1
|
Baudendistel ST, Earhart GM. Characteristics of responders to interventions for Parkinson disease: a scoping systematic review. Neurodegener Dis Manag 2025:1-14. [PMID: 40304274 DOI: 10.1080/17582024.2025.2493465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 04/10/2025] [Indexed: 05/02/2025] Open
Abstract
AIMS The purpose of this review is to identify the characteristics of responders in interventions targeting motor function for individuals with Parkinson disease. MATERIALS & METHODS The primary search included, 'Parkinson' + 'responder.' A second, broader, search further included 'response' + 'responsiveness' + 'responsive.' Records were sorted by intervention: neuromodulation, pharmaceutical, physical, and placebo. RESULTS Thirteen studies were identified in the primary and 19 studies in the secondary search, culminating in 120 characteristics. For neuromodulation interventions, responders were younger at onset, more responsive to levodopa, and had more difficulties with activities of daily living. Responders to pharmaceuticals were younger at diagnosis. Physical intervention responders had worse balance, less balance confidence, and worse cognition. No relevant characteristics were identified for placebo interventions. CONCLUSIONS Although there are clear limitations and gaps in the literature, responder analyses represent an important step toward more personalized treatments for the motor symptoms of Parkinson disease.
Collapse
Affiliation(s)
- Sidney T Baudendistel
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, USA
| | - Gammon M Earhart
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, USA
| |
Collapse
|
2
|
Thein J, Linnhoff S, Voges J, Galazky I, Zaehle T. Enhancing Attentional Performance in Parkinson's Disease: The Impact of Combined Deep Brain Stimulation of the Substantia Nigra Pars Reticulata and the Subthalamic Nucleus. Am J Med 2024; 137:673-676. [PMID: 38499137 DOI: 10.1016/j.amjmed.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
OBJECTIVE The concomitant stimulation of the subthalamic nucleus and the substantia nigra pars reticulata is a promising approach to improve treatment of refractory axial symptoms in Parkinson's disease. While dual stimulation of the subthalamic nucleus and the substantia nigra pars reticulata has previously shown beneficial effects on gait, the role of the substantia nigra, a crucial component of the basal ganglia circuitry, in cognitive functions such as attention and executive control remains underexplored. This study aimed to investigate the impact of selective substantia nigra pars reticulata stimulation on attentional performance in patients receiving standard deep brain stimulation of the subthalamic nucleus. METHODS Twelve patients with bilateral subthalamic nucleus stimulation underwent computerized assessment of attention using a simple reaction time task. Reaction times were assessed under standard stimulation of the subthalamic nucleus versus simultaneous stimulation of the subthalamic nucleus and the substantia nigra pars reticulata. RESULTS The results revealed a significant improvement in reaction times during the simple reaction time task when patients received dual stimulation compared to standard stimulation. CONCLUSIONS Our findings provide further evidence for the pivotal role of the substantia nigra pars reticulata in cognitive functions such as attention. Despite the limitations of the study, including a small sample size, our results suggest potential benefits of simultaneous deep brain stimulation of the subthalamic nucleus and the substantia nigra pars reticulata on attentional performance in patients with Parkinson's disease. Further research with larger cohorts is warranted to confirm these findings and better understand the underlying mechanisms.
