1
|
Zhu H, Gao G, Wu Y, Wang Y, Chen Y, Niu C. Activated TREM1-mediated MAPK signaling in endothelial cells caused by highly expressed STAT1 is associated with intracranial aneurysms occurrence and rupture. Mol Cell Biochem 2025; 480:3133-3145. [PMID: 39661286 PMCID: PMC12048450 DOI: 10.1007/s11010-024-05173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024]
Abstract
Intracranial aneurysm (IA) poses significant health risks, yet the specific mRNA profiles and regulatory mechanisms distinguishing unruptured IA (UIA) from ruptured IA (RIA) remain unclear. This study aimed to elucidate these differences through comprehensive mRNA analysis. We employed RNA sequencing to compare mRNA expression patterns among control individuals, UIA patients, and RIA patients. Differential expression analysis identified triggering receptor expressed on myeloid cells 1 (TREM1) as a potential biomarker for IA occurrence and rupture, which was validated in an expanded cohort. In vitro experiments revealed that TREM1 overexpression in human umbilical vein endothelial cells (HUVECs) inhibited proliferation, angiogenesis, and migration while promoting apoptosis and inflammation. Bioinformatic predictions and subsequent chromatin immunoprecipitation assays confirmed signal transducer and activator of transcription 1 (STAT1) as a transcriptional regulator of TREM1. STAT1 overexpression in HUVECs activated the MAPK signaling pathway and mimicked the effects of TREM1 overexpression, which were reversible by TREM1 inhibition. Conversely, P38 MAPK inhibition produced opposite effects, which were negated by STAT1 overexpression. This study identifies TREM1 as a potential biomarker for IA occurrence and rupture, likely regulated by STAT1, offering new avenues for non-invasive IA intervention strategies.
Collapse
Affiliation(s)
- Hao Zhu
- Cheeloo College of Medicine, Shandong University, No.44 Wenhua West Road, Lixia District, Jinan, 250012, China
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No.1 Swan Lake Road, Hefei, 230001, China
| | - Ge Gao
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No.1 Swan Lake Road, Hefei, 230001, China
| | - Yingang Wu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No.1 Swan Lake Road, Hefei, 230001, China
| | - Yang Wang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No.1 Swan Lake Road, Hefei, 230001, China
| | - Yu Chen
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No.1 Swan Lake Road, Hefei, 230001, China
| | - Chaoshi Niu
- Cheeloo College of Medicine, Shandong University, No.44 Wenhua West Road, Lixia District, Jinan, 250012, China.
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No.1 Swan Lake Road, Hefei, 230001, China.
| |
Collapse
|
2
|
Veeturi SS, Saleem A, Ojeda DJ, Sagues E, Sanchez S, Gudino A, Levy EI, Hasan D, Siddiqui AH, Tutino VM, Samaniego EA. Radiomics-Based Predictive Nomogram for Assessing the Risk of Intracranial Aneurysms. Transl Stroke Res 2025; 16:79-87. [PMID: 38954365 DOI: 10.1007/s12975-024-01268-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024]
Abstract
Aneurysm wall enhancement (AWE) has the potential to be used as an imaging biomarker for the risk stratification of intracranial aneurysms (IAs). Radiomics provides a refined approach to quantify and further characterize AWE's textural features. This study examines the performance of AWE quantification combined with clinical information in detecting symptomatic IAs. Ninety patients harboring 104 IAs (29 symptomatic and 75 asymptomatic) underwent high-resolution magnetic resonance imaging (HR-MRI). The assessment of AWE was performed using two different methods: 3D-AWE mapping and composite radiomics-based score (RadScore). The dataset was split into training and testing subsets. The testing set was used to build two different nomograms using each modality of AWE assessment combined with patients' clinical information and aneurysm morphological data. Finally, each nomogram was evaluated on an independent testing set. A total of 22 radiomic features were significantly different between symptomatic and asymptomatic IAs. The 3D-AWE mapping nomogram achieved an area under the curve (AUC) of 0.77 (63% accuracy, 78% sensitivity, and 58% specificity). The RadScore nomogram exhibited a better performance, achieving an AUC of 0.83 (77% accuracy, 89% sensitivity, and 73% specificity). The comprehensive analysis of IAs with the quantification of AWE data through radiomic analysis, patient clinical information, and morphological aneurysm metrics achieves a high accuracy in detecting symptomatic IA status.
Collapse
Affiliation(s)
- Sricharan S Veeturi
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, USA
| | - Arshaq Saleem
- Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Diego J Ojeda
- Department of Neurology, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Elena Sagues
- Department of Neurology, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | | | - Andres Gudino
- Department of Neurology, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Elad I Levy
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, USA
| | - David Hasan
- Department of Neurosurgery, Duke University, Durham, NC, USA
| | - Adnan H Siddiqui
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, USA
| | - Vincent M Tutino
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, USA
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Edgar A Samaniego
- Department of Neurology, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA.
- Department of Radiology, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA.
