1
|
Paul PR, Mishra MK, Bora S, Kukal S, Singh A, Kukreti S, Kukreti R. The Impact of P-Glycoprotein on CNS Drug Efflux and Variability in Response. J Biochem Mol Toxicol 2025; 39:e70190. [PMID: 39987512 DOI: 10.1002/jbt.70190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/13/2024] [Accepted: 02/11/2025] [Indexed: 02/25/2025]
Abstract
Resistance against CNS drugs may arise from various mechanisms, with limited drug penetration across the blood-brain barrier (BBB) being a significant contributing factor. The BBB employs efflux transporters like P-glycoprotein (P-gp) to safeguard the brain by removing toxins and xenobiotics, however, P-gp also pumps out therapeutic drugs, and its upregulation in disease states can contribute to variability in drug response. While inhibiting P-gp to prevent drug efflux seems appealing, it could lead to toxicity since P-gp is also important for expulsion of toxins from the brain. This necessitates the incorporation of P-gp substrate liability assessment into early drug discovery stages using appropriate experimental approaches. Therefore, this review aims to draw interest in this crucial area by analyzing the existing research on P-gp's impact on brain distribution of major CNS drugs and exploring the detection methods for identifying P-gp substrates. By identifying confirmed P-gp substrates and evaluating effective detection methods, this work emphasizes the continued importance of monitoring P-gp-mediated CNS drug efflux out of the brain tissue. This knowledge can empower clinicians to anticipate potential treatment inefficacy and guide therapeutic decision-making, ultimately leading to improved patient treatment outcomes.
Collapse
Affiliation(s)
- Priyanka R Paul
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manish K Mishra
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), New Delhi, India
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Shivangi Bora
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), New Delhi, India
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anju Singh
- Department of Chemistry, Hindu College, University of Delhi, New Delhi, India
- Nucleic acid research lab, Department of Chemistry, University of Delhi, New Delhi, India
| | - Shrikant Kukreti
- Nucleic acid research lab, Department of Chemistry, University of Delhi, New Delhi, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Yang S, Wang H, Zheng GF, Wang Y. Age, Sex, and Comedication Effects on the Steady-State Plasma Concentrations of Amisulpride in Chinese Patients with Schizophrenia. Ther Drug Monit 2023; 45:676-682. [PMID: 36863030 DOI: 10.1097/ftd.0000000000001089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/02/2023] [Indexed: 03/04/2023]
Abstract
BACKGROUND Amisulpride, a second-generation atypical antipsychotic drug, was first marketed in Europe in the 1990s. This study aimed to provide a reference for the clinical application of amisulpride. The effects of age, sex, or specific comedications on amisulpride concentrations in Chinese patients with schizophrenia in the real world were investigated. METHODS A retrospective study was conducted of data on amisulpride based on the therapeutic drug monitoring service database at the Zigong Affiliated Hospital of Southwest Medical University. RESULTS Based on the inclusion criteria, 195 plasma samples from 173 patients (67.05% female and 32.95% male patients) were included for in-depth analysis. The median daily dose of amisulpride was 400 mg/d, median plasma concentration was 457.50 ng/mL, and median concentration/dose (C/D) ratio was 1.04 ng/mL/mg/d. The daily dose of amisulpride positively correlated with measured steady-state plasma concentrations. A significant difference was observed in the subgroup analysis of the combination with valproic acid, zopiclone, or aripiprazole on plasma concentrations. Combining amisulpride with these drugs increased the C/D ratios by 0.56-, 2.31-, and 0.77-fold, respectively. After adjusting for age, the median C/D ratio was found to be significantly different between female and male patients. However, no significant differences in daily dose, plasma concentration, and C/D ratio were noted with respect to sex and age of the patients. CONCLUSIONS Sex differences were inferred for the first time in this study, with differential effects on daily dose, steady-state plasma concentration, and C/D ratio associated with the population. In the included study samples, blood concentrations were distributed in the range of 223.25-823.55 ng/mL, which perhaps needs to be evaluated in line with the reference range of ammonia-sulfur ratios in the Chinese population.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Pharmacy, Jianyang People's Hospital, Chengdu; and
| | - HaiYan Wang
- Department of Pharmacy, Jianyang Chinese Medicine Hospital, Chengdu, P.R. China
| | - Gao Feng Zheng
- Department of Pharmacy, Jianyang People's Hospital, Chengdu; and
| | - Yi Wang
- Zigong Affiliated Hospital of Southwest Medical University
- Zigong Psychiatric Research Center, Zigong
| |
Collapse
|
3
|
Wang Z, Li L, Huang S, Wang X, Liu S, Li X, Kong W, Ni X, Zhang M, Huang S, Tan Y, Wen Y, Shang D. Joint population pharmacokinetic modeling of venlafaxine and O-desmethyl venlafaxine in healthy volunteers and patients to evaluate the impact of morbidity and concomitant medication. Front Pharmacol 2022; 13:978202. [PMID: 36569310 PMCID: PMC9772442 DOI: 10.3389/fphar.2022.978202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction: Venlafaxine (VEN) is a widely used dual selective serotonin/noradrenaline reuptake inhibitor indicated for depression and anxiety. It undergoes first-pass metabolism to its active metabolite, O-desmethyl venlafaxine (ODV). The aim of the present study was to develop a joint population pharmacokinetic (PPK) model to characterize their pharmacokinetic characters simultaneously. Methods: Plasma concentrations with demographic and clinical data were derived from a bioequivalence study in 24 healthy subjects and a naturalistic TDM setting containing 127 psychiatric patients. A parent-metabolite PPK modeling was performed with NONMEM software using a non-linear mixed effect modeling approach. Goodness of fit plots and normalized prediction distribution error method were used for model validation. Results and conclusion: Concentrations of VEN and ODV were well described with a one-compartment model incorporating first-pass metabolism. The first-pass metabolism was modeled as a first-order conversion. The morbid state and concomitant amisulpride were identified as two significant covariates affecting the clearance of VEN and ODV, which may account for some of the variations in exposure. This model may contribute to the precision medication in clinical practice and may inspire other drugs with pre-system metabolism.
Collapse
Affiliation(s)
- Zhanzhang Wang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Lu Li
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Shanqing Huang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,School of Pharmacy, Guangzhou Medical University, Guangzhou, China
| | - Xipei Wang
- Medical Research Center, Guangdong Province People’s Hospital, Guangdong Academy of Medical Sciences, Cardiovascular Institute, Guangzhou, China
| | - Shujing Liu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,School of Pharmacy, Guangzhou Medical University, Guangzhou, China
| | - Xiaolin Li
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,School of Pharmacy, Guangzhou Medical University, Guangzhou, China
| | - Wan Kong
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,School of Pharmacy, Guangzhou Medical University, Guangzhou, China
| | - Xiaojia Ni
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Ming Zhang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Shanshan Huang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yaqian Tan
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yuguan Wen
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China,*Correspondence: Dewei Shang, ; Yuguan Wen,
| | - Dewei Shang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China,*Correspondence: Dewei Shang, ; Yuguan Wen,
| |
Collapse
|
4
|
Potměšil P, Kostýlková L, Kopeček M. Increased amisulpride serum concentration in a patient treated with concomitant pregabalin and trazodone: a case report. Ther Adv Psychopharmacol 2022; 12:20451253221136754. [PMID: 36465957 PMCID: PMC9716442 DOI: 10.1177/20451253221136754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 10/12/2022] [Indexed: 12/02/2022] Open
Abstract
We report on the case of a 46-year-old woman with generalized anxiety disorder, paranoid personality disorder, and mild reduction in glomerular filtration rate (GFR). She was treated with pregabalin, trazodone, hydroxyzine, and clonazepam before hospital admission. Pharmacotherapy for the patient was changed during her first week in the hospital. Dosing of hydroxyzine and clonazepam was gradually decreased, and then these two drugs were withdrawn. Treatment with amisulpride was started on the fourth day after admission, and amisulpride serum levels were then measured three times as a part of therapeutic drug monitoring (TDM). The serum concentration of amisulpride detected during concurrent use of trazodone and pregabalin was approximately twice the therapeutic range for amisulpride. When the dose of pregabalin was reduced by half, the serum concentration of amisulpride decreased to therapeutic serum levels. We hypothesize that an interaction between amisulpride and pregabalin was responsible for the increased amisulpride concentration since both drugs are almost exclusively excreted from the body by the renal route. Pregabalin-amisulpride interaction might also be influenced by concomitant therapy with trazodone or a mild reduction in GFR. However, we only have clinical evidence for an interaction between amisulpride and pregabalin because after we halved the dose of pregabalin, the amisulpride concentration decreased, and the C/D ratio normalized. This could be helpful information for psychiatrists in order to avoid drug-drug interactions between amisulpride and pregabalin. We recommend TDM of amisulpride in patients treated concomitantly with other drugs eliminated mainly by the kidneys.
