1
|
Xie M, Wang X, Duan Z, Luan G. Low-grade epilepsy-associated neuroepithelial tumors: Tumor spectrum and diagnosis based on genetic alterations. Front Neurosci 2023; 16:1071314. [PMID: 36699536 PMCID: PMC9868944 DOI: 10.3389/fnins.2022.1071314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Brain tumors can always result in seizures when involving the cortical neurons or their circuits, and they were found to be one of the most common etiologies of intractable focal seizures. The low-grade epilepsy-associated neuroepithelial tumors (LEAT), as a special group of brain tumors associated with seizures, share common clinicopathological features, such as seizure onsets at a young age, a predilection for involving the temporal lobe, and an almost benign course, including a rather slow growth pattern and thus a long-term history of seizures. Ganglioglioma (GG) and dysembryoplastic neuroepithelial tumor (DNET) are the typical representatives of LEATs. Surgical treatments with complete resection of tumors and related epileptogenic zones are deemed the optimal way to achieve postoperative seizure control and lifetime recurrence-free survival in patients with LEATs. Although the term LEAT was originally introduced in 2003, debates on the tumor spectrum and the diagnosis or classification of LEAT entities are still confusing among epileptologists and neuropathologists. In this review, we would further discuss these questions, especially based on the updated classification of central nervous system tumors in the WHO fifth edition and the latest molecular genetic findings of tumor entities in LEAT entities.
Collapse
Affiliation(s)
- Mingguo Xie
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Xiongfei Wang
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Zejun Duan
- Department of Pathology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Guoming Luan
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China,Chinese Institute for Brain Research, Beijing, China,*Correspondence: Guoming Luan,
| |
Collapse
|
2
|
Pyroptosis-Related Genes as Markers for Identifying Prognosis and Microenvironment in Low-Grade Glioma. JOURNAL OF HEALTHCARE ENGINEERING 2023; 2023:6603151. [PMID: 36820395 PMCID: PMC9938775 DOI: 10.1155/2023/6603151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 02/13/2023]
Abstract
Low-grade glioma (LGG) is one of the most common brain tumors and often develops into the worst glioblastoma (GBM). Pyroptosis is related to inflammation and immunization. It has been demonstrated to influence the progression of a variety of cancers. However, the value of pyrosis-related genes (PRGs) in LGG remains unclear. Public TCGA-LGG data are used to analyze the differential expression and genetic variation of PRGs in LGG. Subsequently, this paper identifies pyroptosis-related subtypes and constructs prognostic models. This paper analyzes the expression and function of selected CASP5 in LGG and constructs a ceRNA regulatory network. Final CASP5-related immune infiltration analysis and methylation analysis are performed. Most PRGs are differentially expressed and altered in LGG. Subtypes and prognostic models based on PRGs not only have good functions but also have a great connection with immune infiltration. Enrichment analysis of PRGs with prognostic value of LGG also shows functions correlated mainly with immunity and inflammation. CASP5 is significantly differentially expressed in different grades of gliomas and different prognoses. Despite fewer mutations, CASP5 has a clear correlation for both immune cells and immune checkpoint molecules in the LGG microenvironment. Its methylation may also have a role in the prognosis of LGG. This paper shows the association of pyrosis-related subtypes, prognostic models, and genes, with immune infiltration.
