1
|
Tokhi A, Ahmed Z, Arif M, Rehman NU, Sheibani V, Sewell RDE, Rauf K. Effects of 1-methyl-1, 2, 3, 4-tetrahydroisoquinoline on a diabetic neuropathic pain model. Front Pharmacol 2023; 14:1128496. [PMID: 37033637 PMCID: PMC10073420 DOI: 10.3389/fphar.2023.1128496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Background: Neuropathy is a prevalent and debilitating complication of poorly managed diabetes, contributing towards poor quality of life, amputation risk, and increased mortality. The available therapies for diabetic neuropathic pain (DPN) have limitations in terms of efficacy, tolerability and patient compliance. Dysfunction in the peripheral and central monoaminergic system has been evidenced in various types of neuropathic and acute pain. The objective of the present study was to investigate 1-methyl 1, 2, 3, 4-tetrahydroisoquinoline (1MeTIQ), an endogenous amine found in human brain with a known neuroprotective profile, in a model of streptozotocin (STZ) induced neuropathic pain. Methods: Diabetic neuropathy in male BALB/c mice was induced by intraperitoneal injection of a single dose of STZ (200 mg/kg). Upon development of DPN after 4 weeks, mice were investigated for mechanical allodynia (von Frey filament pressure test) and thermal hyperalgesia (tail immersion test). Ondansetron (1.0 mg/kg i.p.), naloxone (3.0 mg/kg i.p.) and yohimbine (2.0 mg/kg i.p.) were used to elucidate the possible mechanism involved. Postmortem frontal cortical, striatal and hippocampal tissues were dissected and evaluated for changes in levels of dopamine, noradrenaline and serotonin using High-Performance Liquid Chromatography (HPLC) with UV detection. Results: Acute administration of 1MeTIQ (15-45 mg/kg i.p.) reversed streptozotocin-induced diabetic neuropathic static mechanical allodynia (von Frey filament pressure test) and thermal hyperalgesia (tail immersion test), these outcomes being comparable to standard gabapentin. Furthermore, HPLC analysis revealed that STZ-diabetic mice expressed lower concentrations of serotonin in all three brain regions examined, while dopamine was diminished in the striatum and 1MeTIQ reversed all these neurotransmitter modifications. These findings suggest that the antihyperalgesic/antiallodynic activity of 1MeTIQ may be mediated in part via supraspinal opioidergic and monoaminergic modulation since they were naloxone, yohimbine and ondansetron reversible. Conclusion: It was also concluded that acute treatment with 1MeTIQ ameliorated STZ-induced mechanical allodynia and thermal hyperalgesia and restored brain regionally altered serotonin and dopamine concentrations which signify a potential for 1MeTIQ in the management of DPN.
Collapse
Affiliation(s)
- Ahmed Tokhi
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Zainab Ahmed
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Mehreen Arif
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Naeem Ur Rehman
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Robert D. E. Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Khalid Rauf
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
- *Correspondence: Khalid Rauf,
| |
Collapse
|
2
|
Białoń M, Chocyk A, Majcher-Maślanka I, Żarnowska M, Michalski K, Antkiewicz-Michaluk L, Wąsik A. 1MeTIQ and olanzapine, despite their neurochemical impact, did not ameliorate performance in fear conditioning and social interaction tests in an MK-801 rat model of schizophrenia. Pharmacol Rep 2021; 73:490-505. [PMID: 33403530 PMCID: PMC7994239 DOI: 10.1007/s43440-020-00209-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022]
Abstract
Background The aim of the present study was to evaluate the effect of 1MeTIQ on fear memory and social interaction in an MK-801-induced model of schizophrenia. The results obtained after administration of 1MeTIQ were compared with those obtained with olanzapine, an antipsychotic drug. Methods Sprague–Dawley rats received a single injection of MK-801 to induce behavioral disorders. 1MeTIQ was given either acutely in a single dose or chronically for 7 consecutive days. Olanzapine was administered once. In groups receiving combined treatments, 1MeTIQ or olanzapine was administered 20 min before MK-801 injection. Contextual fear conditioning was used to assess disturbances in fear memory (FM), and the sociability of the rats was measured in the social interaction test (SIT). Biochemical analysis was carried out to evaluate monoamine levels in selected brain structures after treatment. Results Our results are focused mainly on data obtained from neurochemical studies, demonstrating that 1MeTIQ inhibited the MK-801-induced reduction in dopamine levels in the frontal cortex and increased the 5-HT concentration. The behavioral tests revealed that acute administration of MK-801 caused disturbances in both the FM and SIT tests, while neither 1MeTIQ nor olanzapine reversed these deficits. Conclusion 1MeTIQ, although pharmacologically effective (i.e., it reverses MK-801-induced changes in monoamine activity), did not influence MK-801-induced social and cognitive deficits. Thus, our FM tests and SIT did not support the main pharmacological hypotheses that focus on dopamine system stabilization and dopamine–serotonin system interactions as probable mechanisms for inhibiting the negative symptoms of schizophrenia.