- Department of Neurosurgery, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA.
| |
Collapse
|
3
|
Benemerito I, Ewbank F, Narracott A, Villa-Uriol MC, Narata AP, Patel U, Bulters D, Marzo A. Computational fluid dynamics and shape analysis enhance aneurysm rupture risk stratification. Int J Comput Assist Radiol Surg 2025; 20:31-41. [PMID: 39550730 PMCID: PMC11757871 DOI: 10.1007/s11548-024-03289-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024]
Abstract
PURPOSE Accurately quantifying the rupture risk of unruptured intracranial aneurysms (UIAs) is crucial for guiding treatment decisions and remains an unmet clinical challenge. Computational Flow Dynamics and morphological measurements have been shown to differ between ruptured and unruptured aneurysms. It is not clear if these provide any additional information above routinely available clinical observations or not. Therefore, this study investigates whether incorporating image-derived features into the established PHASES score can improve the classification of aneurysm rupture status. METHODS A cross-sectional dataset of 170 patients (78 with ruptured aneurysm) was used. Computational fluid dynamics (CFD) and shape analysis were performed on patients' images to extract additional features. These derived features were combined with PHASES variables to develop five ridge constrained logistic regression models for classifying the aneurysm rupture status. Correlation analysis and principal component analysis were employed for image-derived feature reduction. The dataset was split into training and validation subsets, and a ten-fold cross validation strategy with grid search optimisation and bootstrap resampling was adopted for determining the models' coefficients. Models' performances were evaluated using the area under the receiver operating characteristic curve (AUC). RESULTS The logistic regression model based solely on PHASES achieved AUC of 0.63. All models incorporating derived features from CFD and shape analysis demonstrated improved performance, reaching an AUC of 0.71. Non-sphericity index (shape variable) and maximum oscillatory shear index (CFD variable) were the strongest predictors of a ruptured status. CONCLUSION This study demonstrates the benefits of integrating image-based fluid dynamics and shape analysis with clinical data for improving the classification accuracy of aneurysm rupture status. Further evaluation using longitudinal data is needed to assess the potential for clinical integration.
Collapse
Affiliation(s)
- Ivan Benemerito
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield, UK.
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK.
| | - Frederick Ewbank
- Department of Neurosurgery, University Hospital Southampton, Southampton, UK
| | - Andrew Narracott
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield, UK
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
| | - Maria-Cruz Villa-Uriol
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield, UK
- Department of Computer Science, University of Sheffield, Sheffield, UK
| | - Ana Paula Narata
- Department of Neuroradiology, University Hospital Southampton, Southampton, UK
| | - Umang Patel
- Department of Neurosurgery, Oxford University Hospital NHS Foundation Trust, Oxford, UK
| | - Diederik Bulters
- Department of Neurosurgery, University Hospital Southampton, Southampton, UK
| | - Alberto Marzo
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield, UK
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
4
|
Wang X, Huang X. Risk factors and predictive indicators of rupture in cerebral aneurysms. Front Physiol 2024; 15:1454016. [PMID: 39301423 PMCID: PMC11411460 DOI: 10.3389/fphys.2024.1454016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024] Open
Abstract
Cerebral aneurysms are abnormal dilations of blood vessels in the brain that have the potential to rupture, leading to subarachnoid hemorrhage and other serious complications. Early detection and prediction of aneurysm rupture are crucial for effective management and prevention of rupture-related morbidities and mortalities. This review aims to summarize the current knowledge on risk factors and predictive indicators of rupture in cerebral aneurysms. Morphological characteristics such as aneurysm size, shape, and location, as well as hemodynamic factors including blood flow patterns and wall shear stress, have been identified as important factors influencing aneurysm stability and rupture risk. In addition to these traditional factors, emerging evidence suggests that biological and genetic factors, such as inflammation, extracellular matrix remodeling, and genetic polymorphisms, may also play significant roles in aneurysm rupture. Furthermore, advancements in computational fluid dynamics and machine learning algorithms have enabled the development of novel predictive models for rupture risk assessment. However, challenges remain in accurately predicting aneurysm rupture, and further research is needed to validate these predictors and integrate them into clinical practice. By elucidating and identifying the various risk factors and predictive indicators associated with aneurysm rupture, we can enhance personalized risk assessment and optimize treatment strategies for patients with cerebral aneurysms.