Collapse
Affiliation(s)
- Julia Thein
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Stefanie Linnhoff
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Jürgen Voges
- Stereotactic Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Imke Galazky
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Tino Zaehle
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany; Institute for Medical Psychology, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
3
|
Deuter D, Mederer T, Kohl Z, Forras P, Rosengarth K, Schlabeck M, Röhrl D, Wendl C, Fellner C, Schmidt NO, Schlaier J. Amelioration of Parkinsonian tremor evoked by DBS: which role play cerebello-(sub)thalamic fiber tracts? J Neurol 2024; 271:1451-1461. [PMID: 38032372 PMCID: PMC10896868 DOI: 10.1007/s00415-023-12095-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Current pathophysiological models of Parkinson's disease (PD) assume a malfunctioning network being adjusted by the DBS signal. As various authors showed a main involvement of the cerebellum within this network, cerebello-cerebral fiber tracts are gaining special interest regarding the mediation of DBS effects. OBJECTIVES The crossing and non-decussating fibers of the dentato-rubro-thalamic tract (c-DRTT/nd-DRTT) and the subthalamo-ponto-cerebellar tract (SPCT) are thought to build up an integrated network enabling a bidimensional communication between the cerebellum and the basal ganglia. The aim of this study was to investigate the influence of these tracts on clinical control of Parkinsonian tremor evoked by DBS. METHODS We analyzed 120 electrode contacts from a cohort of 14 patients with tremor-dominant or equivalence-type PD having received bilateral STN-DBS. Probabilistic tractography was performed to depict the c-DRTT, nd-DRTT, and SPCT. Distance maps were calculated for the tracts and correlated to clinical tremor control for each electrode pole. RESULTS A significant difference between "effective" and "less-effective" contacts was only found for the c-DRTT (p = 0.039), but not for the SPCT, nor the nd-DRTT. In logistic and linear regressions, significant results were also found for the c-DRTT only (pmodel logistic = 0.035, ptract logistic = 0,044; plinear = 0.027). CONCLUSIONS We found a significant correlation between the distance of the DBS electrode pole to the c-DRTT and the clinical efficacy regarding tremor reduction. The c-DRTT might therefore play a major role in the mechanisms of alleviation of Parkinsonian tremor and could eventually serve as a possible DBS target for tremor-dominant PD in future.
Collapse
Affiliation(s)
- Daniel Deuter
- Department of Neurosurgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
- Center for Deep Brain Stimulation, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
| | - Tobias Mederer
- Department of Neurosurgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
- Center for Deep Brain Stimulation, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Zacharias Kohl
- Center for Deep Brain Stimulation, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
- Department of Neurology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
- Department of Neurology, Regensburg Medbo District Hospital, Universitätsstraße 84, 93053, Regensburg, Germany
| | - Patricia Forras
- Center for Deep Brain Stimulation, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
- Department of Neurology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
- Department of Neurology, Regensburg Medbo District Hospital, Universitätsstraße 84, 93053, Regensburg, Germany
| | - Katharina Rosengarth
- Department of Neurosurgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Mona Schlabeck
- Center for Deep Brain Stimulation, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
- Department of Anesthesiology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Daniela Röhrl
- Center for Deep Brain Stimulation, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
- Department of Anesthesiology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Christina Wendl
- Center for Deep Brain Stimulation, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
- Department of Radiology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
- Department of Radiology, Regensburg Medbo District Hospital, Universitätsstraße 84, 93053, Regensburg, Germany
| | - Claudia Fellner
- Department of Radiology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Nils-Ole Schmidt
- Department of Neurosurgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Jürgen Schlaier
- Department of Neurosurgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
- Center for Deep Brain Stimulation, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| |
Collapse
|
4
|
Wiśniewski K, Gajos A, Zaczkowski K, Szulia A, Grzegorczyk M, Dąbkowska A, Wójcik R, Bobeff EJ, Kwiecień K, Brandel MG, Fahlström A, Bogucki A, Ciszek B, Jaskólski DJ. Overlapping stimulation of subthalamic nucleus and dentato-rubro-thalamic tract in Parkinson's disease after deep brain stimulation. Acta Neurochir (Wien) 2024; 166:106. [PMID: 38403814 DOI: 10.1007/s00701-024-06006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/09/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the subthalamic nucleus (STN) reduces tremor, rigidity, and akinesia. According to the literature, the dentato-rubro-thalamic tract (DRTt) is verified target for DBS in essential tremor; however, its role in the treatment of Parkinson's disease is only vaguely described. The aim of our study was to identify the relationship between symptom alleviation in PD patients and the distance of the DBS electrode electric field (EF) to the DRTt. METHODS A single-center retrospective analysis of patients (N = 30) with idiopathic Parkinson's disease (PD) who underwent DBS between November 2018 and January 2020 was performed. DRTt and STN were visualized using diffusion-weighted imaging (DWI) and tractography protocol of magnetic resonance (MR). The EF was calculated and compared with STN and course of DRTt. Evaluation of patients before and after surgery was performed with use of UPDRS-III scale. The association between distance from EF to DRTt and clinical outcomes was examined. To confirm the anatomical variation between DRTt and STN observed in tractography, white matter dissection was performed with the Klingler technique on ten human brains. RESULTS Patients with EF overlapping STN and DRTt benefited from significant motor symptoms improvement. Anatomical findings confirmed the presence of population differences in variability of the DRTt course and were consistent with the DRTt visualized by MR. CONCLUSIONS DRTt proximity to STN, the main target in PD DBS surgery, confirmed by DWI with tractography protocol of MR combined with proper predefined stimulation parameters may improve efficacy of DBS-STN.