Collapse
Affiliation(s)
- Magdalena Białoń
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Agnieszka Chocyk
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Iwona Majcher-Maślanka
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Marcelina Żarnowska
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Krzysztof Michalski
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | | | - Agnieszka Wąsik
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland.
| |
Collapse
|
3
|
Sampaio TB, Bilheri FN, Zeni GR, Nogueira CW. Dopaminergic system contribution to the antidepressant-like effect of 3-phenyl-4-(phenylseleno) isoquinoline in mice. Behav Brain Res 2020; 386:112602. [PMID: 32184159 DOI: 10.1016/j.bbr.2020.112602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/13/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
Depression is a serious disorder characterized by imbalance of mood and emotions, which is accompanied by the reduction in the monoaminergic signaling. The monoamine oxidase inhibition could lead to an increase in monoaminergic neurotransmitter levels in the brain. According to our previous study, 3-phenyl-4-(phenylseleno) isoquinoline (PSI) is a selective and reversible MAO-B inhibitor in vitro. The present study investigated the putative ex vivo inhibitory effect of a single PSI dose on the cerebral MAO activity and its antidepressant-like action in the mouse forced swimming test (FST). Additionally, the dopaminergic system contribution to the antidepressant-like effect of PSI was also evaluated. For this, PSI was dissolved in canola oil to determine time-course (0.5-24 h) and dose-response (25-100 mg/kg, 10 ml/kg, intragastrically) curves of MAO activity inhibition using adult C57Bl/6 male mice. A single PSI dose of 100 mg/kg inhibited the MAO-B activity in the whole brain 8 h after administration to mice, while it did not alter the MAO-A activity. The FST was carried out 0.5, 8, and 24 h after the PSI administration (100 mg/kg) or vehicle, but its antidepressant-like effect was demonstrated only at 0.5 and 8 h after treatment. Lastly, the contribution of dopaminergic system in the PSI antidepressant-like effect was demonstrated by using dopamine receptors antagonists, SCH23390, haloperidol and sulpiride. Thus, a single PSI dose of 100 mg/kg had an antidepressant-like effect in mice subjected to the FST 0.5 and 8 h after its administration. Moreover, the inhibition of cerebral MAO-B activity and modulation of dopamine receptors contributed to the antidepressant-like effect of PSI in mice.
Collapse
|
4
|
Pro-cognitive effect of 1MeTIQ on recognition memory in the ketamine model of schizophrenia in rats: the behavioural and neurochemical effects. Psychopharmacology (Berl) 2020; 237:1577-1593. [PMID: 32076746 PMCID: PMC7239818 DOI: 10.1007/s00213-020-05484-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/12/2020] [Indexed: 01/07/2023]
Abstract
RATIONALE Schizophrenia is a mental illness which is characterised by positive and negative symptoms and by cognitive impairments. While the major prevailing hypothesis is that altered dopaminergic and/or glutamatergic transmission contributes to this disease, there is evidence that the noradrenergic system also plays a role in its major symptoms. OBJECTIVES In the present paper, we investigated the pro-cognitive effect of 1-methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ) an endogenous neuroprotective compound, on ketamine-modelled schizophrenia in rats. METHODS We used an antagonist of NMDA receptors (ketamine) to model memory deficit symptoms in rats. Using the novel object recognition (NOR) test, we investigated the pro-cognitive effect of 1MeTIQ. Additionally, olanzapine, an atypical antipsychotic drug, was used as a standard to compare the pro-cognitive effects of the substances. In vivo microdialysis studies allowed us to verify the changes in the release of monoamines and their metabolites in the rat striatum. RESULTS Our study demonstrated that 1MeTIQ, similarly to olanzapine, exhibits a pro-cognitive effect in NOR test and enhances memory disturbed by ketamine treatment. Additionally, in vivo microdialysis studies have shown that ketamine powerfully increased noradrenaline release in the rat striatum, while 1MeTIQ and olanzapine completely antagonised this neurochemical effect. CONCLUSIONS 1MeTIQ, as a possible pro-cognitive drug, in contrast to olanzapine, expresses beneficial neuroprotective activity in the brain, increasing concentration of the extraneuronal dopamine metabolite, 3-methoxytyramine (3-MT), which plays an important physiological role in the brain as an inhibitory regulator of catecholaminergic activity. Moreover, we first demonstrated the essential role of noradrenaline release in memory disturbances observed in the ketamine-model of schizophrenia, and its possible participation in negative symptoms of the schizophrenia.