Collapse
Affiliation(s)
- Xiguang Wang
- Department of Research & Development Management, Shanghai Aohua Photoelectricity Endoscope Co., Ltd., Shanghai, China
| | - Xu Huang
- Department of Research & Development Management, Shanghai Aohua Photoelectricity Endoscope Co., Ltd., Shanghai, China
| |
Collapse
|
5
|
Lu W, Shiwei Y, Aimin L, Kang X. Clinical relevance of critical plasma homocysteine levels in predicting rupture risk for small and medium-sized intracranial aneurysms. Sci Rep 2024; 14:18192. [PMID: 39107517 PMCID: PMC11303782 DOI: 10.1038/s41598-024-69219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
Plasma homocysteine (Hcy) has been globally recognized as an independent risk factor for various neurovascular diseases. In this study, the authors investigated the relationship between critical Hcy concentration and the risk of rupture in intracranial aneurysms (IAs). This study collected data from 423 patients with both ruptured and unruptured IAs. We compared demographic data, vascular rupture risk factors, and laboratory test results between the two groups. Multivariable logistic regression analysis was employed to determine the correlation between critical plasma Hcy levels and the risk of rupture in small to medium-sized IAs. A total of 330 cases of ruptured intracranial aneurysms (RIA) and 93 cases of unruptured intracranial aneurysms (UIA) were included. Univariate analysis revealed statistically significant differences between the ruptured and unruptured groups in terms of hypertension, hyperlipidemia, plasma Hcy levels, and IA morphology (all P < 0.05). Multivariable logistic regression analysis indicated that hypertension (odds ratio [OR] 0.504; 95% confidence interval [CI] 0.279-0.911; P = 0.023), hyperlipidemia (OR 1.924; 95% CI 1.079-3.429; P = 0.027), and plasma Hcy levels (OR 1.420; 95% CI 1.277-1.578; P < 0.001) were independently associated with the rupture of small to medium-sized IAs, all with statistical significance (P < 0.05). Our study suggests that critical plasma Hcy levels are an independent risk factor for increased rupture risk in small to medium-sized intracranial aneurysms. Therefore, reducing plasma Hcy levels may be considered a valuable strategy to mitigate the risk of intracranial vascular abnormalities rupture and improve patient prognosis.
Collapse
Affiliation(s)
- Wang Lu
- Department of Neurosurgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 222002, Jiangsu, China
- Jinzhou Medical University, Jinzhou, China
| | - Yan Shiwei
- Department of Neurosurgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 222002, Jiangsu, China
| | - Li Aimin
- Department of Neurosurgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 222002, Jiangsu, China.
- Jinzhou Medical University, Jinzhou, China.
| | - Xie Kang
- Department of Neurosurgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 222002, Jiangsu, China.
| |
Collapse
|
6
|
Han L, Zhou H, Guo Z, Jiang C, Wang Z, Zhang H, Liu D. Exosomal lncRNA DUXAP8 affecting CHPF2 in the pathogenesis of intracranial aneurysms. Gene 2024; 908:148253. [PMID: 38341004 DOI: 10.1016/j.gene.2024.148253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/09/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
OBJECTIVE This study endeavored to explore the relationship between exosome-derived lncRNA Double Homeobox A Pseudogene 8 (DUXAP8) and Chondroitin Polymerizing Factor 2 (CHPF2), and their roles in the pathogenesis of intracranial aneurysm (IA). METHODS The shared targeted molecules (DUXAP8 and CHPF2) were detected via GSE122897 and GSE75436 datasets. A total of 312 patients with IAs were incorporated into this study. Exosomes were isolated from serum samples, and their identity was confirmed using Western blotting for exosomal markers (CD9, CD63 and ALIX). Inflammatory responses in IA tissues were evaluated using Hematoxylin-Eosin staining. CHPF2 protein concentration and the expression levels of DUXAP8 and CHPF2 mRNA in exosomal samples were assessed using Immunochemistry (IHC), Western Blotting, and qRT-PCR, respectively. Cell-based assays involving Human Umbilical Vein Endothelial Cells (HuvECs), including transfection with exosomal DUXAP8, Western Blotting, qRT-PCR, and Cell Counting Kit-8, were conducted. Receiver Operating Characteristic (ROC) curves were derived using SPSS. RESULTS DUXAP8 level affects the level of CHPF2. DUXAP8 expression within exosomes was associated with increased CD9, CD63, ALIX and CHPF2 levels during IA development and inflammatory stress. In HuvECs, transfection with exosomes carrying DUXAP8 siRNA resulted in reduced CHPF2 expression, whereas DUXAP8 mimic increased CHPF2 concentrations. The Area Under the ROC Curve (AUC) for exosomal DUXAP8 expression and CHPF2 levels, and aneurysm size was 0.768 (95% CI, 0.613 to 0.924), 0.937 (95% CI, 0.853 to 1.000), and 0.943 (95% CI, 0.860, 1.000), respectively. CONCLUSION Exosome-derived DUXAP8 promotes IA progression by affecting CHPF2 expression.