Collapse
Affiliation(s)
- K Wiśniewski
- Department of Neurosurgery and Neurooncology, Medical University of Łódź, Barlicki University Hospital, Łódź, Poland.
| | - A Gajos
- Department of Extrapyramidal Diseases, Medical University of Łódź, Łódź, Poland
| | - K Zaczkowski
- Department of Neurosurgery and Neurooncology, Medical University of Łódź, Barlicki University Hospital, Łódź, Poland
| | - A Szulia
- Department of Neurosurgery and Neurooncology, Medical University of Łódź, Barlicki University Hospital, Łódź, Poland
| | - M Grzegorczyk
- Department of Descriptive and Clinical Anatomy, Medical University of Warsaw, Warsaw, Poland
| | - A Dąbkowska
- Department of Forensic Medicine, Medical University of Warsaw, Warsaw, Poland
| | - R Wójcik
- Department of Neurosurgery and Neurooncology, Medical University of Łódź, Barlicki University Hospital, Łódź, Poland
| | - E J Bobeff
- Department of Neurosurgery and Neurooncology, Medical University of Łódź, Barlicki University Hospital, Łódź, Poland
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Łódź, Poland
| | - K Kwiecień
- Department of Neurosurgery and Neurooncology, Medical University of Łódź, Barlicki University Hospital, Łódź, Poland
| | - M G Brandel
- Department of Neurosurgery, University of California, San Diego, San Diego, CA, 92123, USA
| | - A Fahlström
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - A Bogucki
- Department of Extrapyramidal Diseases, Medical University of Łódź, Łódź, Poland
| | - B Ciszek
- Department of Descriptive and Clinical Anatomy, Medical University of Warsaw, Warsaw, Poland
| | - D J Jaskólski
- Department of Neurosurgery and Neurooncology, Medical University of Łódź, Barlicki University Hospital, Łódź, Poland
| |
Collapse
|
5
|
Andrews L, Keller SS, Osman-Farah J, Macerollo A. A structural magnetic resonance imaging review of clinical motor outcomes from deep brain stimulation in movement disorders. Brain Commun 2023; 5:fcad171. [PMID: 37304793 PMCID: PMC10257440 DOI: 10.1093/braincomms/fcad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/05/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023] Open
Abstract
Patients with movement disorders treated by deep brain stimulation do not always achieve successful therapeutic alleviation of motor symptoms, even in cases where surgery is without complications. Magnetic resonance imaging (MRI) offers methods to investigate structural brain-related factors that may be predictive of clinical motor outcomes. This review aimed to identify features which have been associated with variability in clinical post-operative motor outcomes in patients with Parkinson's disease, dystonia, and essential tremor from structural MRI modalities. We performed a literature search for articles published between 1 January 2000 and 1 April 2022 and identified 5197 articles. Following screening through our inclusion criteria, we identified 60 total studies (39 = Parkinson's disease, 11 = dystonia syndromes and 10 = essential tremor). The review captured a range of structural MRI methods and analysis techniques used to identify factors related to clinical post-operative motor outcomes from deep brain stimulation. Morphometric markers, including volume and cortical thickness were commonly identified in studies focused on patients with Parkinson's disease and dystonia syndromes. Reduced metrics in basal ganglia, sensorimotor and frontal regions showed frequent associations with reduced motor outcomes. Increased structural connectivity to subcortical nuclei, sensorimotor and frontal regions was also associated with greater motor outcomes. In patients with tremor, increased structural connectivity to the cerebellum and cortical motor regions showed high prevalence across studies for greater clinical motor outcomes. In addition, we highlight conceptual issues for studies assessing clinical response with structural MRI and discuss future approaches towards optimizing individualized therapeutic benefits. Although quantitative MRI markers are in their infancy for clinical purposes in movement disorder treatments, structural features obtained from MRI offer the powerful potential to identify candidates who are more likely to benefit from deep brain stimulation and provide insight into the complexity of disorder pathophysiology.
