1
|
Arnts H, Coolen SE, Fernandes FW, Schuurman R, Krauss JK, Groenewegen HJ, van den Munckhof P. The intralaminar thalamus: a review of its role as a target in functional neurosurgery. Brain Commun 2023; 5:fcad003. [PMID: 37292456 PMCID: PMC10244065 DOI: 10.1093/braincomms/fcad003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 10/06/2022] [Accepted: 01/03/2023] [Indexed: 09/29/2023] Open
Abstract
The intralaminar thalamus, in particular the centromedian-parafascicular complex, forms a strategic node between ascending information from the spinal cord and brainstem and forebrain circuitry that involves the cerebral cortex and basal ganglia. A large body of evidence shows that this functionally heterogeneous region regulates information transmission in different cortical circuits, and is involved in a variety of functions, including cognition, arousal, consciousness and processing of pain signals. Not surprisingly, the intralaminar thalamus has been a target area for (radio)surgical ablation and deep brain stimulation (DBS) in different neurological and psychiatric disorders. Historically, ablation and stimulation of the intralaminar thalamus have been explored in patients with pain, epilepsy and Tourette syndrome. Moreover, DBS has been used as an experimental treatment for disorders of consciousness and a variety of movement disorders. In this review, we provide a comprehensive analysis of the underlying mechanisms of stimulation and ablation of the intralaminar nuclei, historical clinical evidence, and more recent (experimental) studies in animals and humans to define the present and future role of the intralaminar thalamus as a target in the treatment of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Hisse Arnts
- Department of Neurosurgery, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stan E Coolen
- Department of Neurosurgery, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
| | | | - Rick Schuurman
- Department of Neurosurgery, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Henk J Groenewegen
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, Amsterdam University Medical Centers, location VU University Medical Center, Amsterdam, The Netherlands
| | - Pepijn van den Munckhof
- Department of Neurosurgery, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Baumgartner AJ, Thompson JA, Kern DS, Ojemann SG. Novel targets in deep brain stimulation for movement disorders. Neurosurg Rev 2022; 45:2593-2613. [PMID: 35511309 DOI: 10.1007/s10143-022-01770-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/01/2021] [Accepted: 03/08/2022] [Indexed: 12/26/2022]
Abstract
The neurosurgical treatment of movement disorders, primarily via deep brain stimulation (DBS), is a rapidly expanding and evolving field. Although conventional targets including the subthalamic nucleus (STN) and internal segment of the globus pallidus (GPi) for Parkinson's disease and ventral intermediate nucleus of the thalams (VIM) for tremor provide substantial benefit in terms of both motor symptoms and quality of life, other targets for DBS have been explored in an effort to maximize clinical benefit and also avoid undesired adverse effects associated with stimulation. These novel targets primarily include the rostral zona incerta (rZI), caudal zona incerta (cZI)/posterior subthalamic area (PSA), prelemniscal radiation (Raprl), pedunculopontine nucleus (PPN), substantia nigra pars reticulata (SNr), centromedian/parafascicular (CM/PF) nucleus of the thalamus, nucleus basalis of Meynert (NBM), dentato-rubro-thalamic tract (DRTT), dentate nucleus of the cerebellum, external segment of the globus pallidus (GPe), and ventral oralis (VO) complex of the thalamus. However, reports of outcomes utilizing these targets are scattered and disparate. In order to provide a comprehensive resource for researchers and clinicians alike, we have summarized the existing literature surrounding these novel targets, including rationale for their use, neurosurgical techniques where relevant, outcomes and adverse effects of stimulation, and future directions for research.
Collapse
Affiliation(s)
| | - John A Thompson
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
- University of Colorado Hospital, 12631 East 17th Avenue, PO Box 6511, Aurora, CO, 80045, USA
| | - Drew S Kern
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
- University of Colorado Hospital, 12631 East 17th Avenue, PO Box 6511, Aurora, CO, 80045, USA
| | - Steven G Ojemann
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA.
- University of Colorado Hospital, 12631 East 17th Avenue, PO Box 6511, Aurora, CO, 80045, USA.
| |
Collapse
|
3
|
Nikparast F, Ganji Z, Danesh Doust M, Faraji R, Zare H. Brain pathological changes during neurodegenerative diseases and their identification methods: How does QSM perform in detecting this process? Insights Imaging 2022; 13:74. [PMID: 35416533 PMCID: PMC9008086 DOI: 10.1186/s13244-022-01207-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 03/13/2022] [Indexed: 12/14/2022] Open
Abstract
The presence of iron is essential for many biological processes in the body. But sometimes, for various reasons, the amount of iron deposition in different areas of the brain increases, which leads to problems related to the nervous system. Quantitative susceptibility mapping (QSM) is one of the newest magnetic resonance imaging (MRI)-based methods for assessing iron accumulation in target areas. This Narrative Review article aims to evaluate the performance of QSM compared to other methods of assessing iron deposition in the clinical field. Based on the results, we introduced related basic definitions, some neurodegenerative diseases, methods of examining iron deposition in these diseases, and their advantages and disadvantages. This article states that the QSM method can be introduced as a new, reliable, and non-invasive technique for clinical evaluations.
