep brain stimulation in essential tremor: a blinded clinical trial. Neuroradiol J 2021; 35:203-212. [PMID: 34340623 DOI: 10.1177/19714009211036689] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Observational studies utilising diffusion tractography have suggested a common mechanism for tremor alleviation in deep brain stimulation for essential tremor: the decussating portion of the dentato-rubro-thalamic tract. We hypothesised that directional stimulation of the dentato-rubro-thalamic tract would result in greater tremor improvement compared to sham programming, as well as comparable improvement as more tedious standard-of-care programming. METHODS A prospective, blinded crossover trial was performed to assess the feasibility, safety and outcomes of programming based solely on dentato-rubro-thalamic tract anatomy. Using magnetic resonance imaging diffusion-tractography, the dentato-rubro-thalamic tract was identified and a connectivity-based treatment setting was derived by modelling a volume of tissue activated using directional current steering oriented towards the dentato-rubro-thalamic tract centre. A sham setting was created at approximately 180° opposite the connectivity-based treatment. Standard-of-care programming at 3 months was compared to connectivity-based treatment and sham settings that were blinded to the programmer. The primary outcome measure was percentage improvement in the Fahn-Tolosa-Marín tremor rating score compared to the preoperative baseline. RESULTS Among the six patients, tremor rating scores differed significantly among the three experimental conditions (P=0.030). The mean tremor rating score improvement was greater with the connectivity-based treatment settings (64.6% ± 14.3%) than with sham (44.8% ± 18.6%; P=0.031) and standard-of-care programming (50.7% ± 19.2%; P=0.062). The distance between the centre of the dentato-rubro-thalamic tract and the volume of tissue activated inversely correlated with the percentage improvement in the tremor rating score (R2=0.24; P=0.04). No significant adverse events were encountered. CONCLUSIONS Using a blinded, crossover trial design, we have shown the technical feasibility, safety and potential efficacy of connectivity-based stimulation settings in deep brain stimulation for treatment of essential tremor.
Collapse
Affiliation(s)
- Erik H Middlebrooks
- Department of Radiology, Mayo Clinic, USA.,Department of Neurosurgery, Mayo Clinic, USA
| | | | | | | | - Chen Lin
- Department of Radiology, Mayo Clinic, USA
| | | | | | | | | | | |
Collapse
|
12
|
Lehman VT, Lee KH, Klassen BT, Blezek DJ, Goyal A, Shah BR, Gorny KR, Huston J, Kaufmann TJ. MRI and tractography techniques to localize the ventral intermediate nucleus and dentatorubrothalamic tract for deep brain stimulation and MR-guided focused ultrasound: a narrative review and update. Neurosurg Focus 2021; 49:E8. [PMID: 32610293 DOI: 10.3171/2020.4.focus20170] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/07/2020] [Indexed: 11/06/2022]
Abstract
The thalamic ventral intermediate nucleus (VIM) can be targeted for treatment of tremor by several procedures, including deep brain stimulation (DBS) and, more recently, MR-guided focused ultrasound (MRgFUS). To date, such targeting has relied predominantly on coordinate-based or atlas-based techniques rather than directly targeting the VIM based on imaging features. While general regional differences of features within the thalamus and some related white matter tracts can be distinguished with conventional imaging techniques, internal nuclei such as the VIM are not discretely visualized. Advanced imaging methods such as quantitative susceptibility mapping (QSM) and fast gray matter acquisition T1 inversion recovery (FGATIR) MRI and high-field MRI pulse sequences that improve the ability to image the VIM region are emerging but have not yet been shown to have reliability and accuracy to serve as the primary method of VIM targeting. Currently, the most promising imaging approach to directly identify the VIM region for clinical purposes is MR diffusion tractography.In this review and update, the capabilities and limitations of conventional and emerging advanced methods for evaluation of internal thalamic anatomy are briefly reviewed. The basic principles of tractography most relevant to VIM targeting are provided for familiarization. Next, the key literature to date addressing applications of DTI and tractography for DBS and MRgFUS is summarized, emphasizing use of direct targeting. This literature includes 1-tract (dentatorubrothalamic tract [DRT]), 2-tract (pyramidal and somatosensory), and 3-tract (DRT, pyramidal, and somatosensory) approaches to VIM region localization through tractography.The authors introduce a 3-tract technique used at their institution, illustrating the oblique curved course of the DRT within the inferior thalamus as well as the orientation and relationship of the white matter tracts in the axial plane. The utility of this 3-tract tractography approach to facilitate VIM localization is illustrated with case examples of variable VIM location, targeting superior to the anterior commissure-posterior commissure plane, and treatment in the setting of pathologic derangement of thalamic anatomy. Finally, concepts demonstrated with these case examples and from the prior literature are synthesized to highlight several potential advantages of tractography for VIM region targeting.
Collapse
Affiliation(s)
| | | | | | | | - Abhinav Goyal
- 4Mayo Clinic College of Medicine, Rochester, Minnesota; and
| | - Bhavya R Shah
- 5Department of Radiology, UT Southwestern Medical Center, Dallas, Texas
| | | | | | | |
Collapse
|
13
|
Alho EJL, Fonoff ET, Di Lorenzo Alho AT, Nagy J, Heinsen H. Use of computational fluid dynamics for 3D fiber tract visualization on human high-thickness histological slices: histological mesh tractography. Brain Struct Funct 2021; 226:323-333. [PMID: 33389040 DOI: 10.1007/s00429-020-02187-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/24/2020] [Indexed: 12/21/2022]
Abstract
Understanding the intricate three-dimensional relationship between fiber bundles and subcortical nuclei is not a simple task. It is of paramount importance in neurosciences, especially in the field of functional neurosurgery. The current methods for in vivo and post mortem fiber tract visualization have shortcomings and contributions to the field are welcome. Several tracts were chosen to implement a new technique to help visualization of white matter tracts, using high-thickness histology and dark field images. Our study describes the use of computational fluid dynamic simulations for visualization of 3D fiber tracts segmented from dark field microscopy in high-thickness histological slices (histological mesh tractography). A post mortem human brain was MRI scanned prior to skull extraction, histologically processed and serially cut at 430 µm thickness as previously described by our group. High-resolution dark field images were used to segment the outlines of the structures. These outlines served as basis for the construction of a 3D structured mesh, were a Finite Volume Method (FVM) simulation of water flow was performed to generate streamlines representing the geometry. The simulations were accomplished by an open source computer fluid dynamics software. The resulting simulation rendered a realistic 3D impression of the segmented anterior commissure, the left anterior limb of the internal capsule, the left uncinate fascicle, and the dentato-rubral tracts. The results are in line with clinical findings, diffusion MR imaging and anatomical dissection methods.