Collapse
Affiliation(s)
- Petr Potměšil
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lenka Kostýlková
- National Institute of Mental Health, Klecany, Czech Republic; Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Miloslav Kopeček
- National Institute of Mental Health, Topolová 748, Klecany 250 67, Czech Republic.,Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
5
|
Huang S, Li L, Wang Z, Xiao T, Li X, Liu S, Zhang M, Lu H, Wen Y, Shang D. Modeling and Simulation for Individualized Therapy of Amisulpride in Chinese Patients with Schizophrenia: Focus on Interindividual Variability, Therapeutic Reference Range and the Laboratory Alert Level. Drug Des Devel Ther 2021; 15:3903-3913. [PMID: 34548782 PMCID: PMC8449641 DOI: 10.2147/dddt.s327506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/31/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To explain the high inter-individual variability (IIV) and the frequency of exceeding the therapeutic reference range and the laboratory alert level of amisulpride, a population pharmacokinetic (PPK) model in Chinese patients with schizophrenia was built based on therapeutic drug monitoring (TDM) data to guide individualized therapy. PATIENTS AND METHODS Plasma concentration data (330 measurements from 121 patients) were analyzed using a nonlinear mixed-effects modeling (NONMEM) approach with first-order conditional estimation with interaction (FOCE I). The concentrations of amisulpride were detected by HPLC-MS/MS. Age, weight, sex, combination medication history and renal function status were evaluated as main covariates. The model was internally validated using goodness-of-fit, bootstrap and normalized prediction distribution error (NPDE). Recommended dosage regimens for patients with key covariates were estimated on the basis of Monte Carlo simulations and the established model. RESULTS A one-compartment model with first-order absorption and elimination was found to adequately characterize amisulpride concentration in Chinese patients with schizophrenia. The population estimates of the apparent volume of distribution (V/F) and apparent clearance (CL/F) were 12.7 L and 1.12 L/h, respectively. Age significantly affected the clearance of amisulpride and the final model was as follows: CL/F=1.04×(AGE/32)-0.624 (L/h). To avoid exceeding the laboratory alert level (640 ng/mL), the model-based simulation results showed that the recommended dose of amisulpride was no more than 600 mg/d for patients aged 60 years, 800 mg/d for those aged 40 years and 1200 mg/d for those aged 20 years, respectively. CONCLUSION Dosage optimization of amisulpride can be carried out according to age to reduce the risk of adverse reactions. The model can be used as a suitable tool for designing individualized therapy for Chinese patients with schizophrenia.
Collapse
Affiliation(s)
- Shanqing Huang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, People’s Republic of China
| | - Lu Li
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, People’s Republic of China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, People’s Republic of China
| | - Zhanzhang Wang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, People’s Republic of China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, People’s Republic of China
| | - Tao Xiao
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, People’s Republic of China
| | - Xiaolin Li
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, People’s Republic of China
| | - Shujing Liu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, People’s Republic of China
| | - Ming Zhang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, People’s Republic of China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, People’s Republic of China
| | - Haoyang Lu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, People’s Republic of China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, People’s Republic of China
| | - Yuguan Wen
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, People’s Republic of China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, People’s Republic of China
| | - Dewei Shang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, People’s Republic of China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, People’s Republic of China
| |
Collapse
|
6
|
Active Transport of Hepatotoxic Pyrrolizidine Alkaloids in HepaRG Cells. Int J Mol Sci 2021; 22:ijms22083821. [PMID: 33917053 PMCID: PMC8067754 DOI: 10.3390/ijms22083821] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 12/26/2022] Open
Abstract
1,2-unsaturated pyrrolizidine alkaloids (PAs) are secondary plant metabolites occurring as food contaminants that can cause severe liver damage upon metabolic activation in hepatocytes. However, it is yet unknown how these contaminants enter the cells. The role of hepatic transporters is only at the beginning of being recognized as a key determinant of PA toxicity. Therefore, this study concentrated on assessing the general mode of action of PA transport in the human hepatoma cell line HepaRG using seven structurally different PAs. Furthermore, several hepatic uptake and efflux transporters were targeted with pharmacological inhibitors to identify their role in the uptake of the PAs retrorsine and senecionine and in the disposition of their N-oxides (PANO). For this purpose, PA and PANO content was measured in the supernatant using LC-MS/MS. Also, PA-mediated cytotoxicity was analyzed after transport inhibition. It was found that PAs are taken up into HepaRG cells in a predominantly active and structure-dependent manner. This pattern correlates with other experimental endpoints such as cytotoxicity. Pharmacological inhibition of the influx transporters Na+/taurocholate co-transporting polypeptide (SLC10A1) and organic cation transporter 1 (SLC22A1) led to a reduced uptake of retrorsine and senecionine into HepaRG cells, emphasizing the relevance of these transporters for PA toxicokinetics.
Collapse
|
7
|
Annu, Baboota S, Ali J. Combination antipsychotics therapy for schizophrenia and related psychotic disorders interventions: Emergence to nanotechnology and herbal drugs. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Li L, Li L, Shang DW, Wen YG, Ning YP. A systematic review and combined meta-analysis of concentration of oral amisulpride. Br J Clin Pharmacol 2020; 86:668-678. [PMID: 32090363 DOI: 10.1111/bcp.14246] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/12/2020] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
AIMS Amisulpride, a first-line schizophrenia treatment, has shown large interindividual variability in plasma/serum levels, often outside the reference range (100-320 ng/mL). This study aims to clarify the impact of dose, sex, age and related factors for the interpatient variability in amisulpride plasma/serum concentration. METHODS Both English and Chinese databases were searched from their inception to May 16, 2019, using the terms: amisulpride and (plasma OR serum OR blood OR "drug monitoring" OR concentration). Studies reporting concentrations and either a dose, associated factor, clinical outcome or side effect were included. RESULTS Fourteen studies with 1628 participants were eventually included. Eligible articles yielded data on drug concentration and dose, averaging 333.9 (95% confidence interval [CI]: 294.5-373.3) ng/mL and 636.2 (95% CI: 549.7-722.6) mg/d, respectively. The calculated mean concentration-to-dose (C/D) ratio was 0.60 (95% CI: 0.52-0.67) (ng/mL)/mg. Subgroup analysis suggested that female patients on combined lithium-amisulpride have higher concentration levels and C/D ratios. Age was slight positive associated with C/D ratio while not for plasma level. Smoker patients have high concentration level than nonsmoking patients but not for C/D. Responsive and nonresponsive groups did not differ in concentration and C/D. CONCLUSION Pooled concentration levels of amisulpride were higher than recommended with wide individual variation, especially in older patients, female patients and patients taking amisulpride combined with lithium. The specific therapeutic reference range for amisulpride may require reconstruction, which should consider the influence of age, sex, kidney function, drug-drug interactions, different dose regimens and sampling times in future study.