Collapse
|
3
|
Wang C, Xiong K. Glycosylation modification identifies novel molecular phenotypes and prognostic stratifications of glioma. Gene 2022; 836:146677. [PMID: 35714799 DOI: 10.1016/j.gene.2022.146677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 11/04/2022]
Abstract
Glycosylation modification plays a vital role in tumor progression and is highly associated with glioma prognosis. However, the influence of glycosylation modification on the tumor microenvironment (TME) and omic features of glioma remains unclear. Differentially expressed glycosylation-related genes between adjacent and tumor tissues of The Cancer Genome Atlas and Chinese Glioma Genome Atlas datasets were identified. We performed unsupervised clustering to classify patients into different molecular phenotypes, and analyzed their TME heterogeneity, including immunocyte infiltration, immune pathways and tumor purity. Subsequently, we developed a prognostic predicting system named GlycoScore by stepwise least absolute shrinkage and selection operator-Cox regression to evaluate the modification pattern and its association with somatic mutation, clinical significance, immune fractions and drug resistance. Two clustering clusters were identified and presented distinct clinical outcomes and biological functions characterized by hotand cold tumors respectively. Patients with higher GlycoScores exhibited poor prognosis, less mutation counts, and were more sensitive to chemotherapeutics. We also confirmed that the GlycoScore severed as an independent risk factor. Cancer hallmarks such as cell cycle, hippo, and TGFβ were active in the high-GlycoScore group. The combination of tumor mutation burden and the GlycoScore presented an excellent performance in prognostic stratification. Our study suggests that glycosylation is essential for modeling TME of glioma and the GlycoScore is a promising prognostic signature and indicator of immunotherapeutic efficacy.
Collapse
Affiliation(s)
- Chaofan Wang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Kewei Xiong
- School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
4
|
Coburger J, Onken J, Rueckriegel S, von der Brelie C, Nadji-Ohl M, Forster MT, Gerlach R, Unteroberdörster M, Roder C, Kniese K, Schommer S, Rothenbacher D, Nagel G, Wirtz CR, Ernestus RI, Nabavi A, Tatagiba M, Czabanka M, Ganslandt O, Rohde V, Löhr M, Vajkoczy P, Pala A. Eloquent Lower Grade Gliomas, a Highly Vulnerable Cohort: Assessment of Patients' Functional Outcome After Surgery Based on the LoG-Glio Registry. Front Oncol 2022; 12:845992. [PMID: 35311092 PMCID: PMC8927728 DOI: 10.3389/fonc.2022.845992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/31/2022] [Indexed: 11/28/2022] Open
Abstract
Majority of lower grade glioma (LGG) are located eloquently rendering surgical resection challenging. Aim of our study was to assess rate of permanent deficits and its predisposing risk factors. We retrieved 83 patients harboring an eloquently located LGGs from the prospective LoG-Glio Database. Patients without surgery or incomplete postoperative data were excluded. Sign rank test, explorative correlations by Spearman ρ and multivariable regression for new postoperative deficits were calculated. Eloquent region involved predominantly motor (45%) and language (40%). At first follow up after 3 months permanent neuro-logical deficits (NDs) were noted in 39%. Mild deficits remained in 29% and severe deficits in 10%. Complete tumor removal (CTR) was successfully in 62% of intended cases. Postoperative and 3-month follow up National Institute of Health Stroke Score (NIHSS) showed significantly lower values than preoperatively (p<0.001). 38% cases showed a decreased NIHSS at 3-month, while occurrence was only 14% at 9-12-month follow up. 6/7 patients with mild aphasia recovered after 9-12 months, while motor deficits present at 3-month follow up were persistent in majority of patients. Eastern oncology group functional status (ECOG) significantly decreased by surgery (p < 0.001) in 31% of cases. Between 3-month and 9-12-months follow up no significant improvement was seen. In the multivariable model CTR (p=0.019, OR 31.9), and ECOG>0 (p=0.021, OR 8.5) were independent predictors for permanent postoperative deficit according to NIHSS at 3-month according to multivariable regression model. Patients harboring eloquently located LGG are highly vulnerable for permanent deficits. Almost one third of patients have a permanent reduction of their functional status based on ECOG. Risk of an extended resection has to be balanced with the respective oncological benefit. Especially, patients with impaired pre-operative status are at risk for new permanent deficits. There is a relevant improvement of neurological symptoms in the first year after surgery, especially for patients with slight aphasia.