Collapse
Affiliation(s)
- Eduardo Joaquim Lopes Alho
- Morphological Brain Research Unit, Department of Psychiatry, University of Würzburg, Würzburg, Germany. .,Division of Functional Neurosurgery, Department of Neurology, University of São Paulo Medical School, Rua Dr. Ovidio Pires de Campos, 785, São Paulo, 01060-970, Brazil. .,Laboratory for Medical Investigations 44, Department of Radiology, São Paulo Medical School, São Paulo, Brazil.
| | - Erich T Fonoff
- Division of Functional Neurosurgery, Department of Neurology, University of São Paulo Medical School, Rua Dr. Ovidio Pires de Campos, 785, São Paulo, 01060-970, Brazil
| | - Ana Tereza Di Lorenzo Alho
- Laboratory for Medical Investigations 44, Department of Radiology, São Paulo Medical School, São Paulo, Brazil
| | | | - Helmut Heinsen
- Morphological Brain Research Unit, Department of Psychiatry, University of Würzburg, Würzburg, Germany.,Laboratory for Medical Investigations 44, Department of Radiology, São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
14
|
Abdulbaki A, Kaufmann J, Galazky I, Buentjen L, Voges J. Neuromodulation of the subthalamic nucleus in Parkinson's disease: the effect of fiber tract stimulation on tremor control. Acta Neurochir (Wien) 2021; 163:185-195. [PMID: 33174115 PMCID: PMC7778622 DOI: 10.1007/s00701-020-04495-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/14/2020] [Indexed: 11/29/2022]
Abstract
Background Therapeutic effects of deep brain stimulation (DBS) of the subthalamic nucleus (STN) in Parkinson’s disease (PD) may in parts be attributed to the stimulation of white matter near the targeted structure. The dentato-rubro-thalamic (DRT) tract supposed to improve tremor control in patients with essential tremor could be one candidate structure. The aim of this study was to investigate the effect of stimulation proximity to the DRT on tremor control in PD patients treated with STN-DBS. Methods For this retrospective analysis, we included 36 consecutive patients (median age 65.5 years) treated with STN-DBS for disabling motor symptoms including tremor. Stereotactic implantation of DBS electrodes into the motor area of the STN was performed using direct MRI-based targeting and intraoperative microelectrode recording. Tremor severity was assessed preoperatively and at regular intervals postoperatively (Unified Parkinson’s Disease Rating Scale III). The DRT was visualized in 60 hemispheres after probabilistic fiber tracking (3-T MRI). The position of active electrode contacts was verified on intraoperative stereotactic X-rays and postoperative CT images after co-registration with 3D treatment planning MRI/CT images. We determined the shortest distance of active contacts to the ipsilateral DRT tracts on perpendicular view slices and correlated this value with tremor change percentage. Results Twelve patients had unilateral tremor only, and accordingly, 12 hemispheres were excluded from further imaging analysis. The remaining 60 hemispheres were associated with contralateral resting tremor. Active brain electrode contacts leading to resting tremor improvement (46 hemispheres) had a significantly shorter distance to the DRT (1.6 mm (0.9–2.1) [median (25th–75th percentiles)]) compared with contacts of non-responders (14 hemispheres, distance: 2.8 mm (2–4.6), p < 0.001). Conclusion This retrospective analysis suggests that in STN-DBS, better tremor control in PD patients correlates with the distance of active electrode contacts to the DRT. Tractography may optimize both individually DBS targeting and postoperative adjustment of stimulation parameters.
Collapse
Affiliation(s)
- Arif Abdulbaki
- Department Stereotactic Neurosurgery, University Hospital Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Jörn Kaufmann
- Department of Neurology, OvGU-Magdeburg, Magdeburg, Germany
| | - Imke Galazky
- Department of Neurology, OvGU-Magdeburg, Magdeburg, Germany
| | - Lars Buentjen
- Department Stereotactic Neurosurgery, University Hospital Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Jürgen Voges
- Department Stereotactic Neurosurgery, University Hospital Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
| |
Collapse
|
15
|
Su JH, Choi EY, Tourdias T, Saranathan M, Halpern CH, Henderson JM, Pauly KB, Ghanouni P, Rutt BK. Improved Vim targeting for focused ultrasound ablation treatment of essential tremor: A probabilistic and patient-specific approach. Hum Brain Mapp 2020; 41:4769-4788. [PMID: 32762005 PMCID: PMC7643361 DOI: 10.1002/hbm.25157] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/12/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022] Open
Abstract
Magnetic resonance-guided focused ultrasound (MRgFUS) ablation of the ventral intermediate (Vim) thalamic nucleus is an incisionless treatment for essential tremor (ET). The standard initial targeting method uses an approximate, atlas-based stereotactic approach. We developed a new patient-specific targeting method to identify an individual's Vim and the optimal MRgFUS target region therein for suppression of tremor. In this retrospective study of 14 ET patients treated with MRgFUS, we investigated the ability of WMnMPRAGE, a highly sensitive and robust sequence for imaging gray matter-white matter contrast, to identify the Vim, FUS ablation, and a clinically efficacious region within the Vim in individual patients. We found that WMnMPRAGE can directly visualize the Vim in ET patients, segmenting this nucleus using manual or automated segmentation capabilities developed by our group. WMnMPRAGE also delineated the ablation's core and penumbra, and showed that all patients' ablation cores lay primarily within their Vim segmentations. We found no significant correlations between standard ablation features (e.g., ablation volume, Vim-ablation overlap) and 1-month post-treatment clinical outcome. We then defined a group-based probabilistic target, which was nonlinearly warped to individual brains; this target was located within the Vim for all patients. The overlaps between this target and patient ablation cores correlated significantly with 1-month clinical outcome (r = -.57, p = .03), in contrast to the standard target (r = -.23, p = .44). We conclude that WMnMPRAGE is a highly sensitive sequence for segmenting Vim and ablation boundaries in individual patients, allowing us to find a novel tremor-associated center within Vim and potentially improving MRgFUS treatment for ET.