Collapse
Affiliation(s)
- Lin Li
- Department of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lu Li
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - De-Wei Shang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Yu-Guan Wen
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Yu-Ping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| |
Collapse
|
9
|
KSP siRNA/paclitaxel-loaded PEGylated cationic liposomes for overcoming resistance to KSP inhibitors: Synergistic antitumor effects in drug-resistant ovarian cancer. J Control Release 2020; 321:184-197. [PMID: 32035195 DOI: 10.1016/j.jconrel.2020.02.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/07/2020] [Accepted: 02/05/2020] [Indexed: 12/16/2022]
Abstract
Despite the promising anticancer effects of kinesin spindle protein (KSP) inhibition, functional plasticity of kinesins induced resistance against KSP inhibitors in a variety of cancers, leading to clinical failure. Additionally, paclitaxel is a widely used anticancer agent, but drug resistance has limited its use in the recurrent cancers. To overcome resistance against KSP inhibitors, we paired KSP inhibition with microtubule stabilization using KSP siRNA and paclitaxel. To enable temporal co-localization of both drugs in tumor cells in vivo, we exploited PEGylated cationic liposomes carrying both simultaneously. Drug synergism study shows that resistance against KSP inhibition can be suppressed by the action of microtubule-stabilizing paclitaxel, because microtubule stabilization prevents a different kinesin Kif15 from replacing all essential functions of KSP when KSP is inhibited. Our combination therapy showed more effective antiproliferative activity in vitro and in vivo than either paclitaxel or KSP siRNA alone. Ultimately, we could observe significantly improved therapeutic effects in the drug-resistant in vivo models, including cell line and patient-derived xenografts. Taken together, our combination therapy provides a potential anticancer strategy to overcome resistance against KSP inhibitors. Particularly, this strategy also provides an efficient approach to improve the therapeutic effects of paclitaxel in the drug-resistant cancers.
Collapse
|
10
|
Risnayanti C, Jang YS, Lee J, Ahn HJ. PLGA nanoparticles co-delivering MDR1 and BCL2 siRNA for overcoming resistance of paclitaxel and cisplatin in recurrent or advanced ovarian cancer. Sci Rep 2018; 8:7498. [PMID: 29760419 PMCID: PMC5951813 DOI: 10.1038/s41598-018-25930-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/02/2018] [Indexed: 11/09/2022] Open
Abstract
The inherent or acquired resistance to paclitaxel and cisplatin, which are commonly used chemotherapeutic agents for ovarian cancer treatment, remains an important issue in chemotherapy of multidrug resistant ovarian cancer. Currently, it is still challenging to deal with the recurrent or advanced stage ovarian cancer. When drug efflux and anti-apoptotic pathways are highly interdependent and also involved in developing the resistance of multidrug resistant ovarian cancer, simultaneous inhibition of both pathways represents the potential targets to enhance the efficacy of chemotherapy. Here, we introduce PLGA nanoparticles system as a “dual RNAi delivery system” to contain both MDR1 and BCL2 siRNA, which is designed for simultaneous inhibition of drug efflux and cell death defense pathways. In the present studies, siRNA-loaded PLGA nanoparticles efficiently elicit the simultaneous suppression of both genes, which consequently shows more enhanced drug-sensitivity than sole suppression of drug efflux or anti-apoptosis in the resistant ovarian cancer cells, owing to the interdependence of both pathways. Our siRNA-loaded PLGA nanoparticles for co-delivering MDR1 and BCL2 siRNA provide an efficient combination therapy strategy to overcome the chemoresistance of paclitaxel and cisplatin on the paclitaxel-resistant SKOV3-TR and cisplatin-resistant A2780-CP20 ovarian cancer respectively.
Collapse
Affiliation(s)
- Chitra Risnayanti
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.,Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Yeong-Su Jang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jinju Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyung Jun Ahn
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
11
|
Wang R, Sun X, Deng YS, Qiu XW. ABCB1 1199G > A Polymorphism Impacts Transport Ability of P-gp-Mediated Antipsychotics. DNA Cell Biol 2018; 37:325-329. [PMID: 29443543 DOI: 10.1089/dna.2017.4096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Rong Wang
- Nursing Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuan Sun
- Nursing Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yong-shu Deng
- Department of Cardiology, Renmin Hospital of Songzi City, Songzi, China
| | - Xu-wen Qiu
- Department of General Surgery, Renmin Hospital of Songzi City, Songzi, China
| |
Collapse
|
12
|
Abstract
Polypharmacy is common in psychiatry. Usage of cognitive enhancers is increasing in the psychiatric population. Many clinicians are not familiar with these new psychoactive compounds. This paper reviews the potential drug-drug interactions when these cognitive enhancers are used together with psychotropic drugs and their confounding effects on diagnosis and clinical management.
Collapse
|
13
|
Gamal W, Fahmy RH, Mohamed MI. Development of novel amisulpride-loaded liquid self-nanoemulsifying drug delivery systems via dual tackling of its solubility and intestinal permeability. Drug Dev Ind Pharm 2017; 43:1530-1538. [DOI: 10.1080/03639045.2017.1322607] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Wael Gamal
- Department of Pharmaceutics, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Rania H. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Magdy I. Mohamed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
14
|
A RNA nanotechnology platform for a simultaneous two-in-one siRNA delivery and its application in synergistic RNAi therapy. Sci Rep 2016; 6:32363. [PMID: 27562435 PMCID: PMC4999871 DOI: 10.1038/srep32363] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/08/2016] [Indexed: 12/11/2022] Open
Abstract
Incorporating multiple copies of two RNAi molecules into a single nanostructure in a precisely controlled manner can provide an efficient delivery tool to regulate multiple gene pathways in the relation of mutual dependence. Here, we show a RNA nanotechnology platform for a two-in-one RNAi delivery system to contain polymeric two RNAi molecules within the same RNA nanoparticles, without the aid of polyelectrolyte condensation reagents. As our RNA nanoparticles lead to the simultaneous silencing of two targeted mRNAs, of which biological functions are highly interdependent, combination therapy for multi-drug resistance cancer cells, which was studied as a specific application of our two-in-one RNAi delivery system, demonstrates the efficient synergistic effects for cancer therapy. Therefore, this RNA nanoparticles approach has an efficient tool for a simultaneous co-delivery of RNAi molecules in the RNAi-based biomedical applications, and our current studies present an efficient strategy to overcome multi-drug resistance caused by malfunction of genes in chemotherapy.
Collapse
|
15
|
A Liquid Chromatography-Tandem Mass Spectrometry Method for Quantifying Amisulpride in Human Plasma and Breast Milk, Applied to Measuring Drug Transfer to a Fully Breast-Fed Neonate. Ther Drug Monit 2016; 38:493-8. [DOI: 10.1097/ftd.0000000000000300] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
16
|
Núñez C, Capelo JL, Igrejas G, Alfonso A, Botana LM, Lodeiro C. An overview of the effective combination therapies for the treatment of breast cancer. Biomaterials 2016; 97:34-50. [PMID: 27162073 DOI: 10.1016/j.biomaterials.2016.04.027] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 04/05/2016] [Accepted: 04/20/2016] [Indexed: 12/21/2022]
Abstract
Breast cancer (BC) is generally classified based on the receptors overexpressed on the cell nucleus, which include hormone receptors such as progesterone (PR) and estrogen (ER), and HER2. Triple-negative breast cancer (TNBC) is a type of cancer that lacks any of these three types of receptor proteins (ER/PR/HER2). Tumor cells exhibit drug resistant phenotypes that decrease the efficacy of chemotherapeutic treatments. Generally, drug resistance has a genetic basis that is caused by an abnormal gene expression, nevertheless, there are several types of drug resistance: efflux pumps reducing the cellular concentration of the drug, alterations in membrane lipids that reduce cellular uptake, increased or altered drug targets, metabolic alteration of the drug, inhibition of apoptosis, repair of the damaged DNA, and alteration of the cell cycle checkpoints. The use of "combination therapy" is recognized as an efficient solution to treat human diseases, in particular, breast cancer. In this review, we give examples of different nanocarriers used to co-deliver multiple therapeutics (chemotherapeutic agent and nucleic acid) to drug-resistant tumor cells, and lastly, we give our recommendations for the future directions for the co-delivery treatments.