Collapse
Affiliation(s)
- Liang Han
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Haixia Zhou
- Department of VIP, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Zhigang Guo
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Chengwei Jiang
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Zhengming Wang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Haiyang Zhang
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Dehua Liu
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| |
Collapse
|
7
|
Veeturi SS, Saleem A, Ojeda D, Sagues E, Sanchez S, Gudino A, Levy EI, Hasan D, Siddiqui AH, Tutino VM, Samaniego EA. Radiomics-Based Predictive Nomogram for Assessing the Risk of Intracranial Aneurysms. RESEARCH SQUARE 2024:rs.3.rs-4350156. [PMID: 38766264 PMCID: PMC11100888 DOI: 10.21203/rs.3.rs-4350156/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background Aneurysm wall enhancement (AWE) has the potential to be used as an imaging biomarker for the risk stratification of intracranial aneurysms (IAs). Radiomics provides a refined approach to quantify and further characterize AWE's textural features. This study examines the performance of AWE quantification combined with clinical information in detecting symptomatic IAs. Methods Ninety patients harboring 104 IAs (29 symptomatic and 75 asymptomatic) underwent high-resolution magnetic resonance imaging (HR-MRI). The assessment of AWE was performed using two different methods: 3D-AWE mapping and composite radiomics-based score (RadScore). The dataset was split into training and testing subsets. The testing set was used to build two different nomograms using each modality of AWE assessment combined with patients' demographic information and aneurysm morphological data. Finally, each nomogram was evaluated on an independent testing set. Results A total of 22 radiomic features were significantly different between symptomatic and asymptomatic IAs. The 3D-AWE Mapping nomogram achieved an area under the curve (AUC) of 0.77 (63% accuracy, 78% sensitivity and 58% specificity). The RadScore nomogram exhibited a better performance, achieving an AUC of 0.83 (77% accuracy, 89% sensitivity and 73% specificity). Conclusions Combining AWE quantification through radiomic analysis with patient demographic data in a clinical nomogram achieved high accuracy in detecting symptomatic IAs.
Collapse
|
8
|
Han Y, Zhang B, Qi X, Yuan G, Li X, Hao G, Liang G. Comparison of sex differences on outcomes after aneurysmal subarachnoid hemorrhage: a propensity score-matched analysis. BMC Neurol 2024; 24:153. [PMID: 38704548 PMCID: PMC11069223 DOI: 10.1186/s12883-024-03659-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024] Open
Abstract
OBJECTIVE Sex differences in outcomes of patients with aneurysmal subarachnoid hemorrhage (aSAH) remain controversial. Therefore, the aim of this study was to investigate the sex differences in the prognosis of patients with aSAH. METHODS This study retrospectively analyzed the clinical data of aSAH patients admitted to the Department of Neurosurgery of General Hospital of Northern Theater Command, from April 2020 to January 2022. The modified Rankin Scale (mRS) was used to evaluate outcomes at 3-month post-discharge. Baseline characteristics, in-hospital complications and outcomes were compared after 1:1 propensity score matching (PSM). RESULTS A total of 665 patients were included and the majority (63.8%) were female. Female patients were significantly older than male patients (59.3 ± 10.9 years vs. 55.1 ± 10.9 years, P < 0.001). After PSM, 141 male and 141 female patients were compared. Comparing postoperative complications and mRS scores, the incidence of delayed cerebral ischemia (DCI) and hydrocephalus and mRS ≥ 2 at 3-month were significantly higher in female patients than in male patients. After adjustment, the analysis of risk factors for unfavorable prognosis at 3-month showed that age, sex, smoking, high Hunt Hess grade, high mFisher score, DCI, and hydrocephalus were independent risk factors. CONCLUSION Female patients with aSAH have a worse prognosis than male patients, and this difference may be because females are more vulnerable to DCI and hydrocephalus.
Collapse
Affiliation(s)
- Yuwei Han
- Department of Neurology, General Hospital of Northern Theater Command, NO.83, Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, China
| | - Bingying Zhang
- Department of Neurology, General Hospital of Northern Theater Command, NO.83, Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, China
| | - Xin Qi
- Department of Neurology, General Hospital of Northern Theater Command, NO.83, Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, China
| | - Guanqian Yuan
- Department of Neurology, General Hospital of Northern Theater Command, NO.83, Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, China
| | - Xiaoming Li
- Department of Neurology, General Hospital of Northern Theater Command, NO.83, Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, China.
| | - Guangzhi Hao
- Department of Neurology, General Hospital of Northern Theater Command, NO.83, Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, China.
| | - Guobiao Liang
- Department of Neurology, General Hospital of Northern Theater Command, NO.83, Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
9
|
Sanchez S, Gudino-Vega A, Guijarro-Falcon K, Miller JM, Noboa LE, Samaniego EA. MR Imaging of the Cerebral Aneurysmal Wall for Assessment of Rupture Risk. Neuroimaging Clin N Am 2024; 34:225-240. [PMID: 38604707 DOI: 10.1016/j.nic.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The evaluation of unruptured intracranial aneurysms requires a comprehensive and multifaceted approach. The comprehensive analysis of aneurysm wall enhancement through high-resolution MRI, in tandem with advanced processing techniques like finite element analysis, quantitative susceptibility mapping, and computational fluid dynamics, has begun to unveil insights into the intricate biology of aneurysms. This enhanced understanding of the etiology, progression, and eventual rupture of aneurysms holds the potential to be used as a tool to triage patients to intervention versus observation. Emerging tools such as radiomics and machine learning are poised to contribute significantly to this evolving landscape of diagnostic refinement.