Collapse
Affiliation(s)
- Farzaneh Nikparast
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zohreh Ganji
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Danesh Doust
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhane Faraji
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hoda Zare
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Yang JC, Bullinger KL, Isbaine F, Alwaki A, Opri E, Willie JT, Gross RE. Centromedian thalamic deep brain stimulation for drug-resistant epilepsy: single-center experience. J Neurosurg 2022; 137:1591-1600. [PMID: 35395630 DOI: 10.3171/2022.2.jns212237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/07/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Neuromodulation of the centromedian nucleus of the thalamus (CM) has unclear effectiveness in the treatment of drug-resistant epilepsy. Prior reports suggest that it may be more effective in the generalized epilepsies such as Lennox-Gastaut syndrome (LGS). The objective of this study was to determine the outcome of CM deep brain stimulation (DBS) at the authors' institution. METHODS Retrospective chart review was performed for all patients who underwent CM DBS at Emory University, which occurred between December 2018 and May 2021. CM DBS electrodes were implanted using three different surgical methods, including frame-based, robot-assisted, and direct MRI-guided. Seizure frequency, stimulation parameters, and adverse events were recorded from subsequent clinical follow-up visits. RESULTS Fourteen patients underwent CM DBS: 9 had symptomatic generalized epilepsy (including 5 with LGS), 3 had primary or idiopathic generalized epilepsy, and 2 had bifrontal focal epilepsy. At last follow-up (mean [± SEM] 19 ± 5 months, range 4.1-33 months, ≥ 6 months in 11 patients), the median seizure frequency reduction was 91%. Twelve patients (86%) were considered responders (≥ 50% decrease in seizure frequency), including 10 of 12 with generalized epilepsy and both patients with bifrontal epilepsy. Surgical adverse events were rare and included 1 patient with hardware breakage, 1 with a postoperative aspiration event, and 1 with a nonclinically significant intracranial hemorrhage. CONCLUSIONS CM DBS was an effective treatment for drug-resistant generalized and bifrontal epilepsies. Additional studies and analyses may investigate whether CM DBS is best suited for specific epilepsy types, and the relationship of lead location to outcome in different epilepsies.
Collapse
Affiliation(s)
| | - Katie L Bullinger
- 2Neurology, Emory University School of Medicine, Atlanta, Georgia; and
| | | | | | - Enrico Opri
- 2Neurology, Emory University School of Medicine, Atlanta, Georgia; and
| | - Jon T Willie
- 3Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Robert E Gross
- Departments of1Neurosurgery and.,2Neurology, Emory University School of Medicine, Atlanta, Georgia; and
| |
Collapse
|
5
|
Silkis IG. Hypothetical Mechanism of Resting Tremor in Parkinson’s Disease. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Sharma VD, Patel M, Miocinovic S. Surgical Treatment of Parkinson's Disease: Devices and Lesion Approaches. Neurotherapeutics 2020; 17:1525-1538. [PMID: 33118132 PMCID: PMC7851282 DOI: 10.1007/s13311-020-00939-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 10/23/2022] Open
Abstract
Surgical treatments have transformed the management of Parkinson's disease (PD). Therapeutic options available for the management of PD motor complications include deep brain stimulation (DBS), ablative or lesioning procedures (pallidotomy, thalamotomy, subthalamotomy), and dopaminergic medication infusion devices. The decision to pursue these advanced treatment options is typically done by a multidisciplinary team by considering factors such as the patient's clinical characteristics, efficacy, ease of use, and risks of therapy with a goal to improve PD symptoms and quality of life. DBS has become the most widely used surgical therapy, although there is a re-emergence of interest in ablative procedures with the introduction of MR-guided focused ultrasound. In this article, we review DBS and lesioning procedures for PD, including indications, selection process, and management strategies.