Collapse
Affiliation(s)
- Jan Coburger
- Department of Neurosurgery, University of Ulm, Günzburg, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité - University of Berlin, Berlin, Germany
| | | | | | - Minou Nadji-Ohl
- Department of Neurosurgery, Katharinenhospital Stuttgart, Stuttgart, Germany
| | | | - Rüdiger Gerlach
- Department of Neurosurgery, Helios Hospital Erfurt, Erfurt, Germany
| | | | - Constantin Roder
- Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Katja Kniese
- Department of Neurosurgery, KRH Klinikum Region Hannover, Hannover, Germany
| | - Stefan Schommer
- Department of Neurosurgery, Katharinenhospital Stuttgart, Stuttgart, Germany
| | | | - Gabriele Nagel
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | | | | | - Arya Nabavi
- Department of Neurosurgery, KRH Klinikum Region Hannover, Hannover, Germany
| | - Marcos Tatagiba
- Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Marcus Czabanka
- Department of Neurosurgery, University of Frankfurt, Frankfurt am Main, Germany
| | - Oliver Ganslandt
- Department of Neurosurgery, Katharinenhospital Stuttgart, Stuttgart, Germany
| | - Veit Rohde
- Department of Neurosurgery, University of Göttingen, Göttingen, Germany
| | - Mario Löhr
- Department of Neurosurgery, University of Würzburg, Würzburg, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - University of Berlin, Berlin, Germany
| | - Andrej Pala
- Department of Neurosurgery, University of Ulm, Günzburg, Germany
| |
Collapse
|
5
|
Loeffler CML, Gaisa NT, Muti HS, van Treeck M, Echle A, Ghaffari Laleh N, Trautwein C, Heij LR, Grabsch HI, Ortiz Bruechle N, Kather JN. Predicting Mutational Status of Driver and Suppressor Genes Directly from Histopathology With Deep Learning: A Systematic Study Across 23 Solid Tumor Types. Front Genet 2022; 12:806386. [PMID: 35251119 PMCID: PMC8889144 DOI: 10.3389/fgene.2021.806386] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
In the last four years, advances in Deep Learning technology have enabled the inference of selected mutational alterations directly from routine histopathology slides. In particular, recent studies have shown that genetic changes in clinically relevant driver genes are reflected in the histological phenotype of solid tumors and can be inferred by analysing routine Haematoxylin and Eosin (H&E) stained tissue sections with Deep Learning. However, these studies mostly focused on selected individual genes in selected tumor types. In addition, genetic changes in solid tumors primarily act by changing signaling pathways that regulate cell behaviour. In this study, we hypothesized that Deep Learning networks can be trained to directly predict alterations of genes and pathways across a spectrum of solid tumors. We manually outlined tumor tissue in H&E-stained tissue sections from 7,829 patients with 23 different tumor types from The Cancer Genome Atlas. We then trained convolutional neural networks in an end-to-end way to detect alterations in the most clinically relevant pathways or genes, directly from histology images. Using this automatic approach, we found that alterations in 12 out of 14 clinically relevant pathways and numerous single gene alterations appear to be detectable in tissue sections, many of which have not been reported before. Interestingly, we show that the prediction performance for single gene alterations is better than that for pathway alterations. Collectively, these data demonstrate the predictability of genetic alterations directly from routine cancer histology images and show that individual genes leave a stronger morphological signature than genetic pathways.