Collapse
Affiliation(s)
- Cristina Núñez
- Pharmacology Deparment, Faculty of Veterinary, University of Santiago de Compostela, 27002, Lugo, Spain; C4O Group, Research Unit UCIBIO-REQUIMTE, 2829-516, Caparica, Portugal.
| | - José Luis Capelo
- BIOSCOPE Group, UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal; ProteoMass Scientific Society, Madan Parque, Rua dos Inventores, 2825-182, Caparica, Portugal
| | - Gilberto Igrejas
- C4O Group, Research Unit UCIBIO-REQUIMTE, 2829-516, Caparica, Portugal; Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Amparo Alfonso
- Pharmacology Deparment, Faculty of Veterinary, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Luis M Botana
- Pharmacology Deparment, Faculty of Veterinary, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Carlos Lodeiro
- BIOSCOPE Group, UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal; ProteoMass Scientific Society, Madan Parque, Rua dos Inventores, 2825-182, Caparica, Portugal.
| |
Collapse
|
17
|
Dening TJ, Rao S, Thomas N, Prestidge CA. Oral nanomedicine approaches for the treatment of psychiatric illnesses. J Control Release 2015; 223:137-156. [PMID: 26739547 DOI: 10.1016/j.jconrel.2015.12.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 01/12/2023]
Abstract
Psychiatric illnesses are a leading cause of disability and morbidity globally. However, the preferred orally dosed pharmacological treatment options available for depression, anxiety and schizophrenia are often limited by factors such as low drug aqueous solubility, food effects, high hepatic first-pass metabolism effects and short half-lives. Furthermore, the discovery and development of more effective psychotropic agents has stalled in recent times, with the majority of new drugs reaching the market offering similar efficacy, but suffering from the same oral delivery concerns. As such, the application of nanomedicine formulation approaches to currently available drugs is a viable option for optimizing oral drug delivery and maximizing treatment efficacy. This review focuses on the various delivery challenges encountered by psychotropic drugs, and the ability of nanomedicine formulation strategies to overcome these. Specifically, we critically review proof of concept in vitro and in vivo studies of nanoemulsions/microemulsions, solid lipid nanoparticles, dendrimers, polymeric micelles, nanoparticles of biodegradable polymers and nanosuspensions, and provide new insight into the various mechanisms for improved drug performance. The advantages and limitations of current oral nanomedicine approaches for psychotropic drugs are discussed, which will provide guidance for future research directions and assist in fostering the translation of such delivery systems to the clinical setting. Accordingly, emphasis has been placed on correlating the in vitro/in vivo performance of these nanomedicine approaches with their potential clinical outcomes and benefits for patients.
Collapse
Affiliation(s)
- Tahnee J Dening
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Shasha Rao
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Nicky Thomas
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Clive A Prestidge
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
18
|
Bypassing P-Glycoprotein Drug Efflux Mechanisms: Possible Applications in Pharmacoresistant Schizophrenia Therapy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:484963. [PMID: 26491671 PMCID: PMC4600488 DOI: 10.1155/2015/484963] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 05/08/2015] [Accepted: 05/10/2015] [Indexed: 12/31/2022]
Abstract
The efficient noninvasive treatment of neurodegenerative disorders is often constrained by reduced permeation of therapeutic agents into the central nervous system (CNS). A vast majority of bioactive agents do not readily permeate into the brain tissue due to the existence of the blood-brain barrier (BBB) and the associated P-glycoprotein efflux transporter. The overexpression of the MDR1 P-glycoprotein has been related to the occurrence of multidrug resistance in CNS diseases. Various research outputs have focused on overcoming the P-glycoprotein drug efflux transporter, which mainly involve its inhibition or bypassing mechanisms. Studies into neurodegenerative disorders have shown that the P-glycoprotein efflux transporter plays a vital role in the progression of schizophrenia, with a noted increase in P-glycoprotein function among schizophrenic patients, thereby reducing therapeutic outcomes. In this review, we address the hypothesis that methods employed in overcoming P-glycoprotein in cancer and other disease states at the level of the BBB and intestine may be applied to schizophrenia drug delivery system design to improve clinical efficiency of drug therapies. In addition, the current review explores polymers and drug delivery systems capable of P-gp inhibition and modulation.
Collapse
|
19
|
L-1416, a novel MDR reversing agent with possible reduced calcium antagonism. Pharmacol Rep 2014; 66:1140-7. [DOI: 10.1016/j.pharep.2014.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 05/15/2014] [Accepted: 07/16/2014] [Indexed: 01/11/2023]
|
20
|
Cationic micellar nanoparticles for DNA and doxorubicin co-delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 44:430-9. [DOI: 10.1016/j.msec.2014.07.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 06/20/2014] [Accepted: 07/14/2014] [Indexed: 01/31/2023]
|
21
|
Dos Santos Pereira JN, Tadjerpisheh S, Abu Abed M, Saadatmand AR, Weksler B, Romero IA, Couraud PO, Brockmöller J, Tzvetkov MV. The poorly membrane permeable antipsychotic drugs amisulpride and sulpiride are substrates of the organic cation transporters from the SLC22 family. AAPS JOURNAL 2014; 16:1247-58. [PMID: 25155823 DOI: 10.1208/s12248-014-9649-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 07/18/2014] [Indexed: 01/10/2023]
Abstract
Variations in influx transport at the blood-brain barrier might affect the concentration of psychotropic drugs at their site of action and as a consequence might alter therapy response. Furthermore, influx transporters in organs such as the gut, liver and kidney may influence absorption, distribution, and elimination. Here, we analyzed 30 commonly used psychotropic drugs using a parallel artificial membrane permeability assay. Amisulpride and sulpiride showed the lowest membrane permeability (P e < 1.5 × 10(-6) cm/s) and will require influx transport to penetrate the blood-brain barrier and other physiological barriers. We then studied the uptake of amisulpride and sulpiride by the organic cation transporters of the SLC22 family OCT1, OCT2, OCT3, OCTN1, and OCTN2 Amisulpride was found to be transported by all five transporters studied. In contrast, sulpiride was only transported by OCT1 and OCT2. OCT1 showed the highest transport ability both for amisulpride (CLint = 1.9 ml/min/mg protein) and sulpiride (CLint = 4.2 ml/min/mg protein) and polymorphisms in OCT1 significantly reduced the uptake of both drugs. Furthermore, we observed carrier-mediated uptake that was inhibitable by known OCT inhibitors in the immortalized human brain microvascular endothelial cell line hCMEC/D3. In conclusion, this study demonstrates that amisulpride and sulpiride are substrates of organic cation transporters of the SLC22 family. SLC22 transporters may play an important role in the distribution of amisulpride and sulpiride, including their ability to penetrate the blood-brain barrier.
Collapse
Affiliation(s)
- Joao N Dos Santos Pereira
- Institute for Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang X, Chen Y, Dahmani FZ, Yin L, Zhou J, Yao J. Amphiphilic carboxymethyl chitosan-quercetin conjugate with P-gp inhibitory properties for oral delivery of paclitaxel. Biomaterials 2014; 35:7654-65. [DOI: 10.1016/j.biomaterials.2014.05.053] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/20/2014] [Indexed: 01/09/2023]
|
23
|
Emmert D, Campos CR, Ward D, Lu P, Namanja HA, Bohn K, Miller DS, Sharom FJ, Chmielewski J, Hrycyna CA. Reversible dimers of the atypical antipsychotic quetiapine inhibit p-glycoprotein-mediated efflux in vitro with increased binding affinity and in situ at the blood-brain barrier. ACS Chem Neurosci 2014; 5:305-17. [PMID: 24483607 DOI: 10.1021/cn4002329] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The multidrug resistance transporter P-glycoprotein (P-gp) is highly expressed in the capillary endothelial cells of the blood-brain barrier (BBB) where it functions to limit the brain penetration of many drugs, including antipsychotic agents used to treat schizophrenia. Therefore, in an effort to inhibit the transporter, we designed dimers of the antipsychotic drug and P-gp substrate quetiapine (QT), linked by variable length tethers. In P-gp overexpressing cells and in human brain capillary endothelial hCMEC/D3 cells, the dimer with the shortest tether length (QT2C2) (1) was the most potent inhibitor showing >80-fold better inhibition of P-gp-mediated transport than monomeric QT. The dimers, which are linked via ester moieties, are designed to revert to the therapeutic monomer once inside the target cells. We demonstrated that the addition of two sterically blocking methyl groups to the linker (QT2C2Me2, 8) increased the half-life of the molecule in plasma 10-fold as compared to the dimer lacking methyl groups (QT2C2, 1), while retaining inhibitory potency for P-gp transport and sensitivity to cellular esterases. Experiments with purified P-gp demonstrated that QT2C2 (1) and QT2C2Me2 (8) interacted with both the H- and R-binding sites of the transporter with binding affinities 20- to 30-fold higher than that of monomeric QT. Using isolated rat brain capillaries, QT2C2Me2 (8) was a more potent inhibitor of P-gp transport than QT. Lastly, we showed that QT2C2Me2 (8) increased the accumulation of the P-gp substrate verapamil in rat brain in situ three times more than QT. Together, these results indicate that the QT dimer QT2C2Me2 (8) strongly inhibited P-gp transport activity in human brain capillary endothelial cells, in rat brain capillaries, and at the BBB in an animal model.