Collapse
|
5
|
Comparison of the effects of 1MeTIQ and olanzapine on performance in the elevated plus maze test and monoamine metabolism in the brain after ketamine treatment. Pharmacol Biochem Behav 2019; 181:17-27. [DOI: 10.1016/j.pbb.2019.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/16/2022]
|
6
|
Antkiewicz-Michaluk L, Romańska I, Wąsik A, Michaluk J. Antidepressant-Like Effect of the Endogenous Neuroprotective Amine, 1MeTIQ in Clonidine-Induced Depression: Behavioral and Neurochemical Studies in Rats. Neurotox Res 2017; 32:94-106. [PMID: 28367606 PMCID: PMC5487857 DOI: 10.1007/s12640-017-9715-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/19/2017] [Accepted: 02/27/2017] [Indexed: 11/05/2022]
Abstract
Biogenic amines such as norepinephrine, dopamine, and serotonin play a well-described role in the treatment of mood disorders especially depression. Animal models are widely used to study antidepressant-like effect in rodents; however, it should be taken into account that pharmacological models do not always answer to the complexity of the disease processes. This study verified the behavioral (forced swim test (FST), locomotor activity test) and neurochemical effects (monoamines metabolism) of a low dose of clonidine (0.1 mg/kg i.p.) which was used as an experimental model of depression. In such pharmacological model, we investigated the antidepressant-like effect of an endogenous neuroprotective amine, 1-methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ) administered in a dose of 25 mg/kg (i.p.) before clonidine in the behavioral and neurochemical tests carried out in rats. The behavioral study has shown that clonidine produced depression in the locomotor activity test but did not cause pro-depressive effect in the FST. 1MeTIQ produced antidepressant-like effect in the FST and completely antagonized clonidine-induced sedation in the locomotor activity test. Neurochemical data demonstrated that clonidine produced a significant inhibition of monoamine metabolism in the central nervous system. The release of dopamine, noradrenaline, and serotonin as well as the rate of their metabolism were diminished in the investigated brain structures (frontal cortex, hypothalamus, and striatum). 1MeTIQ completely antagonized the clonidine-induced depression of monoaminergic systems and restored their levels to the control values. 1MeTIQ as an endogenous neuroprotective compound with a distinct antidepressant-like activity in rodents produces hope on the efficiency of antidepressant medicines for future practical clinical use.
Collapse
Affiliation(s)
- Lucyna Antkiewicz-Michaluk
- Department of Neurochemistry, Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland.
| | - Irena Romańska
- Department of Neurochemistry, Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland
| | - Agnieszka Wąsik
- Department of Neurochemistry, Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland
| | - Jerzy Michaluk
- Department of Neurochemistry, Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland
| |
Collapse
|
7
|
Możdżeń E, Wąsik A, Romańska I, Michaluk J, Antkiewicz-Michaluk L. Antidepressant-like effect of 1,2,3,4-tetrahydroisoquinoline and its methyl derivative in animal models of depression. Pharmacol Rep 2017; 69:566-574. [DOI: 10.1016/j.pharep.2017.01.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/19/2017] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
|
8
|
4-Organoseleno-Isoquinolines Selectively and Reversibly Inhibit the Cerebral Monoamine Oxidase B Activity. J Mol Neurosci 2016; 59:135-45. [DOI: 10.1007/s12031-016-0743-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/22/2016] [Indexed: 12/15/2022]
|
9
|
Neuroprotective Effect of the Endogenous Amine 1MeTIQ in an Animal Model of Parkinson's Disease. Neurotox Res 2015; 29:351-63. [PMID: 26303030 PMCID: PMC4786611 DOI: 10.1007/s12640-015-9556-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/31/2015] [Accepted: 08/12/2015] [Indexed: 11/18/2022]
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder that is hallmarked by pathological changes associated with the death of dopaminergic neurons, particularly in the extrapyramidal system (substantia nigra pars compacta, striatum) of the brain. Although the causes of slow neuronal death in PD are unknown, both genetic and environmental factors are likely involved. Endogenous isoquinolines, such as 1-benzyl-1,2,3,4-tetrahydroisoquinoline (1BnTIQ), present in the human brain have been previously reported to participate in the pathogenesis of PD. The chronic administration of 1BnTIQ induced parkinsonism in primates, and this effect might be associated with idiopathic PD. However, another endogenous derivative of tetrahydroisoquinoline, 1-methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ), displays clear neuroprotective properties in the brain. In the present study, we investigated the neuroprotective effects of 1MeTIQ (25 and 50 mg/kg) in an animal model of PD after the chronic administration of 1BnTIQ (25 mg/kg). Behavioral analyses demonstrate that both acute and repeated treatment with 1MeTIQ completely antagonized 1BnTIQ-induced changes in rat locomotor activity. Neurochemical experiments indicate that 1MeTIQ co-administered with 1BnTIQ completely antagonized 1BnTIQ-induced reduction in the dopamine (DA) concentration in rat brain structures. In conclusion, the results demonstrate that 1MeTIQ possesses important neuroprotective properties in the animal model of PD and that the rats did not develop tolerance after its chronic administration.