Collapse
Affiliation(s)
- Chiara Maria Lavinia Loeffler
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
- *Correspondence: Chiara Maria Lavinia Loeffler,
| | - Nadine T. Gaisa
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Hannah Sophie Muti
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Marko van Treeck
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Amelie Echle
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Narmin Ghaffari Laleh
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Christian Trautwein
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Lara R. Heij
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Aachen, Germany
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Heike I. Grabsch
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, Netherlands
- Pathology and Data Analytics, Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, United Kingdom
| | - Nadina Ortiz Bruechle
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Jakob Nikolas Kather
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
- Pathology and Data Analytics, Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, United Kingdom
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
6
|
Gómez Vecchio T, Corell A, Buvarp D, Rydén I, Smits A, Jakola AS. Classification of Adverse Events Following Surgery in Patients With Diffuse Lower-Grade Gliomas. Front Oncol 2022; 11:792878. [PMID: 34993147 PMCID: PMC8724913 DOI: 10.3389/fonc.2021.792878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/25/2021] [Indexed: 12/21/2022] Open
Abstract
Background Recently, the Therapy-Disability-Neurology (TDN) was introduced as a multidimensional reporting system to detect adverse events in neurosurgery. The aim of this study was to compare the novel TDN score with the Landriel–Ibanez classification (LIC) grade in a large cohort of patients with diffuse lower-grade glioma (dLGG). Since the TDN score lacks validation against patient-reported outcomes, we described health-related quality of life (HRQoL) change in relation to TDN scores in a subset of patients. Methods We screened adult patients with a surgically treated dLGG World Health Organization (WHO) grade 2 and 3 between 2010 and 2020. Up until 2017, it consists of a retrospective cohort (n = 158). From 2017 and onwards, HRQoL was registered using EuroQoL-5-dimension, three levels of response (EQ-5D 3L) questionnaire at baseline and 3 months follow-up, in a prospectively recruited cohort (n = 102). Both the LIC grade and TDN score were used to classify adverse events. Results In total, 231 patients were included. In 110/231 (47.6%) of the surgical procedures, a postoperative complication was registered. When comparing the TDN score to LIC grades, only a minor shift towards complications of higher order could be observed. EQ-5D 3L was reported for 45 patients. Patients with complications related to surgery had pre- to postoperative changes in EQ-5D 3L index values (n = 27; mean 0.03, 95% CI −0.06 to 0.11) that were comparable to patients without complications (n = 18; mean −0.06, 95% CI −0.21 to 0.08). In contrast, patients with new-onset neurological deficit had a deterioration in HRQoL at follow-up, with a mean change in the EQ-5D 3L index value of 0.11 (n = 13, 95% CI 0.0 to 0.22) compared to −0.06 (n = 32, 95% CI −0.15 to 0.03) for all other patients. Conclusions In patients with dLGG, TDN scores compared to the standard LIC tend to capture more adverse events of higher order. There was no clear relation between TDN severity and HRQoL. However, new-onset neurological deficit caused impairment in HRQoL. For the TDN score to better align with patient-reported outcomes, more emphasis on neurological deficit and function should be considered.
Collapse
Affiliation(s)
- Tomás Gómez Vecchio
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alba Corell
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Dongni Buvarp
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Isabelle Rydén
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anja Smits
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Asgeir S Jakola
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
7
|
Gómez Vecchio T, Neimantaite A, Corell A, Bartek J, Jensdottir M, Reinertsen I, Solheim O, Jakola AS. Lower-Grade Gliomas: An Epidemiological Voxel-Based Analysis of Location and Proximity to Eloquent Regions. Front Oncol 2021; 11:748229. [PMID: 34621684 PMCID: PMC8490663 DOI: 10.3389/fonc.2021.748229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/27/2021] [Indexed: 01/14/2023] Open
Abstract
Background Glioma is the most common intra-axial tumor, and its location relative to critical areas of the brain is important for treatment decision-making. Studies often report tumor location based on anatomical taxonomy alone since the estimation of eloquent regions requires considerable knowledge of functional neuroanatomy and is, to some degree, a subjective measure. An unbiased and reproducible method to determine tumor location and eloquence is desirable, both for clinical use and for research purposes. Objective To report on a voxel-based method for assessing anatomical distribution and proximity to eloquent regions in diffuse lower-grade gliomas (World Health Organization grades 2 and 3). Methods A multi-institutional population-based dataset of adult patients (≥18 years) histologically diagnosed with lower-grade glioma was analyzed. Tumor segmentations were registered to a standardized space where two anatomical atlases were used to perform a voxel-based comparison of the proximity of segmentations to brain regions of traditional clinical interest. Results Exploring the differences between patients with oligodendrogliomas, isocitrate dehydrogenase (IDH) mutated astrocytomas, and patients with IDH wild-type astrocytomas, we found that the latter were older, more often had lower Karnofsky performance status, and that these tumors were more often found in the proximity of eloquent regions. Eloquent regions are found slightly more frequently in the proximity of IDH-mutated astrocytomas compared to oligodendrogliomas. The regions included in our voxel-based definition of eloquence showed a high degree of association with performing biopsy compared to resection. Conclusion We present a simple, robust, unbiased, and clinically relevant method for assessing tumor location and eloquence in lower-grade gliomas.