Collapse
Affiliation(s)
- Dana Emmert
- Department of Chemistry, Purdue University, 560
Oval Drive, West Lafayette, Indiana 47907, United States
| | - Christopher R. Campos
- Laboratory of Toxicology and Pharmacology, National Institute
of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, United States
| | - David Ward
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Peihua Lu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Hilda A. Namanja
- Department of Chemistry, Purdue University, 560
Oval Drive, West Lafayette, Indiana 47907, United States
| | - Kelsey Bohn
- Department of Chemistry, Purdue University, 560
Oval Drive, West Lafayette, Indiana 47907, United States
| | - David S. Miller
- Laboratory of Toxicology and Pharmacology, National Institute
of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, United States
| | - Frances J. Sharom
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Jean Chmielewski
- Department of Chemistry, Purdue University, 560
Oval Drive, West Lafayette, Indiana 47907, United States
| | - Christine A. Hrycyna
- Department of Chemistry, Purdue University, 560
Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
24
|
Nagasaka Y, Sano T, Oda K, Kawamura A, Usui T. Impact of genetic deficiencies of P-glycoprotein and breast cancer resistance protein on pharmacokinetics of aripiprazole and dehydroaripiprazole. Xenobiotica 2014; 44:926-32. [PMID: 24666334 DOI: 10.3109/00498254.2014.901585] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
1. We investigated how deficiencies in P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) affect the pharmacokinetics of atypical antipsychotics aripiprazole and its active metabolite (dehydroaripiprazole) using normal Friend leukemia virus strain B (FVB) mice, BCRP knockout (Bcrp[-/-]) mice, and P-gp and BCRP triple knockout (Mdr1a/1b[-/-]Bcrp[-/-]) mice. 2. While plasma concentrations of aripiprazole and dehydroaripiprazole after oral administration were slightly higher in both Bcrp(-/-) and Mdr1a/1b(-/-)/Bcrp(-/-) mice than in normal FVB mice, the difference was not marked. The increase in absolute bioavailability (F) compared with normal mice (approximately 1.3-fold increase) was comparable between Bcrp(-/-) and Mdr1a/1b(-/-)/Bcrp(-/-) mice. This finding suggests that BCRP may be involved in the intestinal absorption of aripiprazole in mice, albeit with minimal contribution to absorption at best. 3. In contrast, the brain-to-plasma concentration ratio (Kp,brain) for aripiprazole and dehydroaripiprazole after oral administration was significantly higher in Mdr1a/1b(-/-)/Bcrp(-/-) mice than in normal mice, whereas Bcrp(-/-) mice exhibited Kp,brain values similar to those in normal mice. In addition, the Kp,brain values in Mdr1a/1b(-/-)/Bcrp(-/-) mice were not drastically different from those previously reported in Mdr1a/1b(-/-) mice, suggesting that brain penetration of aripiprazole and dehydroaripiprazole can be affected by P-gp, but with little synergistic effect of BCRP.
Collapse
Affiliation(s)
- Yasuhisa Nagasaka
- Analysis and Pharmacokinetics Research Labs, Astellas Pharma Inc. , Ibaraki , Japan
| | | | | | | | | |
Collapse
|
25
|
Quantitative determination of amisulpride in rat plasma by HPLC–MS/MS. Arch Pharm Res 2014; 38:63-7. [DOI: 10.1007/s12272-014-0361-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/18/2014] [Indexed: 01/16/2023]
|
26
|
Piel M, Schmitt U, Bausbacher N, Buchholz HG, Gründer G, Hiemke C, Rösch F. Evaluation of P-glycoprotein (abcb1a/b) modulation of [(18)F]fallypride in MicroPET imaging studies. Neuropharmacology 2013; 84:152-8. [PMID: 23994301 DOI: 10.1016/j.neuropharm.2013.04.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 03/25/2013] [Accepted: 04/29/2013] [Indexed: 12/22/2022]
Abstract
[(18)F]Fallypride ([(18)F]FP) is an important and routinely used D2/D3 antagonist for quantitative imaging of dopaminergic neurotransmission in vivo. Recently it was shown that the brain uptake of the structurally related [(11)C]raclopride is modulated by P-glycoprotein (P-gp), an important efflux transporter at the blood-brain barrier. The purpose of this study was to determine whether the brain uptake of [(18)F]FP is influenced by P-gp. For examination of this possible modulation microPET studies were performed in a rat and a mouse model. Hence, [(18)F]FP was applied to Sprague Dawley rats, half of them being treated with the P-gp inhibitor cyclosporine A (CsA). In a second experimental series the tracer was applied to three different groups of FVB/N mice: wild type, P-gp double knockout (abcb1a/1b (-/-)) and CsA-treated mice. In CsA-treated Sprague Dawley rats [(18)F]FP showed an elevated standard uptake value in the striatum compared to the control animals. In FVB/N mice a similar effect was observed, showing an increasing uptake from wild type to CsA-treated and double knockout mice. Since genetically or pharmacologically induced reduction of P-gp activity increased the uptake of [(18)F]FP markedly, we conclude that [(18)F]FP is indeed a substrate of P-gp and that the efflux pump modulates its brain uptake. This effect - if true for humans - may have particular impact on clinical studies using [(18)F]FP for assessment of D2/3 receptor occupancy by antipsychotic drugs. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'.
Collapse
Affiliation(s)
- Markus Piel
- Institute of Nuclear Chemistry, Johannes Gutenberg-University, Fritz-Strassmann-Weg 2, D-55128 Mainz, Germany.
| | - Ulrich Schmitt
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
| | - Nicole Bausbacher
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
| | - Hans-Georg Buchholz
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
| | - Gerhard Gründer
- Department of Psychiatry and Psychotherapy, RWTH Aachen University, Aachen, Germany.
| | - Christoph Hiemke
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
| | - Frank Rösch
- Institute of Nuclear Chemistry, Johannes Gutenberg-University, Fritz-Strassmann-Weg 2, D-55128 Mainz, Germany.
| |
Collapse
|
27
|
Voicu V, Medvedovici A, Ranetti AE, Rădulescu FŞ. Drug-induced hypo- and hyperprolactinemia: mechanisms, clinical and therapeutic consequences. Expert Opin Drug Metab Toxicol 2013; 9:955-68. [PMID: 23600946 DOI: 10.1517/17425255.2013.791283] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION The altered profiles of prolactin secretion in the anterior hypophysis, generated by pathological, pharmacological or toxicological causes, have special consequences on multiple functions in both genders. AREAS COVERED This selective review presents the main mechanisms controlling prolactin secretion, focusing on the interplay of various neurotransmitters or xenobiotics, but also on the role of psychic or posttraumatic stress. A detailed analysis of several pharmacotherapeutic groups with hyperprolactinemic effects emphasize on the relevance of the pharmacokinetic/pharmacodynamic mechanisms and the clinical significance of the long term administration. EXPERT OPINION Accurate monitoring and evaluation of the hyperprolactinemia induced by xenobiotics is strongly recommended. The typical antipsychotics and some of the atypical agents (amisulpride, risperidone, paliperidone), as well as some antidepressants, antihypertensives and prokinetics, are the most important groups inducing hyperprolactinemia. The hyperprolactinemic effects are correlated with their affinity for dopamine D2 receptors, their blood-brain barrier penetration and, implicitly, the requested dose for adequate occupancy of cerebral D2 receptors. Consequently, integration of available pharmacokinetic and pharmacodynamic data supports the idea of therapeutic switch to non-hyperprolactinemic agents (especially aripiprazole) or their association, for an optimal management of antipsychotic-induced hyperprolactinemia. Possible alternative strategies for counteracting the xenobiotics-induced hyperprolactinemia are also mentioned.