Collapse
Affiliation(s)
- Jason H Su
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Eun Young Choi
- Department of Neurosurgery, Stanford University, Stanford, California, USA
| | - Thomas Tourdias
- Department of Neuroradiology, Bordeaux University Hospital, Bordeaux, France.,INSERM U1215, Neurocentre Magendie, University of Bordeaux, Bordeaux, France
| | | | - Casey H Halpern
- Department of Neurosurgery, Stanford University, Stanford, California, USA
| | - Jaimie M Henderson
- Department of Neurosurgery, Stanford University, Stanford, California, USA
| | - Kim Butts Pauly
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Pejman Ghanouni
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Brian K Rutt
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
16
|
Al-Fatly B, Ewert S, Kübler D, Kroneberg D, Horn A, Kühn AA. Connectivity profile of thalamic deep brain stimulation to effectively treat essential tremor. Brain 2020; 142:3086-3098. [PMID: 31377766 DOI: 10.1093/brain/awz236] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/06/2019] [Accepted: 06/09/2019] [Indexed: 01/19/2023] Open
Abstract
Essential tremor is the most prevalent movement disorder and is often refractory to medical treatment. Deep brain stimulation offers a therapeutic approach that can efficiently control tremor symptoms. Several deep brain stimulation targets (ventral intermediate nucleus, zona incerta, posterior subthalamic area) have been discussed for tremor treatment. Effective deep brain stimulation therapy for tremor critically involves optimal targeting to modulate the tremor network. This could potentially become more robust and precise by using state-of-the-art brain connectivity measurements. In the current study, we used two normative brain connectomes (structural and functional) to show the pattern of effective deep brain stimulation electrode connectivity in 36 patients with essential tremor. Our structural and functional connectivity models were significantly predictive of postoperative tremor improvement in out-of-sample data (P < 0.001 for both structural and functional leave-one-out cross-validation). Additionally, we segregated the somatotopic brain network based on head and hand tremor scores. These resulted in segregations that mapped onto the well-known somatotopic maps of both motor cortex and cerebellum. Crucially, this shows that slightly distinct networks need to be modulated to ameliorate head versus hand tremor and that those networks could be identified based on somatotopic zones in motor cortex and cerebellum. Finally, we propose a multi-modal connectomic deep brain stimulation sweet spot that may serve as a reference to enhance clinical care, in the future. This spot resided in the posterior subthalamic area, encroaching on the inferior borders of ventral intermediate nucleus and sensory thalamus. Our results underscore the importance of integrating brain connectivity in optimizing deep brain stimulation targeting for essential tremor.
Collapse
Affiliation(s)
- Bassam Al-Fatly
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Siobhan Ewert
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dorothee Kübler
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Daniel Kroneberg
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas Horn
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Andrea A Kühn
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Exzellenzcluster NeuroCure, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
17
|
Bogdan ID, van Laar T, Oterdoom DM, Drost G, van Dijk JMC, Beudel M. Optimal Parameters of Deep Brain Stimulation in Essential Tremor: A Meta-Analysis and Novel Programming Strategy. J Clin Med 2020; 9:jcm9061855. [PMID: 32545887 PMCID: PMC7356338 DOI: 10.3390/jcm9061855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 01/10/2023] Open
Abstract
The programming of deep brain stimulation (DBS) parameters for tremor is laborious and empirical. Despite extensive efforts, the end-result is often suboptimal. One reason for this is the poorly understood relationship between the stimulation parameters’ voltage, pulse width, and frequency. In this study, we aim to improve DBS programming for essential tremor (ET) by exploring a new strategy. At first, the role of the individual DBS parameters in tremor control was characterized using a meta-analysis documenting all the available parameters and tremor outcomes. In our novel programming strategy, we applied 10 random combinations of stimulation parameters in eight ET-DBS patients with suboptimal tremor control. Tremor severity was assessed using accelerometers and immediate and sustained patient-reported outcomes (PRO’s), including the occurrence of side-effects. The meta-analysis showed no substantial relationship between individual DBS parameters and tremor suppression. Nevertheless, with our novel programming strategy, a significantly improved (accelerometer p = 0.02, PRO p = 0.02) and sustained (p = 0.01) tremor suppression compared to baseline was achieved. Less side-effects were encountered compared to baseline. Our pilot data show that with this novel approach, tremor control can be improved in ET patients with suboptimal tremor control on DBS. In addition, this approach proved to have a beneficial effect on stimulation-related complications.
Collapse
Affiliation(s)
- I. Daria Bogdan
- Department of Neurology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (I.D.B.); (G.D.)
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (D.L.M.O.); (J.M.C.v.D.)
| | - Teus van Laar
- Department of Neurology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (I.D.B.); (G.D.)
- Correspondence:
| | - D.L. Marinus Oterdoom
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (D.L.M.O.); (J.M.C.v.D.)
| | - Gea Drost
- Department of Neurology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (I.D.B.); (G.D.)
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (D.L.M.O.); (J.M.C.v.D.)
| | - J. Marc C. van Dijk
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (D.L.M.O.); (J.M.C.v.D.)
| | - Martijn Beudel
- Department of Neurology, Amsterdam Neuroscience Institute, Amsterdam University Medical Center, 1007 MB Amsterdam, The Netherlands;
| |
Collapse
|
18
|
Coenen VA, Sajonz B, Prokop T, Reisert M, Piroth T, Urbach H, Jenkner C, Reinacher PC. The dentato-rubro-thalamic tract as the potential common deep brain stimulation target for tremor of various origin: an observational case series. Acta Neurochir (Wien) 2020; 162:1053-1066. [PMID: 31997069 PMCID: PMC7156360 DOI: 10.1007/s00701-020-04248-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/23/2020] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Deep brain stimulation alleviates tremor of various origins. The dentato-rubro-thalamic tract (DRT) has been suspected as a common tremor-reducing structure. Statistical evidence has not been obtained. We here report the results of an uncontrolled case series of patients with refractory tremor who underwent deep brain stimulation under tractographic assistance. METHODS A total of 36 patients were enrolled (essential tremor (17), Parkinson's tremor (8), multiple sclerosis (7), dystonic head tremor (3), tardive dystonia (1)) and received 62 DBS electrodes (26 bilateral; 10 unilateral). Preoperatively, diffusion tensor magnetic resonance imaging sequences were acquired together with high-resolution anatomical T1W and T2W sequences. The DRT was individually tracked and used as a direct thalamic or subthalamic target. Intraoperative tremor reduction was graded on a 4-point scale (0 = no tremor reduction to 3 = full tremor control) and recorded together with the current amplitude, respectively. Stimulation point coordinates were recorded and compared to DRT. The relation of the current amplitude needed to reduce tremor was expressed as TiCR (tremor improvement per current ratio). RESULTS Stimulation points of 241 were available for analysis. A total of 68 trajectories were tested (62 dB leads, 1.1 trajectories tested per implanted lead). Tremor improvement was significantly decreasing (p < 0.01) if the distance to both the border and the center of the DRT was increasing. On the initial trajectory, 56 leads (90.3%) were finally placed. Long-term outcomes were not part of this analysis. DISCUSSION Tremor of various origins was acutely alleviated at different points along the DRT fiber tract (above and below the MCP plane) despite different tremor diseases. DRT is potentially a common tremor-reducing structure. Individual targeting helps to reduce brain penetrating tracts. TiCR characterizes stimulation efficacy and might help to identify an optimal stimulation point.
Collapse
Affiliation(s)
- Volker Arnd Coenen
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg (i.Br.), Germany.
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany.
- Brain Links/Brain Tools Cluster of Excellence, Freiburg University, Freiburg (i.Br.), Germany.