Collapse
Affiliation(s)
- Tomás Gómez Vecchio
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Alice Neimantaite
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Alba Corell
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden.,Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jiri Bartek
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.,Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
| | - Margret Jensdottir
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Ingerid Reinertsen
- Department of Health Research, SINTEF Digital, Trondheim, Norway.,Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Ole Solheim
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Asgeir S Jakola
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden.,Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
8
|
Ort J, Hamou HA, Kernbach JM, Hakvoort K, Blume C, Lohmann P, Galldiks N, Heiland DH, Mottaghy FM, Clusmann H, Neuloh G, Langen KJ, Delev D. 18F-FET-PET-guided gross total resection improves overall survival in patients with WHO grade III/IV glioma: moving towards a multimodal imaging-guided resection. J Neurooncol 2021; 155:71-80. [PMID: 34599479 PMCID: PMC8545732 DOI: 10.1007/s11060-021-03844-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/08/2021] [Indexed: 11/15/2022]
Abstract
Purpose PET using radiolabeled amino acid [18F]-fluoro-ethyl-L-tyrosine (FET-PET) is a well-established imaging modality for glioma diagnostics. The biological tumor volume (BTV) as depicted by FET-PET often differs in volume and location from tumor volume of contrast enhancement (CE) in MRI. Our aim was to investigate whether a gross total resection of BTVs defined as < 1 cm3 of residual BTV (PET GTR) correlates with better oncological outcome. Methods We retrospectively analyzed imaging and survival data from patients with primary and recurrent WHO grade III or IV gliomas who underwent FET-PET before surgical resection. Tumor overlap between FET-PET and CE was evaluated. Completeness of FET-PET resection (PET GTR) was calculated after superimposition and semi-automated segmentation of pre-operative FET-PET and postoperative MRI imaging. Survival analysis was performed using the Kaplan–Meier method and the log-rank test. Results From 30 included patients, PET GTR was achieved in 20 patients. Patients with PET GTR showed improved median OS with 19.3 compared to 13.7 months for patients with residual FET uptake (p = 0.007; HR 0.3; 95% CI 0.12–0.76). This finding remained as independent prognostic factor after performing multivariate analysis (HR 0.19, 95% CI 0.06–0.62, p = 0.006). Other survival influencing factors such as age, IDH-mutation, MGMT promotor status, and adjuvant treatment modalities were equally distributed between both groups. Conclusion Our results suggest that PET GTR improves the OS in patients with WHO grade III or IV gliomas. A multimodal imaging approach including FET-PET for surgical planning in newly diagnosed and recurrent tumors may improve the oncological outcome in glioma patients. Supplementary Information The online version contains supplementary material available at 10.1007/s11060-021-03844-1.
Collapse
Affiliation(s)
- Jonas Ort
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany. .,NAILA-Neurosurgical Artificial Intelligence Laboratory Aachen, Aachen, Germany. .,Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany.