Collapse
Affiliation(s)
- Victor Voicu
- University of Medicine and Pharmacy Carol Davila, Faculty of Medicine, Department of Clinical Pharmacology, Toxicology and Psychopharmacology, Bucharest 011643, Romania.
| | | | | | | |
Collapse
|
28
|
den Boon FS, Body S, Hampson CL, Bradshaw CM, Szabadi E, de Bruin N. Effects of amisulpride and aripiprazole on progressive-ratio schedule performance: comparison with clozapine and haloperidol. J Psychopharmacol 2012; 26:1231-43. [PMID: 21969105 DOI: 10.1177/0269881111421974] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Clozapine and some other atypical antipsychotics (e.g. quetiapine, olanzapine) have been found to exert a characteristic profile of action on operant behaviour maintained by progressive-ratio schedules, as revealed by Killeen's Mathematical Principles of Reinforcement model of schedule-controlled behaviour. These drugs increase the value of a parameter that expresses the 'incentive value' of the reinforcer (a) and a parameter that is inversely related to the organism's 'motor capacity' (δ). This experiment examined the effects of two further atypical antipsychotics, aripiprazole and amisulpride, on progressive-ratio schedule performance in rats; the effects of clozapine and a conventional antipsychotic, haloperidol, were also examined. In agreement with previous findings, clozapine (4, 8 mg kg⁻¹) increased a and δ, whereas haloperidol (0.05, 0.1 mg kg⁻¹) reduced a and increased δ. Aripiprazole (3,30 mg kg⁻¹) increased δ but did not affect a. Amisulpride (5, 50 mg kg⁻¹) had a delayed and protracted effect: δ was increased 3-6 hours after treatment; a was increased 1.5 hours, and reduced 12-24 hours after treatment. Interpretation based on Killeen's model suggests that aripiprazole does not share clozapine's ability to enhance reinforcer value. Amisulpride produced a short-lived enhancement, followed by a long-lasting reduction, of reinforcer value. Both drugs impaired motor performance.
Collapse
Affiliation(s)
- F S den Boon
- Psychopharmacology Section, Division of Psychiatry, University of Nottingham, Nottingham, UK
| | | | | | | | | | | |
Collapse
|
29
|
Yin Q, Shen J, Chen L, Zhang Z, Gu W, Li Y. Overcoming multidrug resistance by co-delivery of Mdr-1 and survivin-targeting RNA with reduction-responsible cationic poly(β-amino esters). Biomaterials 2012; 33:6495-506. [DOI: 10.1016/j.biomaterials.2012.05.039] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 05/17/2012] [Indexed: 01/01/2023]
|
30
|
In vitro P-glycoprotein efflux inhibition by atypical antipsychotics is in vivo nicely reflected by pharmacodynamic but less by pharmacokinetic changes. Pharmacol Biochem Behav 2012; 102:312-20. [PMID: 22525746 DOI: 10.1016/j.pbb.2012.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 04/03/2012] [Accepted: 04/07/2012] [Indexed: 12/27/2022]
Abstract
BACKGROUND P-glycoprotein (P-gp), an efflux transporter of the blood-brain barrier, limits the access of multiple xenobiotics to the central nervous system (CNS). Thus drug-dependent inhibition, induction or genetic variation of P-gp impacts drug therapy. METHODS We investigated atypical antipsychotics and their interaction with P-gp. Amisulpride, clozapine, N-desmethylclozapine, olanzapine, and quetiapine were assessed in vitro on their inhibitory potential and in vivo on their disposition in mouse serum and brain, and behaviourally on the RotaRod test. In vivo wildtype (WT) and mdr1a/1b double knockout mice (mdr1a/1b (-/-, -/-); KO) were investigated. RESULTS In rhodamine 123 efflux assay drugs inhibitory potency to P-gp could be ranked quetiapine>N-desmethylclozapine>clozapine>olanzapine. When treating WT and KO mice i.p. and assessing brain and serum levels by HPLC analysis, P-gp expression has the highest but a rather short effect on the distribution of amisulpride, whereas the others ranked N-desmethylclozapine>olanzapine>quetiapine>clozapine; contrasted by in vivo behavioral changes at various time points. Here quetiapine>clozapine>olanzapine impacts behavior most when P-gp is lacking. Present results indicate the relevance of P-gp expression for CNS-drug therapy. CONCLUSIONS Combination of in vitro, and in vivo methods highlights that inhibitory potency did not reflect P-gp related drug disposition. But, when drugs were ranked for inhibitory potency, this order is reflected in pharmacodynamic changes or vice versa. Pharmacodynamic effects otherwise were at most correlated to drug brain levels, which however, were present only to a limited extent (by positron emission tomography) accessible in humans.
Collapse
|
31
|
A. Aboelwa A, I.A. Makhl A. In vivo Evaluation and Application of Central Composite Design in the Optimization of Amisulpride Self-Emulsifying Drug Delivery System. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/ajdd.2012.1.16] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Moons T, de Roo M, Claes S, Dom G. Relationship between P-glycoprotein and second-generation antipsychotics. Pharmacogenomics 2011; 12:1193-211. [PMID: 21843066 DOI: 10.2217/pgs.11.55] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The membrane transport protein P-glycoprotein (P-gp) is an interesting candidate for individual differences in response to antipsychotics. To present an overview of the current knowledge of P-gp and its interaction with second-generation antipsychotics (SGAs), an internet search for all relevant English original research articles concerning P-gp and SGAs was conducted. Several SGAs are substrates for P-gp in therapeutic concentrations. These include amisulpride, aripiprazole, olanzapine, perospirone, risperidone and paliperidone. Clozapine and quetiapine are not likely to be substrates of P-gp. However, most antipsychotics act as inhibitors of P-gp, and can therefore influence plasma and brain concentrations of other substrates. No information was available for sertindole, ziprasidone or zotepine. Research in animal models demonstrated significant differences in antipsychotic brain concentration and behavior owing to both P-gp knockout and inhibition. Results in patients are less clear, as several external factors have to be accounted for. Patients with polymorphisms which decrease P-gp functionality tend to perform better in clinical settings. There is some variability in the findings concerning adverse effects, and no definitive conclusions can be drawn at this point.
Collapse
Affiliation(s)
- Tim Moons
- University Psychiatric Centre, Catholic University Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
33
|
Yi H, Kim SH, Park HG, Yu HS, Kim YS. The effect of systemic injection of cyclosporin A on the phosphorylation of the PKC substrates MARCKS and GAP43 in the rat hippocampus. Neurosci Lett 2011; 497:17-21. [DOI: 10.1016/j.neulet.2011.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 03/16/2011] [Accepted: 04/07/2011] [Indexed: 12/21/2022]
|
34
|
Teoh S, Ilett KF, Hackett LP, Kohan R. Estimation of rac-amisulpride transfer into milk and of infant dose via milk during its use in a lactating woman with bipolar disorder and schizophrenia. Breastfeed Med 2011; 6:85-8. [PMID: 20925494 DOI: 10.1089/bfm.2010.0016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This case describes the transfer of the antipsychotic drug amisulpride into milk and the estimation of infant exposure via breastfeeding. The dyad investigated was a 28-year-old lactating woman and her 13-month-old daughter. The woman had been taking 400 mg of amisulpride daily for 9 days and provided eight milk samples and one blood sample over a 24-hour dose interval. Amisulpride concentrations in these samples were measured by high-performance liquid chromatography, and infant dose was calculated by standard methods. The infant's health and progress were evaluated by a neonatal pediatrician. Transfer of amisulpride into milk was high, with a milk:plasma distribution ratio of 19.5 (5,188 μg/L in milk and 266 μg/L in plasma). The average amisulpride concentration in milk was 3,562 μg/L, which, when multiplied by an average milk intake of 0.15 L/kg/day, gave an absolute infant dose of 534 μg/kg/day. The relative infant dose was 10.7% of the maternal weight-adjusted dose (5,000 μg/kg/day), which is slightly above the usual 10% safety recommendation. The infant was in good health with an appropriate Denver development score for her age. She showed no acute drug-related adverse effects. Given that the infant had already benefited from 13 months of breastfeeding, that amisulpride has potential adverse effects, and that its relative infant dose was 10.7%, we recommended cessation of breastfeeding in the near-term.