- NeuroModul Basics (Center for Basics in NeuroModulation), Freiburg University, Freiburg (i.Br.), Germany.
| | - Bastian Sajonz
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg (i.Br.), Germany
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany
| | - Thomas Prokop
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg (i.Br.), Germany
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg (i.Br.), Germany
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany
| | - Tobias Piroth
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany
- Brain Links/Brain Tools Cluster of Excellence, Freiburg University, Freiburg (i.Br.), Germany
- Department of Neurology and Neurophysiology, Freiburg University Medical Center, Freiburg (i.Br.), Germany
| | - Horst Urbach
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany
- Department of Neuroradiology, Freiburg University Medical Center, Freiburg (i.Br.), Germany
| | - Carolin Jenkner
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany
- Clinical Trials Unit, Freiburg University Medical Center, Freiburg, Germany
| | - Peter Christoph Reinacher
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg (i.Br.), Germany
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany
| |
Collapse
|
19
|
Avecillas-Chasin J. Letter to the Editor. Pallidothalamic pathway stimulation in DBS for dystonia. J Neurosurg 2020; 132:982-984. [PMID: 31374548 DOI: 10.3171/2019.3.jns19715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Tohyama S, Walker MR, Sammartino F, Krishna V, Hodaie M. The Utility of Diffusion Tensor Imaging in Neuromodulation: Moving Beyond Conventional Magnetic Resonance Imaging. Neuromodulation 2020; 23:427-435. [DOI: 10.1111/ner.13107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/08/2019] [Accepted: 01/02/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Sarasa Tohyama
- Division of Brain, Imaging, and Behaviour–Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital University Health Network Toronto ON Canada
- Institute of Medical Science, Faculty of Medicine University of Toronto Toronto ON Canada
| | - Matthew R. Walker
- Division of Brain, Imaging, and Behaviour–Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital University Health Network Toronto ON Canada
| | - Francesco Sammartino
- Center for Neuromodulation, Department of Neurosurgery The Ohio State University Columbus OH USA
| | - Vibhor Krishna
- Center for Neuromodulation, Department of Neurosurgery The Ohio State University Columbus OH USA
| | - Mojgan Hodaie
- Division of Brain, Imaging, and Behaviour–Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital University Health Network Toronto ON Canada
- Institute of Medical Science, Faculty of Medicine University of Toronto Toronto ON Canada
- Department of Surgery, Faculty of Medicine University of Toronto Toronto ON Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital University Health Network Toronto ON Canada
| |
Collapse
|
21
|
Abstract
Deep brain stimulation is the most advanced and effective neuromodulation therapy for Parkinson disease, essential tremor, and generalized dystonia. This article discusses how imaging improves surgical techniques and outcomes and widens possibilities in translational neuroscience in Parkinson disease, essential tremor, generalized dystonia, and epilepsy. In movement disorders diffusion tensor imaging allows anatomic segment of cortical areas and different functional subregions within deep-seated targets to understand the side effects of stimulation and gain more data to describe the therapeutic mechanism of action. The introduction of visualization of white matter tracks increases the safety of neurosurgical techniques in functional neurosurgery and neuro-oncology.
Collapse
Affiliation(s)
- Lorand Eross
- Department of Functional Neurosurgery, Center of Neuromodulation, National Institute of Clinical Neurosciences, Amerikai út 57, Budapest 1145, Hungary.
| | - Jonathan Riley
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University Buffalo Medical, 955 Main Street, Buffalo, NY 14203, USA
| | - Elad I Levy
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University Buffalo, 955 Main Street, Buffalo, NY 14203, USA
| | - Kunal Vakharia
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University Buffalo, 955 Main Street, Buffalo, NY 14203, USA
| |
Collapse
|
22
|
Pineda-Pardo JA, Urso D, Martínez-Fernández R, Rodríguez-Rojas R, del-Alamo M, Millar Vernetti P, Máñez-Miró JU, Hernández-Fernández F, de Luis-Pastor E, Vela-Desojo L, Obeso JA. Transcranial Magnetic Resonance-Guided Focused Ultrasound Thalamotomy in Essential Tremor: A Comprehensive Lesion Characterization. Neurosurgery 2019; 87:256-265. [DOI: 10.1093/neuros/nyz395] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/21/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
BACKGROUND
Transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) thalamotomy is a novel and effective treatment for controlling tremor in essential tremor patients.
OBJECTIVE
To provide a comprehensive characterization of the radiological, topographical, and volumetric aspects of the tcMRgFUS thalamic lesion, and to quantify how they relate to the clinical outcomes.
METHODS
In this study, clinical and radiological data from forty patients with medically-refractory essential tremor treated with unilateral tcMRgFUS thalamotomy were retrospectively analyzed. Treatment efficacy was assessed with Clinical Rating Scale for Tremor (CRST). Lesions were manually segmented on T1, T2, and susceptibility-weighted images, and 3-dimensional topographical analysis was then carried out. Statistical comparisons were performed using nonparametric statistics.
RESULTS
The greatest clinical improvement was correlated with a more inferior and posterior lesion, a bigger lesion volume, and percentage of the ventral intermediate nucleus covered by the lesion; whereas, the largest lesions accounted for the occurrence of gait imbalance. Furthermore, the volume of the lesion was significantly predicted by the number of sonications surpassing 52°C.
CONCLUSION
Here we provide a comprehensive characterization of the thalamic tcMRgFUS lesion including radiological and topographical analysis. Our results indicate that the location and volume of the lesion were significantly associated with the clinical outcome and that mid-temperatures may be responsible for the lesion size. This could serve ultimately to improve targeting and judgment and to optimize clinical outcome of tcMRgFUS thalamotomy.