Collapse
Affiliation(s)
- Sebastian Sanchez
- Department of Neurology, Yale University, LLCI 912, New Haven, CT 06520, USA
| | - Andres Gudino-Vega
- Department of Neurology, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | | | - Jacob M Miller
- Department of Neurology, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Luis E Noboa
- Universidad San Francisco de Quito, Quito, Ecuador
| | - Edgar A Samaniego
- Department of Neurology, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA; Department of Neurosurgery, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA; Department of Radiology, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA.
| |
Collapse
|
10
|
Wang C, Han Y, Li X. Glypican-1 may be a plasma biomarker for predicting the rupture of small intracranial aneurysms. J Proteomics 2024; 293:105060. [PMID: 38154549 DOI: 10.1016/j.jprot.2023.105060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/30/2023]
Abstract
Currently, there are no effective methods for predicting the rupture of asymptomatic small intracranial aneurysms (IA) (<7 mm). In this study the aim was to identify early warning biomarkers in peripheral plasma for predicting IA rupture. Four experimental groups were included: ruptured intracranial aneurysm (RIA), unruptured intracranial aneurysm (UIA), traumatic subarachnoid hemorrhage control (tSAHC), and healthy control (HC) groups. Plasma proteomics of these four groups were detected using iTRAQ combined LC-MS/MS. Differentially expressed proteins (DEPs) were identified in RIA, UIA, tSAHC compared with HC. Target proteins associated with aneurysm rupture were obtained by comparing the DEPs of the RIA and UIA groups after filtering out the DEPs of the tSAHC group. The plasma concentrations of target proteins were validated using enzyme-linked immunosorbent assay (ELISA). The iTRAQ analysis showed a significant increase in plasma GPC1 concentration in the RIA group compared to the UIA group, which was further validated among the IA patients. Logistic regression analysis identified GPC1 as an independent risk factor for predicting aneurysm rupture. The ROC curve indicated that the GPC1 plasma cut-off value for predicting aneurysms rupture was 4.99 ng/ml. GPC1 may be an early warning biomarker for predicting the rupture of small intracranial aneurysms. SIGNIFICANCE: The current management approach for asymptomatic small intracranial aneurysms (<7 mm) is limited to conservative observation and surgical intervention. However, the decision-making process regarding these options poses a dilemma due to weighing their respective advantages and disadvantages. Currently, there is a lack of effective diagnostic methods to predict the rupture of small aneurysms. Therefore, our aim is to identify early warning biomarkers in peripheral plasma that can serve as quantitative detection markers for predicting intracranial aneurysm rupture. In this study, four experimental populations were established: small ruptured intracranial aneurysm (sRIA) group, small unruptured intracranial aneurysm (sUIA) group, traumatic subarachnoid hemorrhage control (tSAHC) group, and healthy control (HC) group. The tSAH group was the control group of spontaneous subarachnoid hemorrhage caused by ruptured aneurysm. Compared with patients with UIA, aneurysm tissue and plasma GPC1 in patients with RIA is significantly higher, and GPC1 may be an early warning biomarker for predicting the rupture of intracranial small aneurysms.
Collapse
Affiliation(s)
- Chenchen Wang
- Institute of Neurology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Yuwei Han
- Institute of Neurology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Xiaoming Li
- Institute of Neurology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China.
| |
Collapse
|
11
|
Raghuram A, Sanchez S, Wendt L, Cochran S, Ishii D, Osorno C, Bathla G, Koscik TR, Torner J, Hasan D, Samaniego EA. 3D aneurysm wall enhancement is associated with symptomatic presentation. J Neurointerv Surg 2023; 15:747-752. [PMID: 35853699 PMCID: PMC10173164 DOI: 10.1136/jnis-2022-019125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/05/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Aneurysm wall enhancement (AWE) is a potential surrogate biomarker for aneurysm instability. Previous studies have assessed AWE using 2D multiplanar methods, most of which were conducted qualitatively. OBJECTIVE To use a new quantitative tool to analyze a large cohort of saccular aneurysms with 3D-AWE maps METHODS: Saccular aneurysms were imaged prospectively with 3T high resolution MRI. 3D-AWE maps of symptomatic (defined as ruptured or presentation with sentinel headache/cranial nerve neuropathy) and asymptomatic aneurysms were created by extending orthogonal probes from the aneurysm lumen into the wall. Three metrics were used to characterize enhancement: 3D circumferential AWE (3D-CAWE), aneurysm-specific contrast uptake (SAWE), and focal AWE (FAWE). Aneurysms with a circumferential AWE higher than the corpus callosum (3D-CAWE ≥1) were classified as 3D-CAWE+. Symptomatic presentation was analyzed with univariate and multivariate logistic models. Aneurysm size, size ratio, aspect ratio, irregular morphology, and PHASES and ELAPSS scores were compared with the new AWE metrics. Bleb and microhemorrhage analyses were also performed. RESULTS Ninety-three aneurysms were analyzed. 3D-CAWE, SAWE, and FAWE were associated with symptomatic status (OR=1.34, 1.25, and 1.08, respectively). A multivariate model including aneurysm size, 3D-CAWE+, age, female gender, and FAWE detected symptomatic status with 80% specificity and 90% sensitivity (area under the curve=0.914, =0.967). FAWE was also associated with irregular morphology and high-risk location (p=0.043 and p=0.001, respectively). In general, blebs enhanced 56% more than the aneurysm body. Areas of microhemorrhage co-localized with areas of increased SAWE (p=0.047). CONCLUSIONS 3D-AWE mapping provides a new set of metrics that could potentially improve the identification of symptomatic aneurysms.