Collapse
Affiliation(s)
- Stephanie Teoh
- Department of Pharmacy, King Edward Memorial Hospital, Women and Newborn Health Services, Subiaco, Australia
| | | | | | | |
Collapse
|
35
|
Skazik C, Wenzel J, Marquardt Y, Kim A, Merk HF, Bickers DR, Baron JM. P-Glycoprotein (ABCB1) expression in human skin is mainly restricted to dermal components. Exp Dermatol 2011; 20:450-2. [DOI: 10.1111/j.1600-0625.2010.01237.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
36
|
Chen CC, Hsu LW, Huang LT, Huang TL. Chronic administration of cyclosporine A changes expression of BDNF and TrkB in rat hippocampus and midbrain. Neurochem Res 2010; 35:1098-104. [PMID: 20361354 DOI: 10.1007/s11064-010-0160-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2010] [Indexed: 12/11/2022]
Abstract
Neurotrophins, including the brain-derived neurotrophic factor (BDNF), are essential for regulating neuronal differentiation in developing brains. BDNF and its receptor tyrosine kinase receptor B (TrkB) are involved in neuronal signaling, survival and plasticity. Cyclosporine A (CsA) is a potent immunosuppressive agent which prevents allograft rejection in organ transplantation and various immunological diseases. We investigated whether chronic administration of CsA decreases BDNF gene expression in rats, and the influence of CsA on mRNA levels of TrkB receptors was also examined. For 30 days of CsA (10 mg/kg/day) administration, the expression of BDNF and TrkB mRNA was significantly decreased in the hippocampus and midbrain, but there was no significant difference in the cortex. CsA (0, 1, 5 10, 15 ug/ml) down-regulated BDNF and TrkB gene expression through cultured SH-SY5Y cells, as did all-trans retinoic acid (ATRA), and there was no effect on cell viability. These experimental results indicate that suppression of the BDNF and TrkB mRNA, protein level of BDNF expression in the hippocampus and midbrain may be related to altered behavior observed following chronic administration of CsA. A common mechanism of adverse effects of CsA induced depressive symptoms may involve neurotoxicity mediated by down-regulation of brain BDNF and TrkB.
Collapse
Affiliation(s)
- Chien-Chih Chen
- Department of Psychiatry, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, 123 Ta-Pei Rd, Niao-Sung, Kaohsiung, 83305, Taiwan, ROC
| | | | | | | |
Collapse
|
37
|
Calzavara MB, Medrano WA, Levin R, Kameda SR, Andersen ML, Tufik S, Silva RH, Frussa-Filho R, Abílio VC. Neuroleptic drugs revert the contextual fear conditioning deficit presented by spontaneously hypertensive rats: a potential animal model of emotional context processing in schizophrenia? Schizophr Bull 2009; 35:748-59. [PMID: 18281713 PMCID: PMC2696367 DOI: 10.1093/schbul/sbn006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Schizophrenia, bipolar disorder, and attention deficit/hyperactivity disorder (ADHD) present abnormalities in emotion processing. A previous study showed that the spontaneously hypertensive rats (SHR), a putative animal model of ADHD, present reduced contextual fear conditioning (CFC). The aim of the present study was to characterize the deficit in CFC presented by SHR. Adult male normotensive Wistar rats and SHR were submitted to the CFC task. Sensitivity of the animals to the shock and the CFC performance after repeated exposure to the task were investigated. Pharmacological characterization consisted in the evaluation of the effects of the following drugs administered previously to the acquisition of the CFC: pentylenetetrazole (anxiogenic) and chlordiazepoxide (anxiolytic); methylphenidate and amphetamine (used for ADHD); lamotrigine, carbamazepine, and valproic acid (mood stabilizers); haloperidol, ziprasidone, risperidone, amisulpride, and clozapine (neuroleptic drugs); metoclopramide and SCH 23390 (dopamine antagonists without antipsychotic properties); and ketamine (a psychotomimmetic). The effects of paradoxical sleep deprivation (that worsens psychotic symptoms) and the performance in a latent inhibition protocol (an animal model of schizophrenia) were also verified. No differences in the sensitivity to the shock were observed. The repeated exposure to the CFC task did not modify the deficit in CFC presented by SHR. Considering pharmacological treatments, only the neuroleptic drugs reversed this deficit. This deficit was potentiated by proschizophrenia manipulations. Finally, a deficit in latent inhibition was also presented by SHR. These findings suggest that the deficit in CFC presented by SHR could be a useful animal model to study abnormalities in emotional context processing related to schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | - Monica Levy Andersen
- Departament of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sergio Tufik
- Departament of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Regina Helena Silva
- Department of Physiology, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | - Vanessa Costhek Abílio
- Department of Pharmacology,To whom correspondence should be addressed; Departamento de Farmacologia, Universidade Federal de São Paulo, Rua Botucatu, 862 Ed. Leal Prado, CEP 04023-062, São Paulo, Brazil; tel/fax: +55-11-5576-4502, e-mail:
| |
Collapse
|
38
|
Psychotropic drugs and renal failure: translating the evidence for clinical practice. Adv Ther 2009; 26:404-24. [PMID: 19444657 DOI: 10.1007/s12325-009-0021-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The kidney is a primary route of drug elimination; abnormal kidney function is predicted to alter the pharmacokinetics of agents metabolized and/or excreted predominantly through this route. The high prevalence of mental disorders associated with psychotropic drug use in individuals with deteriorating renal function suggests there is a need to investigate the effects of renal failure on psychotropic pharmacokinetics. The aim of this review is to provide a clinically accessible overview of the effect of chronic renal failure on the pharmacokinetics for each of the major classes of prescribed psychotropic agents. METHODS All English language articles published between 1977 and 2008 were searched through PubMed, using the following keywords: "renal," "kidney," "pharmacokinetics," "renal impairment," "renal insufficiency," and "renal failure." Each of these search words was cross-referenced with the non-proprietary name of each psychotropic agent. The manufacturer's product insert was also reviewed for some agents for updated dosing. Owing to the lack of adequately powered studies, an inclusive manner was used. RESULTS Chronic renal failure variably affects the pharmacokinetic parameters of psychotropic drugs. A review of each psychotropic drug is provided, with an emphasis on the individual pharmacokinetic parameters and recommended dosing. CONCLUSIONS The adjudication of safe and effective doses for any psychotropic agent needs to be individualized. Tactics including dosage adjustment, slow titration, and careful monitoring for serious adverse events should be incorporated into practice.