Collapse
Affiliation(s)
- José Angel Pineda-Pardo
- CINAC (Centro Integral de Neurociencias), University Hospital HM Puerta del Sur, CEU-San Pablo University, Móstoles, Madrid, Spain
- Network Center for Biomedical Research on Neurodegenerative Diseases, Instituto Carlos III, Madrid, Spain
| | - Daniele Urso
- CINAC (Centro Integral de Neurociencias), University Hospital HM Puerta del Sur, CEU-San Pablo University, Móstoles, Madrid, Spain
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Raul Martínez-Fernández
- CINAC (Centro Integral de Neurociencias), University Hospital HM Puerta del Sur, CEU-San Pablo University, Móstoles, Madrid, Spain
- Network Center for Biomedical Research on Neurodegenerative Diseases, Instituto Carlos III, Madrid, Spain
| | - Rafael Rodríguez-Rojas
- CINAC (Centro Integral de Neurociencias), University Hospital HM Puerta del Sur, CEU-San Pablo University, Móstoles, Madrid, Spain
- Network Center for Biomedical Research on Neurodegenerative Diseases, Instituto Carlos III, Madrid, Spain
| | - Marta del-Alamo
- CINAC (Centro Integral de Neurociencias), University Hospital HM Puerta del Sur, CEU-San Pablo University, Móstoles, Madrid, Spain
| | | | - Jorge U Máñez-Miró
- CINAC (Centro Integral de Neurociencias), University Hospital HM Puerta del Sur, CEU-San Pablo University, Móstoles, Madrid, Spain
| | - Frida Hernández-Fernández
- CINAC (Centro Integral de Neurociencias), University Hospital HM Puerta del Sur, CEU-San Pablo University, Móstoles, Madrid, Spain
- Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Department of Nursing
| | | | - Lydia Vela-Desojo
- CINAC (Centro Integral de Neurociencias), University Hospital HM Puerta del Sur, CEU-San Pablo University, Móstoles, Madrid, Spain
| | - José A Obeso
- CINAC (Centro Integral de Neurociencias), University Hospital HM Puerta del Sur, CEU-San Pablo University, Móstoles, Madrid, Spain
- Network Center for Biomedical Research on Neurodegenerative Diseases, Instituto Carlos III, Madrid, Spain
| |
Collapse
|
23
|
Miller TR, Zhuo J, Eisenberg HM, Fishman PS, Melhem ER, Gullapalli R, Gandhi D. Targeting of the dentato-rubro-thalamic tract for MR-guided focused ultrasound treatment of essential tremor. Neuroradiol J 2019; 32:401-407. [PMID: 31407957 DOI: 10.1177/1971400919870180] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Magnetic resonance-guided focused ultrasound ablation of the thalamic ventral intermediate nucleus is a safe and effective treatment for medically refractory essential tremor. However, indirect targeting of the ventral intermediate nucleus using stereotactic coordinates from normal neuroanatomy can be inefficient. We therefore evaluated the feasibility of supplementing this method with direct targeting of the dentato-rubro-thalamic tract. METHODS We retrospectively identified four patients undergoing magnetic resonance-guided focused ultrasound ablation for essential tremor in which preoperative diffusion tractography imaging of the dentato-rubro-thalamic tract was fused with T2 weighted-imaging and utilized for intra-procedural targeting. The size and location of the dentato-rubro-thalamic tract and 24-hour lesion, as well as the center of the stereotactic coordinates, was evaluated. Finally, the amount of overlap between the dentato-rubro-thalamic tract and the lesion was calculated. RESULTS The 24-hour lesion size was homogeneous in the cohort (mean 31.3 mm2, range 30-32 mm2), while there was substantial variation in the dentato-rubro-thalamic tract area (mean 14.3 mm2, range 3-24 mm2). The center of the stereotactic coordinates and dentato-rubro-thalamic tract diverged by more than 1 mm in mediolateral and anterposterior directions in all patients, while the dentato-rubro-thalamic tract and lesion centers were in close proximity (mean mediolateral separation 1 mm, range 0.1-2.2 mm; mean anteroposterior separation 0.75 mm, range 0.4-1.2 mm). There was greater than 50% coverage of the dentato-rubro-thalamic tract by the lesion in all patients (mean 82.9%, range 66.7-100%). All patients experienced durable tremor relief. CONCLUSION Direct targeting of the dentato-rubro-thalamic tract using diffusion tractography imaging fused to T2 weighted-imaging may be a useful strategy for focused ultrasound treatment of essential tremor. Further investigation of the technique is warranted.
Collapse
Affiliation(s)
- Timothy R Miller
- Department of Diagnostic Radiology, University of Maryland Medical Center, USA
| | - Jiachen Zhuo
- Department of Diagnostic Radiology, University of Maryland Medical Center, USA
| | | | - Paul S Fishman
- Department of Neurology, University of Maryland Medical Center, USA
| | - Elias R Melhem
- Department of Diagnostic Radiology, University of Maryland Medical Center, USA
| | - Rao Gullapalli
- Department of Diagnostic Radiology, University of Maryland Medical Center, USA
| | - Dheeraj Gandhi
- Department of Diagnostic Radiology, University of Maryland Medical Center, USA.,Department of Neurosurgery, University of Maryland Medical Center, USA.,Department of Neurology, University of Maryland Medical Center, USA
| |
Collapse
|
24
|
Neuroimaging Technological Advancements for Targeting in Functional Neurosurgery. Curr Neurol Neurosci Rep 2019; 19:42. [DOI: 10.1007/s11910-019-0961-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Hell F, Palleis C, Mehrkens JH, Koeglsperger T, Bötzel K. Deep Brain Stimulation Programming 2.0: Future Perspectives for Target Identification and Adaptive Closed Loop Stimulation. Front Neurol 2019; 10:314. [PMID: 31001196 PMCID: PMC6456744 DOI: 10.3389/fneur.2019.00314] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/12/2019] [Indexed: 12/28/2022] Open
Abstract
Deep brain stimulation has developed into an established treatment for movement disorders and is being actively investigated for numerous other neurological as well as psychiatric disorders. An accurate electrode placement in the target area and the effective programming of DBS devices are considered the most important factors for the individual outcome. Recent research in humans highlights the relevance of widespread networks connected to specific DBS targets. Improving the targeting of anatomical and functional networks involved in the generation of pathological neural activity will improve the clinical DBS effect and limit side-effects. Here, we offer a comprehensive overview over the latest research on target structures and targeting strategies in DBS. In addition, we provide a detailed synopsis of novel technologies that will support DBS programming and parameter selection in the future, with a particular focus on closed-loop stimulation and associated biofeedback signals.
Collapse
Affiliation(s)
- Franz Hell
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilians University, Munich, Germany
| | - Carla Palleis
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Jan H. Mehrkens
- Department of Neurosurgery, Ludwig Maximilians University, Munich, Germany
| | - Thomas Koeglsperger
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Kai Bötzel
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
26
|
A retrospective evaluation of thalamic targeting for tremor deep brain stimulation using high-resolution anatomical imaging with supplementary fiber tractography. J Neurol Sci 2019; 398:148-156. [PMID: 30716581 DOI: 10.1016/j.jns.2019.01.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/22/2018] [Accepted: 01/15/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Deep brain stimulation (DBS) of the ventral intermediate (Vim) thalamic nucleus is used to treat tremors. Here, we identified the Vim nucleus on fast gray matter acquisition T1 inversion recovery (FGATIR) images and delineated the dentate-rubrothalamic tract (DRT) to determine the DBS target. We evaluated whether this method could consistently identify the Vim nucleus by anatomical imaging and fiber tractography. METHODS We retrospectively reviewed clinical data of patients who underwent unilateral thalamic DBS for severe tremor disorders. We evaluated outcomes at baseline, 6 months and 1 year following intervention, and annually thereafter. We reviewed preoperative planning to determine whether our tractography technique could consistently depict the DRT, and evaluated implanted electrode position by fusing postoperative CT scans to preoperative MR images. RESULTS Seven patients (three men and four women) were included; preoperative diagnoses included essential tremor (n = 3), Parkinson's (n = 2), and Holmes tremor (n = 2). All patients responded to DBS therapy; motor scores improved at 6-month and last follow-up. The Vim nucleus was successfully identified, as the DRT was depicted in all cases. Of ten active DBS contacts in seven leads, four contacts were located outside of the depicted DRT, and these contacts tended to require higher stimulation intensity. CONCLUSIONS The Vim nucleus was successfully identified with FGATIR. Our methods may be useful to determine optimal DBS trajectory, and potentially improve outcomes.