Collapse
Affiliation(s)
- Vibhash D Sharma
- Department of Neurology, University of Kansas Medical Center, 3599 Rainbow Blvd, MS 3042, Kansas City, KS, 66160, USA.
| | - Margi Patel
- Department of Neurology, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
7
|
Liu J, Shelkar GP, Gandhi PJ, Gawande DY, Hoover A, Villalba RM, Pavuluri R, Smith Y, Dravid SM. Striatal glutamate delta-1 receptor regulates behavioral flexibility and thalamostriatal connectivity. Neurobiol Dis 2020; 137:104746. [PMID: 31945419 PMCID: PMC7204410 DOI: 10.1016/j.nbd.2020.104746] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/19/2019] [Accepted: 01/12/2020] [Indexed: 10/31/2022] Open
Abstract
Impaired behavioral flexibility and repetitive behavior is a common phenotype in autism and other neuropsychiatric disorders, but the underlying synaptic mechanisms are poorly understood. The trans-synaptic glutamate delta (GluD)-Cerebellin 1-Neurexin complex, critical for synapse formation/maintenance, represents a vulnerable axis for neuropsychiatric diseases. We have previously found that GluD1 deletion results in reversal learning deficit and repetitive behavior. In this study, we show that selective ablation of GluD1 from the dorsal striatum impairs behavioral flexibility in a water T-maze task. We further found that striatal GluD1 is preferentially found in dendritic shafts, and more frequently associated with thalamic than cortical glutamatergic terminals suggesting localization to projections from the thalamic parafascicular nucleus (Pf). Conditional deletion of GluD1 from the striatum led to a selective loss of thalamic, but not cortical, terminals, and reduced glutamatergic neurotransmission. Optogenetic studies demonstrated functional changes at thalamostriatal synapses from the Pf, but no effect on the corticostriatal system, upon ablation of GluD1 in the dorsal striatum. These studies suggest a novel molecular mechanism by which genetic variations associated with neuropsychiatric disorders may impair behavioral flexibility, and reveal a unique principle by which GluD1 subunit regulates forebrain circuits.
Collapse
Affiliation(s)
- Jinxu Liu
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Gajanan P Shelkar
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Pauravi J Gandhi
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Dinesh Y Gawande
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Andrew Hoover
- Yerkes National Primate Research Center, Atlanta, GA 30329, USA; UDALL Center of Excellence for Parkinson's Disease, Atlanta, GA 30329, USA
| | - Rosa M Villalba
- Yerkes National Primate Research Center, Atlanta, GA 30329, USA; UDALL Center of Excellence for Parkinson's Disease, Atlanta, GA 30329, USA
| | - Ratnamala Pavuluri
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Yoland Smith
- Yerkes National Primate Research Center, Atlanta, GA 30329, USA; UDALL Center of Excellence for Parkinson's Disease, Atlanta, GA 30329, USA; Dept. Neurology, Emory University, Atlanta, GA 30329, USA
| | - Shashank M Dravid
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA.
| |
Collapse
|
8
|
Li J, Li Y, Gutierrez L, Xu W, Wu Y, Liu C, Li D, Sun B, Zhang C, Wei H. Imaging the Centromedian Thalamic Nucleus Using Quantitative Susceptibility Mapping. Front Hum Neurosci 2020; 13:447. [PMID: 31998098 PMCID: PMC6962173 DOI: 10.3389/fnhum.2019.00447] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/05/2019] [Indexed: 11/13/2022] Open
Abstract
The centromedian (CM) nucleus is an intralaminar thalamic nucleus that is considered as a potentially effective target of deep brain stimulation (DBS) and ablative surgeries for the treatment of multiple neurological and psychiatric disorders. However, the structure of CM is invisible on the standard T1- and T2-weighted (T1w and T2w) magnetic resonance images, which hamper it as a direct DBS target for clinical applications. The purpose of the current study is to demonstrate the use of quantitative susceptibility mapping (QSM) technique to image the CM within the thalamic region. Twelve patients with Parkinson's disease, dystonia, or schizophrenia were included in this study. A 3D multi-echo gradient recalled echo (GRE) sequence was acquired together with T1w and T2w images on a 3-T MR scanner. The QSM image was reconstructed from the GRE phase data. Direct visual inspection of the CM was made on T1w, T2w, and QSM images. Furthermore, the contrast-to-noise ratios (CNRs) of the CM to the adjacent posterior part of thalamus on T1w, T2w, and QSM images were compared using the one-way analysis of variance (ANOVA) test. QSM dramatically improved the visualization of the CM nucleus. Clear delineation of CM compared to the surroundings was observed on QSM but not on T1w and T2w images. Statistical analysis showed that the CNR on QSM was significantly higher than those on T1w and T2w images. Taken together, our results indicate that QSM is a promising technique for improving the visualization of CM as a direct targeting for DBS surgery.
Collapse
Affiliation(s)
- Jun Li
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufei Li
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lorenzo Gutierrez
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wenying Xu
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Wu
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, United States.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Dianyou Li
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chencheng Zhang
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjiang Wei
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|