Collapse
Affiliation(s)
- Ashrita Raghuram
- Department of Neurology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Sebastian Sanchez
- Department of Neurology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Linder Wendt
- Institute for Clinical and Translational Science, The University of Iowa, Iowa City, Iowa, USA
| | - Steven Cochran
- Department of Psychiatry, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Daizo Ishii
- Department of Neurosurgery, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Carlos Osorno
- Department of Neurosurgery, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Girish Bathla
- Department of Radiology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Timothy R Koscik
- Department of Psychiatry, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - James Torner
- Institute for Clinical and Translational Science, The University of Iowa, Iowa City, Iowa, USA
- Department of Neurosurgery, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - David Hasan
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Edgar A Samaniego
- Department of Neurology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
- Department of Neurosurgery, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
- Department of Radiology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| |
Collapse
|
12
|
Elmokadem AH, Elged BA, Abdel Razek A, El-Serougy LG, Kasem MA, EL-Adalany MA. Interobserver reliability of computed tomography angiography in the assessment of ruptured intracranial aneurysm and impact on patient management. World J Radiol 2023; 15:201-215. [PMID: 37424734 PMCID: PMC10324495 DOI: 10.4329/wjr.v15.i6.201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/17/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Aneurysmal subarachnoid hemorrhage is an emergency that can lead to a high mortality rate and many severe complications. It is critical to make a rapid radiological evaluation of ruptured intracranial aneurysms (RIAs) to determine the appropriate surgical treatment.
AIM To assess the reliability of computed tomography angiography (CTA) in assessing different features of ruptured intracranial aneurysm and its impact on patient management.
METHODS The final cohort of this study consisted of 146 patients with RIAs (75 male and 71 female) who underwent cerebral CTA. Their age ranged from 25 to 80, and the mean age ± SD was 57 ± 8.95 years. Two readers were asked to assess different features related to the aneurysm and perianeurysmal environment. Inter-observer agreement was measured using kappa statistics. Imaging data extracted from non-contrast computed tomography and CTA were considered to categorize the study population into two groups according to the recommended therapeutic approach.
RESULTS The inter-observer agreement of both reviewers was excellent for the detection of aneurysms (K = 0.95, P = 0.001), aneurysm location (K = 0.98, P = 0.001), and (K = 0.98, P = 0.001), morphology (K = 0.92, P = 0.001) and margins (K = 0.95, P = 0.001). There was an excellent interobserver agreement for the measurement of aneurysm size (K = 0.89, P = 0.001), neck (K = 0.85, P = 0.001), and dome-to-neck ratio (K = 0.98, P = 0.001). There was an excellent inter-observer agreement for the detection of other aneurysm-related features such as thrombosis (K = 0.82, P = 0.001), calcification (K = 1.0, P = 0.001), bony landmark (K = 0.89, P = 0.001) and branch incorporation (K = 0.91, P = 0.001) as well as perianeurysmal findings including vasospasm (K = 0.91, P = 0.001), perianeurysmal cyst (K = 1.0, P = 0.001) and associated vascular lesions (K = 0.83, P = 0.001). Based on imaging features, 87 patients were recommended to have endovascular treatment, while surgery was recommended in 59 patients. 71.2% of the study population underwent the recommended therapy.
CONCLUSION CTA is a reproducible promising diagnostic imaging modality for detecting and characterizing cerebral aneurysms.