Collapse
|
27
|
Middlebrooks EH, Tuna IS, Almeida L, Grewal SS, Wong J, Heckman MG, Lesser ER, Bredel M, Foote KD, Okun MS, Holanda VM. Structural connectivity-based segmentation of the thalamus and prediction of tremor improvement following thalamic deep brain stimulation of the ventral intermediate nucleus. NEUROIMAGE-CLINICAL 2018; 20:1266-1273. [PMID: 30318403 PMCID: PMC6308387 DOI: 10.1016/j.nicl.2018.10.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 11/27/2022]
Abstract
Objectives Traditional targeting methods for thalamic deep brain stimulation (DBS) performed to address tremor have predominantly relied on indirect atlas-based methods that focus on the ventral intermediate nucleus despite known variability in thalamic functional anatomy. Improvements in preoperative targeting may help maximize outcomes and reduce thalamic DBS–related complications. In this study, we evaluated the ability of thalamic parcellation with structural connectivity–based segmentation (SCBS) to predict tremor improvement following thalamic DBS. Methods In this retrospective analysis of 40 patients with essential tremor, hard segmentation of the thalamus was performed by using probabilistic tractography to assess structural connectivity to 7 cortical targets. The volume of tissue activated (VTA) was modeled in each patient on the basis of the DBS settings. The volume of overlap between the VTA and the 7 thalamic segments was determined and correlated with changes in preoperative and postoperative Fahn-Tolosa-Marin Tremor Rating Scale (TRS) scores by using multivariable linear regression models. Results A significant association was observed between greater VTA in the supplementary motor area (SMA) and premotor cortex (PMC) thalamic segment and greater improvement in TRS score when considering both the raw change (P = .001) and percentage change (P = .011). In contrast, no association was observed between change in TRS score and VTA in the primary motor cortex thalamic segment (P ≥ .19). Conclusions Our data suggest that greater VTA in the thalamic SMA/PMC segment during thalamic DBS was associated with significant improvement in TRS score in patients with tremor. These findings support the potential role of thalamic SCBS as an independent predictor of tremor improvement in patients who receive thalamic DBS. Pre-operative connectivity data may improve thalamic DBS targeting for tremor. Tremor control was positively correlated with connectivity-based thalamic segmentation. Stimulation of the SMA/PMC connected thalamic region correlated with tremor control.
Collapse
Affiliation(s)
- Erik H Middlebrooks
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA; Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL, USA.
| | - Ibrahim S Tuna
- Department of Radiology, University of Florida, Gainesville, FL, USA
| | - Leonardo Almeida
- Department of Neurology, University of Florida, Gainesville, FL, USA; Fixel Center for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Sanjeet S Grewal
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Joshua Wong
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Michael G Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL, USA
| | - Elizabeth R Lesser
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL, USA
| | - Markus Bredel
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kelly D Foote
- Fixel Center for Neurological Diseases, University of Florida, Gainesville, FL, USA; Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neurology, University of Florida, Gainesville, FL, USA; Fixel Center for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Vanessa M Holanda
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA; Center of Neurology and Neurosurgery Associates (NeuroCENNA), BP-A Beneficência Portuguesa de São Paulo, São Paulo, Brazil
| |
Collapse
|
28
|
Chen Y, Ge S, Li Y, Li N, Wang J, Wang X, Li J, Jing J, Su M, Zheng Z, Luo T, Qiu C, Wang X. Role of the Cortico-Subthalamic Hyperdirect Pathway in Deep Brain Stimulation for the Treatment of Parkinson Disease: A Diffusion Tensor Imaging Study. World Neurosurg 2018; 114:e1079-e1085. [DOI: 10.1016/j.wneu.2018.03.149] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 01/07/2023]
|
29
|
Hell F, Köglsperger T, Mehrkens J, Boetzel K. Improving the Standard for Deep Brain Stimulation Therapy: Target Structures and Feedback Signals for Adaptive Stimulation. Current Perspectives and Future Directions. Cureus 2018; 10:e2468. [PMID: 29900088 PMCID: PMC5997423 DOI: 10.7759/cureus.2468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Deep brain stimulation (DBS) is an established therapeutic option for the treatment of various neurological disorders and has been used successfully in movement disorders for over 25 years. However, the standard stimulation schemes have not changed substantially. Two major points of interest for the further development of DBS are target-structures and novel adaptive stimulation techniques integrating feedback signals. We describe recent research results on target structures and on neural and behavioural feedback signals for adaptive deep brain stimulation (aDBS), as well as outline future directions.
Collapse
Affiliation(s)
- Franz Hell
- Neurology, Ludwigs-Maximilians-University Munich, Munich, DEU
| | - Thomas Köglsperger
- Department of Neurology, Ludwigs-Maximilians-University Munich, Munich, DEU
| | - Jan Mehrkens
- Department of Neurosurgery (head of Functional Neurosurgery), Ludwigs-Maximilians-University Munich, Munich, DEU
| | - Kai Boetzel
- Department of Neurology, Ludwigs-Maximilians-University Munich, Munich, DEU
| |
Collapse
|
30
|
Coenen VA, Schumacher LV, Kaller C, Schlaepfer TE, Reinacher PC, Egger K, Urbach H, Reisert M. The anatomy of the human medial forebrain bundle: Ventral tegmental area connections to reward-associated subcortical and frontal lobe regions. Neuroimage Clin 2018; 18:770-783. [PMID: 29845013 PMCID: PMC5964495 DOI: 10.1016/j.nicl.2018.03.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/29/2022]
Abstract
Introduction Despite their importance in reward, motivation, and learning there is only sparse anatomical knowledge about the human medial forebrain bundle (MFB) and the connectivity of the ventral tegmental area (VTA). A thorough anatomical and microstructural description of the reward related PFC/OFC regions and their connection to the VTA - the superolateral branch of the MFB (slMFB) - is however mandatory to enable an interpretation of distinct therapeutic effects from different interventional treatment modalities in neuropsychiatric disorders (DBS, TMS etc.). This work aims at a normative description of the human MFB (and more detailed the slMFB) anatomy with respect to distant prefrontal connections and microstructural features. Methods and material Healthy subjects (n = 55; mean age ± SD, 40 ± 10 years; 32 females) underwent high resolution anatomical magnetic resonance imaging including diffusion tensor imaging. Connectivity of the VTA and the resulting slMFB were investigated on the group level using a global tractography approach. The Desikan/Killiany parceling (8 segments) of the prefrontal cortex was used to describe sub-segments of the MFB. A qualitative overlap with Brodmann areas was additionally described. Additionally, a pure visual analysis was performed comparing local and global tracking approaches for their ability to fully visualize the slMFB. Results The MFB could be robustly described both in the present sample as well as in additional control analyses in data from the human connectome project. Most VTA- connections reached the superior frontal gyrus, the middel frontal gyrus and the lateral orbitofrontal region corresponding to Brodmann areas 10, 9, 8, 11, and 11m. The projections to these regions comprised 97% (right) and 98% (left) of the total relative fiber counts of the slMFB. Discussion The anatomical description of the human MFB shows far reaching connectivity of VTA to reward-related subcortical and cortical prefrontal regions - but not to emotion-related regions on the medial cortical surface - realized via the superolateral branch of the MFB. Local tractography approaches appear to be inferior in showing these far-reaching projections. Since these local approaches are typically used for surgical targeting of DBS procedures, the here established detailed map might - as a normative template - guide future efforts to target deep brain stimulation of the slMFB in depression and other disorders related to dysfunction of reward and reward-associated learning.