| | - Hussam Aldin Hamou
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.,Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Julius M Kernbach
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.,NAILA-Neurosurgical Artificial Intelligence Laboratory Aachen, Aachen, Germany.,Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Karlijn Hakvoort
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.,NAILA-Neurosurgical Artificial Intelligence Laboratory Aachen, Aachen, Germany.,Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Christian Blume
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.,Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany.,Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany.,Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Dieter Henrik Heiland
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, Freiburg University, Freiburg, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.,JARA-Juelich Aachen Research Alliance, Juelich, Germany.,Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Hans Clusmann
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.,Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Georg Neuloh
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.,Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany.,Department of Nuclear Medicine, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.,JARA-Juelich Aachen Research Alliance, Juelich, Germany.,Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Daniel Delev
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.,NAILA-Neurosurgical Artificial Intelligence Laboratory Aachen, Aachen, Germany.,Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| |
Collapse
|
9
|
Abstract
The 2016 World Health Organization brain tumor classification is based on genomic and molecular profile of tumor tissue. These characteristics have improved understanding of the brain tumor and played an important role in treatment planning and prognostication. There is an ongoing effort to develop noninvasive imaging techniques that provide insight into tissue characteristics at the cellular and molecular levels. This article focuses on the molecular characteristics of gliomas, transcriptomic subtypes, and radiogenomic studies using semantic and radiomic features. The limitations and future directions of radiogenomics as a standalone diagnostic tool also are discussed.
Collapse
Affiliation(s)
- Chaitra Badve
- Department of Radiology, Division of Neuroradiology, University Hospitals Cleveland Medical Center, BSH 5056, 11100 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Sangam Kanekar
- Department of Radiology and Neurology, Division of Neuroradiology, Penn State College of Medicine, Penn State Milton Hershey Medical Center, Mail Code H066 500, University Drive, Hershey, PA 17033, USA
| |
Collapse
|
10
|
Lasica AB, Jaunmuktane Z, Fersht N, Kirkman MA, Dixon L, Hoskote C, Brandner S, Samandouras G. Genomic Prognosticators and Extent of Resection in Molecularly Subtyped World Health Organization Grade II and III Gliomas-A Single-Institution, Nine-Year Data. World Neurosurg 2021; 151:e217-e233. [PMID: 33866029 DOI: 10.1016/j.wneu.2021.04.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND World Health Organization (WHO) grade II and III isocitrate dehydrogenase wild-type (IDH-wt) gliomas are often treated as WHO grade IV glioblastomas. However, cumulative evidence indicates that IDH mutation status alone is insufficient in predicting survival. The current study examines molecular and clinical markers to further prognostically stratify WHO grade II and III gliomas, in particular, IDH-wt. METHODS A single institution's records were retrospectively reviewed for molecularly stratified WHO grade II and grade III gliomas over a 9-year period (2010-2019). Clinical data, IDH1/IDH2 status, EGFR amplification, and other molecular markers were recorded and correlated to the study outcomes. These outcomes were defined as progression-free survival (PFS), overall survival (OS), and time to malignant progression (TtMP). RESULTS A total of 167 and 42 WHO grade II and III gliomas, respectively, were identified, totaling 209 cases with 157 IDH1/2 mutated and 52 IDH-wt tumors. The presence of IDH1/2 mutation was associated with longer OS (P < 0.0001) and PFS (P < 0.0001) but not with TtMP (P = 0.314). Lack of EGFR amplification, younger age, and greater extent of resection (EOR) (≥80%) were identified as independent, favorable OS prognostic factors. In the IDH-wt cohort, multivariate analysis indicated that older age (P = 0.003) and lesser EOR (<80%) (P = 0.007) are associated with worse OS. In addition, EGFR amplification showed a trend toward shorter OS in the IDH-wt cohort (P = 0.073). CONCLUSIONS IDH1/2 mutation favors longer OS and PFS but does not protect from malignant progression. Lack of EGFR amplification, younger age and greater EOR are favorable OS prognosticators. In the IDH-wt cohort, older age and lesser EOR were linked to worse OS.
Collapse
Affiliation(s)
- Aleksandra B Lasica
- Victor Horsley Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, United Kingdom.
| | - Zane Jaunmuktane
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Naomi Fersht
- Department of Oncology, University College London Hospitals, London, United Kingdom
| | - Matthew A Kirkman
- Victor Horsley Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Luke Dixon
- Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Chandrashekar Hoskote
- Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Sebastian Brandner
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - George Samandouras
- Victor Horsley Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, United Kingdom; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|