Collapse
Affiliation(s)
- Ali H Elmokadem
- Department of Radiology, Mansoura University, Mansoura 35516, Egypt
| | | | | | | | - Mohamed Ali Kasem
- Department of Neurosurgery, Mansoura University, Mansoura 35516, Egypt
| | | |
Collapse
|
13
|
Peto I, Vakharia K. Commentary: Impact of Very Small Aneurysm Size and Anterior Communicating Segment Location on Outcome After Aneurysmal Subarachnoid Hemorrhage. Neurosurgery 2023; 92:e50-e51. [PMID: 36520482 DOI: 10.1227/neu.0000000000002296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/23/2022] Open
Affiliation(s)
- Ivo Peto
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa General Hospital, Tampa, Florida, USA
| | | |
Collapse
|
14
|
Roethlisberger M, Aghlmandi S, Rychen J, Chiappini A, Zumofen DW, Bawarjan S, Stienen MN, Fung C, D'Alonzo D, Maldaner N, Steinsiepe VK, Corniola MV, Goldberg J, Cianfoni A, Robert T, Maduri R, Saliou G, Starnoni D, Weber J, Seule MA, Gralla J, Bervini D, Kulcsar Z, Burkhardt JK, Bozinov O, Remonda L, Marbacher S, Lövblad KO, Psychogios M, Bucher HC, Mariani L, Bijlenga P, Blackham KA, Guzman R. Impact of Very Small Aneurysm Size and Anterior Communicating Segment Location on Outcome after Aneurysmal Subarachnoid Hemorrhage. Neurosurgery 2023; 92:370-381. [PMID: 36469672 DOI: 10.1227/neu.0000000000002212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/31/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Very small anterior communicating artery aneurysms (vsACoA) of <5 mm in size are detected in a considerable number of patients with aneurysmal subarachnoid hemorrhage (aSAH). Single-center studies report that vsACoA harbor particular risks when treated. OBJECTIVE To assess the clinical and radiological outcome(s) of patients with aSAH diagnosed with vsACoA after aneurysm treatment and at discharge. METHODS Information on n = 1868 patients was collected in the Swiss Subarachnoid Hemorrhage Outcome Study registry between 2009 and 2014. The presence of a new focal neurological deficit at discharge, functional status (modified Rankin scale), mortality rates, and procedural complications (in-hospital rebleeding and presence of a new stroke on computed tomography) was assessed for vsACoA and compared with the results observed for aneurysms in other locations and with diameters of 5 to 25 mm. RESULTS This study analyzed n = 1258 patients with aSAH, n = 439 of which had a documented ruptured ACoA. ACoA location was found in 38% (n = 144/384) of all very small ruptured aneurysms. A higher in-hospital bleeding rate was found in vsACoA compared with non-ACoA locations (2.8 vs 2.1%), especially when endovascularly treated (2.1% vs 0.5%). In multivariate analysis, aneurysm size of 5 to 25 mm, and not ACoA location, was an independent risk factor for a new focal neurological deficit and a higher modified Rankin scale at discharge. Neither very small aneurysm size nor ACoA location was associated with higher mortality rates at discharge or the occurrence of a peri-interventional stroke. CONCLUSION Very small ruptured ACoA have a higher in-hospital rebleeding rate but are not associated with worse morbidity or mortality.
Collapse
Affiliation(s)
- Michel Roethlisberger
- Departments of Neurosurgery and Interventional Neuroradiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Soheila Aghlmandi
- Basel Institute for Clinical Epidemiology and Biostatistics, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Jonathan Rychen
- Departments of Neurosurgery and Interventional Neuroradiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alessio Chiappini
- Departments of Neurosurgery and Interventional Neuroradiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Daniel W Zumofen
- Department of Neurological Surgery, Maimonides Medical Center, New York, USA
| | - Schatlo Bawarjan
- Department of Neurosurgery, University Hospital of Göttingen, Göttingen, Germany
| | - Martin N Stienen
- Department of Neurosurgery and Department of Neuroradiology, University Hospital of Zurich, Zurich, Switzerland.,Departments of Neurosurgery and Neuroradiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Christian Fung
- Department of Neurosurgery, University Hospital of Freiburg, Freiburg Germany.,Departments of Neurosurgery and Neuroradiology, University Hospital of Bern, Bern Switzerland
| | - Donato D'Alonzo
- Departments of Neurosurgery and Neuroradiology, Kantonsspital Aarau, Aarau, Switzerland
| | - Nicolai Maldaner
- Department of Neurosurgery and Department of Neuroradiology, University Hospital of Zurich, Zurich, Switzerland
| | - Valentin K Steinsiepe
- Departments of Neurosurgery and Neuroradiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Marco V Corniola
- Departments of Neurosurgery and Neuroradiology, University Hospital of Geneva, Geneva Switzerland
| | - Johannes Goldberg
- Departments of Neurosurgery and Neuroradiology, University Hospital of Bern, Bern Switzerland
| | - Alessandro Cianfoni
- Departments of Neurosurgery and Neuroradiology, Neurocenter of Southern Switzerland, Ospedale regionale, Lugano, Switzerland
| | - Thomas Robert
- Departments of Neurosurgery and Neuroradiology, Neurocenter of Southern Switzerland, Ospedale regionale, Lugano, Switzerland
| | - Rodolfo Maduri
- Clinique de Genolier, Swiss Medical Network, Genolier, Switzerland
| | - Guillaume Saliou
- Departments of Neurosurgery and Neuroradiology, University Hospital of Lausanne, Switzerland
| | - Daniele Starnoni
- Departments of Neurosurgery and Neuroradiology, University Hospital of Lausanne, Switzerland
| | - Johannes Weber
- Departments of Neurosurgery and Neuroradiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Martin A Seule