Collapse
Affiliation(s)
- Volker Arnd Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center, Freiburg University, Germany; Medical Faculty, Freiburg University, Germany.
| | - Lena Valerie Schumacher
- Department of Neuroradiology, Medical Center, Freiburg University, Germany; Medical Faculty, Freiburg University, Germany; Medical Psychology and Medical Sociology, Faculty of Medicine, University of Freiburg, Germany
| | - Christoph Kaller
- Department of Neurology, Medical Center, Freiburg University, Germany; Medical Faculty, Freiburg University, Germany
| | - Thomas Eduard Schlaepfer
- Department of Interventional Biological Psychiatry, Medical Center, Freiburg University, Germany; Medical Faculty, Freiburg University, Germany
| | - Peter Christoph Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center, Freiburg University, Germany; Medical Faculty, Freiburg University, Germany
| | - Karl Egger
- Department of Neuroradiology, Medical Center, Freiburg University, Germany; Medical Faculty, Freiburg University, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center, Freiburg University, Germany; Medical Faculty, Freiburg University, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center, Freiburg University, Germany; Department of Medical Physics, Medical Center, Freiburg University, Germany; Medical Faculty, Freiburg University, Germany
| |
Collapse
|
31
|
Awake versus Asleep Deep Brain Stimulation Surgery: Technical Considerations and Critical Review of the Literature. Brain Sci 2018; 8:brainsci8010017. [PMID: 29351243 PMCID: PMC5789348 DOI: 10.3390/brainsci8010017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 11/22/2022] Open
Abstract
Advancements in neuroimaging have led to a trend toward direct, image-based targeting under general anesthesia without the use of microelectrode recording (MER) or intraoperative test stimulation, also referred to as “asleep” deep brain stimulation (DBS) surgery. Asleep DBS, utilizing imaging in the form of intraoperative computed tomography (iCT) or magnetic resonance imaging (iMRI), has demonstrated reliable targeting accuracy of DBS leads implanted within the globus pallidus and subthalamic nucleus while also improving clinical outcomes in patients with Parkinson’s disease. In lieu, of randomized control trials, retrospective comparisons between asleep and awake DBS with MER have shown similar short-term efficacy with the potential for decreased complications in asleep cohorts. In lieu of long-term outcome data, awake DBS using MER must demonstrate more durable outcomes with fewer stimulation-induced side effects and lead revisions in order for its use to remain justifiable; although patient-specific factors may also be used to guide the decision regarding which technique may be most appropriate and tolerable to the patient.
Collapse
|
32
|
Middlebrooks EH, Holanda VM, Tuna IS, Deshpande HD, Bredel M, Almeida L, Walker HC, Guthrie BL, Foote KD, Okun MS. A method for pre-operative single-subject thalamic segmentation based on probabilistic tractography for essential tremor deep brain stimulation. Neuroradiology 2018; 60:303-309. [PMID: 29307012 DOI: 10.1007/s00234-017-1972-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/22/2017] [Indexed: 01/26/2023]
Abstract
PURPOSE Deep brain stimulation is a common treatment for medication-refractory essential tremor. Current coordinate-based targeting methods result in variable outcomes due to variation in thalamic structure and the optimal patient-specific functional location. The purpose of this study was to compare the coordinate-based pre-operative targets to patient-specific thalamic segmentation utilizing a probabilistic tractography methodology. METHODS Using available diffusion MRI of 32 subjects from the Human Connectome Project database, probabilistic tractography was performed. Each thalamic voxel was coded based on one of six predefined cortical targets. The segmentation results were analyzed and compared to a 2-mm spherical target centered at the coordinate-based location of the ventral intermediate thalamic nucleus. RESULTS The traditional coordinate-based target had maximal overlap with the junction of the region most connected to primary motor cortex (M1) (36.6 ± 25.7% of voxels on left; 58.1 ± 28.5% on right) and the area connected to the supplementary motor area/premotor cortex (SMA/PMC) (44.9 ± 21.7% of voxels on left; 28.9 ± 22.2% on right). There was a within-subject coefficient of variation from right-to-left of 69.4 and 63.1% in the volume of overlap with the SMA/PMC and M1 regions, respectively. CONCLUSION Thalamic segmentation based on structural connectivity measures is a promising technique that may enhance traditional targeting methods by generating reproducible, patient-specific pre-operative functional targets. Our results highlight the problematic intra- and inter-subject variability of indirect, coordinate-based targets. Future prospective clinical studies will be needed to validate this targeting methodology in essential tremor patients.
Collapse
Affiliation(s)
- Erik H Middlebrooks
- Department of Radiology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL, 32224, USA.