Collapse
Affiliation(s)
- Luke Andrews
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L3 9TA, UK
- Department of Neurology and Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L97LJ, UK
| | - Simon S Keller
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L3 9TA, UK
| | - Jibril Osman-Farah
- Department of Neurology and Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L97LJ, UK
| | - Antonella Macerollo
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L3 9TA, UK
- Department of Neurology and Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L97LJ, UK
| |
Collapse
|
6
|
Kumar R, T A, Singothu S, Singh SB, Bhandari V. Uncoupling proteins as a therapeutic target for the development of new era drugs against neurodegenerative disorder. Pharmacotherapy 2022; 147:112656. [DOI: 10.1016/j.biopha.2022.112656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 12/21/2022]
|
7
|
Roediger J, Dembek TA, Wenzel G, Butenko K, Kühn AA, Horn A. StimFit-A Data-Driven Algorithm for Automated Deep Brain Stimulation Programming. Mov Disord 2021; 37:574-584. [PMID: 34837245 DOI: 10.1002/mds.28878] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/07/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Finding the optimal deep brain stimulation (DBS) parameters from a multitude of possible combinations by trial and error is time consuming and requires highly trained medical personnel. OBJECTIVE We developed an automated algorithm to identify optimal stimulation settings in Parkinson's disease (PD) patients treated with subthalamic nucleus (STN) DBS based on imaging-derived metrics. METHODS Electrode locations and monopolar review data of 612 stimulation settings acquired from 31 PD patients were used to train a predictive model for therapeutic and adverse stimulation effects. Model performance was then evaluated within the training cohort using cross-validation and on an independent cohort of 19 patients. We inverted the model by applying a brute-force approach to determine the optimal stimulation sites in the target region. Finally, an optimization algorithm was established to identify optimal stimulation parameters. Suggested stimulation parameters were compared to the ones applied in clinical practice. RESULTS Predicted motor outcome correlated with observed outcome (R = 0.57, P < 10-10 ) across patients within the training cohort. In the test cohort, the model explained 28% of the variance in motor outcome differences between settings. The stimulation site for maximum motor improvement was located at the dorsolateral border of the STN. When compared to two empirical settings, model-based suggestions more closely matched the setting with superior motor improvement. CONCLUSION We developed and validated a data-driven model that can suggest stimulation parameters leading to optimal motor improvement while minimizing the risk of stimulation-induced side effects. This approach might provide guidance for DBS programming in the future. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jan Roediger
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité University Medicine Berlin, Charitéplatz 1, Berlin, 10117, Germany.,Einstein Center for Neurosciences Berlin, Charité University Medicine Berlin, Charitéplatz 1, Berlin, 10117, Germany
| | - Till A Dembek
- Department of Neurology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Gregor Wenzel
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité University Medicine Berlin, Charitéplatz 1, Berlin, 10117, Germany
| | - Konstantin Butenko
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité University Medicine Berlin, Charitéplatz 1, Berlin, 10117, Germany.,Berlin School of Mind and Brain, Charité University Medicine, Berlin, Germany.,NeuroCure Clinical Research Centre, Charité University Medicine, Berlin, Germany.,DZNE, German Center for Degenerative Diseases, Berlin, Germany
| | - Andreas Horn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité University Medicine Berlin, Charitéplatz 1, Berlin, 10117, Germany
| |
Collapse
|
8
|
Magnusson JL, Leventhal DK. Revisiting the "Paradox of Stereotaxic Surgery": Insights Into Basal Ganglia-Thalamic Interactions. Front Syst Neurosci 2021; 15:725876. [PMID: 34512279 PMCID: PMC8429495 DOI: 10.3389/fnsys.2021.725876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Basal ganglia dysfunction is implicated in movement disorders including Parkinson Disease, dystonia, and choreiform disorders. Contradicting standard "rate models" of basal ganglia-thalamic interactions, internal pallidotomy improves both hypo- and hyper-kinetic movement disorders. This "paradox of stereotaxic surgery" was recognized shortly after rate models were developed, and is underscored by the outcomes of deep brain stimulation (DBS) for movement disorders. Despite strong evidence that DBS activates local axons, the clinical effects of lesions and DBS are nearly identical. These observations argue against standard models in which GABAergic basal ganglia output gates thalamic activity, and raise the question of how lesions and stimulation can have similar effects. These paradoxes may be resolved by considering thalamocortical loops as primary drivers of motor output. Rather than suppressing or releasing cortex via motor thalamus, the basal ganglia may modulate the timing of thalamic perturbations to cortical activity. Motor cortex exhibits rotational dynamics during movement, allowing the same thalamocortical perturbation to affect motor output differently depending on its timing with respect to the rotational cycle. We review classic and recent studies of basal ganglia, thalamic, and cortical physiology to propose a revised model of basal ganglia-thalamocortical function with implications for basic physiology and neuromodulation.