Collapse
|
39
|
Natesan S, Reckless GE, Barlow KBL, Nobrega JN, Kapur S. Amisulpride the 'atypical' atypical antipsychotic--comparison to haloperidol, risperidone and clozapine. Schizophr Res 2008; 105:224-35. [PMID: 18710798 DOI: 10.1016/j.schres.2008.07.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 07/04/2008] [Accepted: 07/08/2008] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Amisulpride's high and selective affinity for dopamine D2/3 (Ki 1.3/2.4 nM) receptors, lack of affinity for serotonin receptors, and its unusually high therapeutic doses (400-800 mg/day) makes it unique among atypical antipsychotics and prompted us to compare its actions with other antipsychotics in animal models. METHODS Amisulpride's effects on amphetamine and phencyclidine induced locomotor activity (AIL/PIL), conditioned avoidance response, catalepsy (CAT), subcortical Fos expression, and plasma prolactin was correlated to its time-course striatal D2/3 and prefrontal 5-HT2 receptor occupancy (D(2/3)/5-HT2RO); in comparison to haloperidol, clozapine, and risperidone. RESULTS Unlike the atypicals clozapine and risperidone, amisulpride lacked 5-HT2RO and showed a 'delayed' pattern of D2/3RO: 43, 60 and 88% after 1, 2 and 6 h (100 mg/kg), respectively, despite a quick onset (1 h) and decline (6 h) of prolactin elevation. While haloperidol and risperidone were effective at D2RO>60%, clozapine at D2/3RO<50%, amisulpride was effective only when its D2RO exceeded 60% with a delayed latency and lasted longer than other antipsychotics. CAT was observed for haloperidol and risperidone when D2RO exceeded 80%, while in the case of amisulpride, CAT was not observed even when doses exceeded 90% D2/3RO. Amisulpride also displayed functional limbic selectivity in Fos expression like the other atypicals. CONCLUSIONS Amisulpride's "delayed" functional profile on acute administration and the need for high doses is most likely due to its poor blood-brain-barrier penetration; however, it is distinct from other atypicals in showing low motor side-effects, activity against phencyclidine, and a mesolimbic preference, despite no action on serotonin receptors.
Collapse
Affiliation(s)
- Sridhar Natesan
- Schizophrenia Program and the PET Centre, Centre for Addiction and Mental Health (CAMH), Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
40
|
Linnet K, Ejsing TB. A review on the impact of P-glycoprotein on the penetration of drugs into the brain. Focus on psychotropic drugs. Eur Neuropsychopharmacol 2008; 18:157-69. [PMID: 17683917 DOI: 10.1016/j.euroneuro.2007.06.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 05/15/2007] [Accepted: 06/19/2007] [Indexed: 12/23/2022]
Abstract
In recent years there has been increasing focus on the role of the drug transporter P-glycoprotein (P-gp) with regard to drug penetration into the brain. Studies using mice devoid of functional P-gp have revealed that P-gp at the blood-brain barrier (BBB) can exert a profound effect on the ability of some drugs to enter the brain, e.g. cardiovascular drugs (digoxin, quinidine), opioids (morphine, loperamide, methadone), HIV protease inhibitors, the new generation of antihistamines, and some antidepressants and antipsychotics. Among the latter group, risperidone is strongly influenced having about 10 times higher cerebral concentration in P-gp knock-out mice than in control mice. Taking into account that polytherapy is commonplace in psychiatry, theoretically there is a risk of drug-drug interactions with regard to P-gp at the BBB. Here we review the evidence for a role of P-gp with regard to psychoactive drugs from in vitro studies and experiments in knock-out mice devoid of functional P-gp. Moreover, the evidence for significant drug-drug interactions involving psychotropic drugs in rodents is considered. Clinical observations suggesting a role for P-gp in relation to drug-drug interactions at the BBB are sparse, and a definite conclusion awaits further studies. Also, the possible clinical relevance of P-gp genetic polymorphisms is questionable, and more investigations are needed on this subject.
Collapse
Affiliation(s)
- Kristian Linnet
- The Department of Forensic Chemistry, Institute of Forensic Medicine, University of Copenhagen, Frederik V's Vej 11, 2100 Copenhagen, Denmark.
| | | |
Collapse
|
41
|
Zhu HJ, Wang JS, Donovan JL, Jiang Y, Gibson BB, DeVane CL, Markowitz JS. Interactions of attention-deficit/hyperactivity disorder therapeutic agents with the efflux transporter P-glycoprotein. Eur J Pharmacol 2007; 578:148-58. [PMID: 17963743 DOI: 10.1016/j.ejphar.2007.09.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 09/21/2007] [Accepted: 09/27/2007] [Indexed: 12/12/2022]
Abstract
The objective of this study was to assess the potential interactions of the drug transporter P-glycoprotein with attention-deficit/hyperactivity disorder (ADHD) therapeutic agents atomoxetine--and the individual isomers of methylphenidate, amphetamine, and modafinil utilizing established in vitro assay. An initial ATPase assay indicated that both d- and l-methylphenidate have weak affinity for P-glycoprotein. The intracellular accumulation of P-glycoprotein substrates doxorubicin and rhodamine123 in the P-glycoprotein overexpressing cell line LLC-PK1/MDR1 was determined to evaluate potential inhibitory effects on P-glycoprotein. The results demonstrated that all compounds, except both modafinil isomers, significantly increased doxorubicin and rhodamine123 accumulation in LLC-PK1/MDR1 cells at higher concentrations. To investigate the P-glycoprotein substrate properties, the intracellular concentrations of the tested compounds in LLC-PK1/MDR1 and P-glycoprotein negative LLC-PK1 cells were measured in the presence and absence of the P-glycoprotein inhibitor PSC833. The results indicate that the accumulation of d-methylphenidate in LLC-PK1 cells was 32.0% higher than in LLC-PK1/MDR1 cells. Additionally, coadministration of PSC833 leads to 52.9% and 45.6% increases in d-modafinil and l-modafinil accumulation, respectively, in LLC-PK1/MDR1 cells. Further studies demonstrated that l-modafinil transport across LLC-PK1/MDR1 cell monolayers in the basolateral-to-apical (B-A) direction was significantly higher than in the apical-to-basolateral (A-B) direction. PSC833 treatment significantly decreased the transport of l-modafinil in B-A direction. In conclusion, our results suggest that all tested agents with the exception of modafinil isomers are relatively weak P-glycoprotein inhibitors. Furthermore, P-glycoprotein may play a minor role in the transport of d-methylphenidate, d-modafinil, and l-modafinil.
Collapse
Affiliation(s)
- Hao-Jie Zhu
- Laboratory of Drug Disposition and Pharmacogenetics, Medical University of South Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Bergström MA, Ott H, Carlsson A, Neis M, Zwadlo-Klarwasser G, Jonsson CAM, Merk HF, Karlberg AT, Baron JM. A Skin-Like Cytochrome P450 Cocktail Activates Prohaptens to Contact Allergenic Metabolites. J Invest Dermatol 2007; 127:1145-53. [PMID: 17124504 DOI: 10.1038/sj.jid.5700638] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Allergic contact dermatitis is a complex syndrome representing immunological responses to cutaneous exposure to protein-reactive chemicals. Although many contact sensitizers directly can elicit this disorder, others (prohaptens) require activation. Knowledge regarding the activating mechanisms remains limited, but one possibility is metabolic activation by cytochrome P450 (CYP) enzymes in the skin. We have, after quantitative reverse transcriptase-PCR studies of the CYP content in 18 human skin samples, developed an enriched skin-like recombinant human (rh) CYP cocktail using CYP1A1, 1B1, 2B6, 2E1, and 3A5. To validate the rhCYP cocktail, a prohaptenic conjugated diene ((5R)-5-isopropenyl-2-methyl-1-methylene-2-cyclohexene) was investigated using: the skin-like rhCYP cocktail, a liver-like rhCYP cocktail, single rhCYP enzymes, liver microsomes, keratinocytes, and a dendritic cell (DC) assay. The diene was activated to sensitizing epoxides in all non-cell-based incubations including the skin-like rhCYP cocktail. An exocyclic epoxide metabolite ((7R)-7-isopropenyl-4-methyl-1-oxaspiro[2.5]oct-4-ene) was found to be mainly responsible for the allergenic activity of the diene. This epoxide also induced pronounced DC activation indicated by upregulation of IL-8. The skin-like rhCYP cocktail provides a simplified alternative to using skin tissue preparations in mechanistic studies of CYP-mediated skin metabolism of prohaptens and offers the future possibility of designing in vitro predictive assays for assessment of allergenic activity of prohaptens.
Collapse
Affiliation(s)
- Moa Andresen Bergström
- Dermatochemistry and Skin Allergy, Department of Chemistry, Göteborg University, Göteborg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|