| | - Vanessa M Holanda
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA.,Center of Neurology and Neurosurgery Associates (CENNA), Beneficência Portuguesa of São Paulo Hospital, São Paulo, Brazil
| | - Ibrahim S Tuna
- Department of Radiology, University of Florida, Gainesville, FL, USA
| | | | - Markus Bredel
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Leonardo Almeida
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Harrison C Walker
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Barton L Guthrie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kelly D Foote
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neurology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
33
|
Tsolaki E, Downes A, Speier W, Elias WJ, Pouratian N. The potential value of probabilistic tractography-based for MR-guided focused ultrasound thalamotomy for essential tremor. NEUROIMAGE-CLINICAL 2017. [PMID: 29527503 PMCID: PMC5842733 DOI: 10.1016/j.nicl.2017.12.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Magnetic Resonance-guided Focused UltraSound (MRgFUS) offers an incisionless approach to treat essential tremor (ET). Due to lack of evident internal anatomy on traditional structural imaging, indirect targeting must still be used to localize the lesion. Here, we investigate the potential predictive value of probabilistic tractography guided thalamic targeting by defining how tractography-defined targets, lesion size and location, and clinical outcomes interrelate. MR imaging and clinical outcomes from 12 ET patients that underwent MRgFUS thalamotomy in a pilot study at the University of Virginia were evaluated in this analysis. FSL was used to evaluate each patient's voxel-wise thalamic connectivity with FreeSurfer generated pre- and post-central gyrus targets, to generate thalamic target maps. Using Receiver Operating Characteristic curves, the overlap between these thalamic target maps and the MRgFUS lesion was systematically evaluated relative to clinical outcome. To further define the connectivity characteristics of effective MRgFUS thalamotomy lesions, we evaluated whole brain probabilistic tractography of lesions (using post-treatment imaging to define the lesion pre-treatment diffusion tensor MRI). The structural connectivity difference was explored between subjects with the best clinical outcome relative to all others. Ten of twelve patients presented high percentage of overlapping between connectivity-based thalamic segmentation maps and lesion area. The improvement of clinical score was predicted (AUC: 0.80) using the volume of intersection between the thalamic target (precentral gyrus) map and MRgFUS induced lesion as feature. The main structural differences between those with different magnitudes of response were observed in connectivity to the pre- and post-central gyri and brainstem/cerebellum. MRgFUS thalamotomy lesions characterized by strong structural connectivity to precentral gyrus demonstrated better responses in a cohort of patients treated with MRgFUS for ET. The intersection between lesion and thalamic-connectivity maps to motor - sensory targets proved to be effective in predicting the response to the therapy. These imaging techniques can be used to increase the efficacy and consistency of outcomes with MRgFUS and potentially shorten treatment times by identifying optimal targets in advance of treatment. MRgFUS thalamic lesions with connecting to peri-rolandic cortices and cerebellum demonstrate superior outcomes. The overlap of MRgFUS induced lesion and tractography-based thalamic segmentation correlates with clinical improvement. Probabilistic tractography-guided thalamic segmentation may be useful to increase MRgFUS efficacy and consistency.
Collapse
Affiliation(s)
- Evangelia Tsolaki
- Department of Neurosurgery David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| | - Angela Downes
- Department of Neurosurgery David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - William Speier
- Department of Neurosurgery David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - W Jeff Elias
- Department of Neurosurgery, University of Virginia, Charlottesville, VA, USA
| | - Nader Pouratian
- Department of Neurosurgery David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Brain Research Institute David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| |
Collapse
|
34
|
Ispierto L, Muñoz J, Cladellas JM, Cuadras P, Capellades J, Latorre P, Dávalos A, Vancamp T, Álvarez R. Post-Operative Localization of Deep Brain Stimulation Electrodes in the Subthalamus Using Transcranial Sonography. Neuromodulation 2017; 21:574-581. [PMID: 29178240 DOI: 10.1111/ner.12733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/19/2017] [Accepted: 06/16/2017] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The correct positioning of deep brain stimulation electrodes determines the success of surgery. In this study, we attempt to validate transcranial sonography (TCS) as a method for early postoperative confirmation of electrode location in the subthalamic nucleus (STN). MATERIALS AND METHODS Nineteen patients diagnosed with Parkinson's disease were enrolled in the study. Postoperative TCS was applied to measure the distance between the implanted electrodes and the third ventricle in the axial plane. Whether the electrodes were positioned within or outside the substantia nigra (SN) was evaluated through measurements in the coronal plane. The obtained metrics through TCS were compared with those from postoperative computed tomography (CT) and magnetic resonance imaging (MRI). RESULTS A statistically significant correlation between distances from electrode to third ventricle by TCS and CT/MRI (r = 0.75, p < 0.01) was observed. Distances from third ventricle to electrodes tips were different when sonographically they showed to be inside or outside the SN (p < 0.01). A cut-off value of 8.85mm in these distances was the most sensitive (100%) and specific (90.5%) to predict if electrodes were positioned inside the SN (CI 95% 0.81-10.30, p = 0.001). CONCLUSIONS Transcranial sonography is a useful technique to reliably identify targeted positioning of deep brain stimulation electrodes in or out of the SN.
Collapse
Affiliation(s)
- Lourdes Ispierto
- Department of Neurology and Neurosciences, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Jorge Muñoz
- Department of Neurosurgery and Neurosciences, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Josep Maria Cladellas
- Department of Neurosurgery and Neurosciences, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Patricia Cuadras
- Department of Radiology, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Jaume Capellades
- Image Diagnosis Institute, Badalona, Spain.,Department of Medical Imaging Consorci MAR Parc de Salut, Barcelona, Spain
| | - Pilar Latorre
- Department of Neurology and Neurosciences, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Antoni Dávalos
- Department of Neurology and Neurosciences, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Tim Vancamp
- BRAI2N, St. Augustinus Hospital, Wilrijk, Belgium
| | - Ramiro Álvarez
- Department of Neurology and Neurosciences, University Hospital Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
35
|
See AAQ, King NKK. Improving Surgical Outcome Using Diffusion Tensor Imaging Techniques in Deep Brain Stimulation. Front Surg 2017; 4:54. [PMID: 29034243 PMCID: PMC5625016 DOI: 10.3389/fsurg.2017.00054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 09/06/2017] [Indexed: 12/16/2022] Open
Abstract
Introduction Recent advances in surgical imaging include the use of diffusion tensor imaging (DTI) in deep brain stimulation (DBS) and provide a detailed view of the white matter tracts and their connections which are not seen with conventional magnetic resonance imaging. Given that the efficacy of DBS depends on the precise and accurate targeting of these circuits, better surgical planning using information obtained from DTI may lead to improved surgical outcome. We aim to review the available literature to evaluate the efficacy of such a strategy. Methods A search of PubMed was performed to identify all articles using the search terms “(diffusion tractography OR diffusion tensor imaging OR DTI) AND (deep brain stimulation OR DBS).” Studies were included if DTI was used and clinical outcomes were reported. Results We identified 35 studies where the use of DTI in DBS was evaluated. The most studied pathology was movement disorders (17 studies), psychiatric disorders (11 studies), and pain (7 studies). The overall responder rates for tremor reduction was 70.0% (SD = 26.1%) in 69 patients, 36.5% (SD = 19.1%) for obsessive–compulsive disorder in 9 patients, 48.3% (SD = 40.0%) for depression in 40 patients, and 49.7% (SD = 35.1%) for chronic pain in 23 patients. Discussion The studies reviewed show that the use of DTI for surgical planning is feasible, provide additional information over conventional targeting methods, and can improve surgical outcome. Patients in whom the DBS electrodes were within the DTI targets experienced better outcomes than those in whom the electrodes were not. Many current studies are limited by their small sample size or retrospective nature. The use of DTI in DBS planning appears underutilized and further studies are warranted given that surgical outcome can be optimized using this non-invasive technique.
Collapse
Affiliation(s)
- Angela An Qi See
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
| | - Nicolas Kon Kam King
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|