Collapse
Affiliation(s)
| | - Daniel K Leventhal
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States.,Parkinson Disease Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, United States.,Department of Neurology, VA Ann Arbor Health System, Ann Arbor, MI, United States
| |
Collapse
|
9
|
Diniz JM, Cury RG, Iglesio RF, Lepski GA, França CC, Barbosa ER, de Andrade DC, Teixeira MJ, Duarte KP. Dentate nucleus deep brain stimulation: Technical note of a novel methodology assisted by tractography. Surg Neurol Int 2021; 12:400. [PMID: 34513166 PMCID: PMC8422468 DOI: 10.25259/sni_338_2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/30/2021] [Indexed: 11/04/2022] Open
Abstract
Background The cerebellum has emerged as an attractive and promising target for neuromodulation in movement disorders due to its vast connection with important cortical and subcortical areas. Here, we describe a novel technique of deep brain stimulation (DBS) of the dentate nucleus (DN) aided by tractography. Methods Since 2015, patients with movement disorders including dystonia, ataxia, and tremor have been treated with DN DBS. The cerebellar target was initially localized using coordinates measured from the fastigial point. The target was adjusted with direct visualization of the DN in the susceptibility-weighted imaging and T2 sequences of the MRI and finally refined based on the reconstruction of the dentatorubrothalamic tract (DRTT). Results Three patients were treated with this technique. The final target was located in the anterior portion of DN in close proximity to the DRTT, with the tip of the lead on the white matter and the remaining contacts on the DN. Clinical outcomes were variable and overall positive, with no major side effect. Conclusion Targeting the DN based on tractography of the DRTT seems to be feasible and safe. Larger studies will be necessary to support our preliminary findings.
Collapse
Affiliation(s)
- Juliete Melo Diniz
- Department of Neurology, Functional Neurosurgery Division, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Rubens Gisbert Cury
- Department of Neurology, Movement Disorders Center, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Ricardo Ferrareto Iglesio
- Department of Neurology, Functional Neurosurgery Division, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Guilherme Alves Lepski
- Department of Neurology, Functional Neurosurgery Division, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Carina Cura França
- Department of Neurology, Movement Disorders Center, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Egberto Reis Barbosa
- Department of Neurology, Movement Disorders Center, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Manoel Jacobsen Teixeira
- Department of Neurology, Functional Neurosurgery Division, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Kleber Paiva Duarte
- Department of Neurology, Functional Neurosurgery Division, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Coenen VA, Reisert M. DTI for brain targeting: Diffusion weighted imaging fiber tractography-Assisted deep brain stimulation. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 159:47-67. [PMID: 34446250 DOI: 10.1016/bs.irn.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fiber tractography assisted Deep Brain Stimulation (DBS) has been performed by different groups for more than 10 years to now. Groups around the world have adapted initial approaches to currently embrace the fiber tractography technology mainly for treating tremor (DBS and lesions), psychiatric indications (OCD and major depression) and pain (DBS). Despite the advantages of directly visualizing the target structure, the technology is demanding and is vulnerable to inaccuracies especially since it is performed on individual level. In this contribution, we will focus on tremor and psychiatric indications, and will show future applications of sophisticated tractography applications for subthalamic nucleus (STN) DBS surgery and stimulation steering as an example.
Collapse
Affiliation(s)
- Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany; Medical Faculty of Freiburg University, Freiburg, Germany; Center for Deep Brain Stimulation, Medical Center of Freiburg University, Freiburg, Germany.
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany; Medical Faculty of Freiburg University, Freiburg, Germany; Department of Radiology-Medical Physics, Freiburg University, Freiburg, Germany
| |
Collapse
|