- Departments of Neurosurgery and Neuroradiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Jan Gralla
- Departments of Neurosurgery and Neuroradiology, University Hospital of Bern, Bern Switzerland
| | - David Bervini
- Departments of Neurosurgery and Neuroradiology, University Hospital of Bern, Bern Switzerland
| | - Zsolt Kulcsar
- Department of Neurosurgery and Department of Neuroradiology, University Hospital of Zurich, Zurich, Switzerland
| | - Jan-Karl Burkhardt
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Oliver Bozinov
- Department of Neurosurgery and Department of Neuroradiology, University Hospital of Zurich, Zurich, Switzerland.,Departments of Neurosurgery and Neuroradiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Luca Remonda
- Departments of Neurosurgery and Neuroradiology, Kantonsspital Aarau, Aarau, Switzerland
| | - Serge Marbacher
- Departments of Neurosurgery and Neuroradiology, Kantonsspital Aarau, Aarau, Switzerland
| | - Karl-Olof Lövblad
- Departments of Neurosurgery and Neuroradiology, University Hospital of Geneva, Geneva Switzerland
| | - Marios Psychogios
- Departments of Neurosurgery and Interventional Neuroradiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Heiner C Bucher
- Basel Institute for Clinical Epidemiology and Biostatistics, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Luigi Mariani
- Departments of Neurosurgery and Interventional Neuroradiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Philippe Bijlenga
- Departments of Neurosurgery and Neuroradiology, University Hospital of Geneva, Geneva Switzerland
| | - Kristine A Blackham
- Departments of Neurosurgery and Interventional Neuroradiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Raphael Guzman
- Departments of Neurosurgery and Interventional Neuroradiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | | |
Collapse
|
15
|
Jindal G, Almardawi R, Gupta R, Colby GP, Schirmer CM, Satti SR, Pukenas B, Hui FK, Caplan J, Miller T, Cherian J, Aldrich F, Kibria G, Simard JM. Target Ultra and Nano coils in the endovascular treatment of small intracranial aneurysms (ULTRA Registry). J Neurosurg 2023; 138:233-240. [PMID: 35901755 DOI: 10.3171/2022.5.jns2296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/04/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The ULTRA Registry is a national multicenter prospective study designed to assess aneurysm occlusion rates and safety profiles of the Target Ultra and Nano coils in the treatment of small intracranial aneurysms (IAs). METHODS Patients with small (≤ 5 mm) ruptured and unruptured IAs were treated exclusively with Target Ultra and Nano coils. The primary endpoints were the initial rate of complete or near-complete aneurysm occlusion, aneurysm recurrence, and need for retreatment. Secondary endpoints were device- and procedure-related adverse events, hemorrhage from the coiled aneurysm at any time during follow-up, and clinical outcomes. RESULTS The ULTRA Registry included 100 patients with a mean ± SD age of 56 ± 11.6 years, of whom 75 were women and 48 presented after aneurysm rupture. The mean aneurysm size was (3.5 ± 0.9) × (2.8 ± 0.9) × (3.0 ± 1.0) mm, and the mean packing density was 34.4% ± 16.7%. Posttreatment complete or near-complete occlusion reported by an independent imaging core laboratory was seen in 92% of patients at baseline and in 87%, 87%, and 83% of patients at first, second, and final follow-up, respectively. At first, second, and final follow-up, 10%, 11%, and 15%, respectively, of patients were deemed to require retreatment. There were three procedural-related ischemic strokes and one intracranial hemorrhage from wire perforation of a parent artery not involved by the aneurysm. There were no coil-related adverse events, including no intraoperative aneurysm ruptures and no known aneurysm ruptures after coiling. CONCLUSIONS This assessment of aneurysm occlusion rates and safety profiles in ULTRA Registry study participants demonstrates excellent safety and efficacy profiles for Target Ultra and Nano coils in the treatment of small IAs.
Collapse
Affiliation(s)
- Gaurav Jindal
- 1Department of Radiology, Division of Interventional Neuroradiology, University of Maryland Medical Center, Baltimore, Maryland
| | - Ranyah Almardawi
- 1Department of Radiology, Division of Interventional Neuroradiology, University of Maryland Medical Center, Baltimore, Maryland
| | - Rishi Gupta
- 2Department of Neurosurgery, Wellstar Health System, Marietta, Georgia
| | - Geoffrey P Colby
- 3Department of Neurosurgery, University of California, Los Angeles, California
| | - Clemens M Schirmer
- 4Department of Neurosurgery, Geisinger Health System, Danville, Pennsylvania
| | - Sudhakar R Satti
- 5Department of Neurointerventional Surgery, Christiana Care Medical Center, Newark, Delaware
| | - Bryan Pukenas
- 6Department of Radiology, Division of Interventional Neuroradiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ferdinand K Hui
- 7Department of Radiology, Division of Interventional Neuroradiology, and
| | - Justin Caplan
- 8Department of Neurosurgery, Johns Hopkins Hospital, Baltimore
| | - Timothy Miller
- 1Department of Radiology, Division of Interventional Neuroradiology, University of Maryland Medical Center, Baltimore, Maryland
| | - Jacob Cherian
- 9Department of Neurosurgery, University of Maryland Medical Center, Baltimore; and
| | - Francois Aldrich
- 9Department of Neurosurgery, University of Maryland Medical Center, Baltimore; and
| | - Gulam Kibria
- 10Department of International Health, Johns Hopkins School of Public Health, Baltimore, Maryland
| | - J Marc Simard
- 9Department of Neurosurgery, University of Maryland Medical Center, Baltimore; and
| | | |
Collapse
|