Collapse
|
10
|
Perry CJ, Zbukvic I, Kim JH, Lawrence AJ. Role of cues and contexts on drug-seeking behaviour. Br J Pharmacol 2014; 171:4636-72. [PMID: 24749941 PMCID: PMC4209936 DOI: 10.1111/bph.12735] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/04/2014] [Accepted: 04/10/2014] [Indexed: 01/15/2023] Open
Abstract
Environmental stimuli are powerful mediators of craving and relapse in substance-abuse disorders. This review examined how animal models have been used to investigate the cognitive mechanisms through which cues are able to affect drug-seeking behaviour. We address how animal models can describe the way drug-associated cues come to facilitate the development and persistence of drug taking, as well as how these cues are critical to the tendency to relapse that characterizes substance-abuse disorders. Drug-associated cues acquire properties of conditioned reinforcement, incentive motivation and discriminative control, which allow them to influence drug-seeking behaviour. Using these models, researchers have been able to investigate the pharmacology subserving the behavioural impact of environmental stimuli, some of which we highlight. Subsequently, we examine whether the impact of drug-associated stimuli can be attenuated via a process of extinction, and how this question is addressed in the laboratory. We discuss how preclinical research has been translated into behavioural therapies targeting substance abuse, as well as highlight potential developments to therapies that might produce more enduring changes in behaviour.
Collapse
Affiliation(s)
- Christina J Perry
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental HealthParkville, Vic., Australia
- Florey Department of Neuroscience and Mental Health, University of MelbourneParkville, Vic., Australia
| | - Isabel Zbukvic
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental HealthParkville, Vic., Australia
- Florey Department of Neuroscience and Mental Health, University of MelbourneParkville, Vic., Australia
| | - Jee Hyun Kim
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental HealthParkville, Vic., Australia
- Florey Department of Neuroscience and Mental Health, University of MelbourneParkville, Vic., Australia
| | - Andrew J Lawrence
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental HealthParkville, Vic., Australia
- Florey Department of Neuroscience and Mental Health, University of MelbourneParkville, Vic., Australia
| |
Collapse
|
11
|
Andres-Mach M, Haratym-Maj A, Zagaja M, Luszczki JJ. Additive interactions between 1-methyl-1,2,3,4-tetrahydroisoquinoline and clobazam in the mouse maximal electroshock-induced tonic seizure model--an isobolographic analysis for parallel dose-response relationship curves. Pharmacology 2014; 93:172-7. [PMID: 24853974 DOI: 10.1159/000360640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 02/14/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND The aim of this study was to characterize the anticonvulsant effect of 1-methyl-1,2,3,4-tetrahydroisoquinoline (1-MeTHIQ) in combination with clobazam (CLB) in the mouse maximal electroshock-induced seizure (MES) model. METHODS The anticonvulsant interaction profile between 1-MeTHIQ and CLB in the mouse MES model was determined using an isobolographic analysis for parallel dose-response relationship curves. RESULTS Electroconvulsions were produced in albino Swiss mice by a current (sine wave, 25 mA, 500 V, 50 Hz, 0.2-second stimulus duration) delivered via auricular electrodes by a Hugo Sachs generator. There was an additive effect of the combination of 1-MeTHIQ with CLB (at the fixed ratios of 1:3, 1:1 and 3:1) in the mouse MES-induced tonic seizure model. CONCLUSIONS The additive interaction of the combination of 1-MeTHIQ with CLB (at fixed-ratios of 1:3, 1:1 and 3:1) in the mouse MES model seems to be pharmacodynamic in nature and worth of considering in further clinical practice.
Collapse
Affiliation(s)
- Marta Andres-Mach
- Isobolographic Analysis Laboratory, Institute of Agricultural Medicine, Lublin, Poland
| | | | | | | |
Collapse
|
12
|
Mantovani AC, Pesarico AP, Sampaio TB, Nogueira CW, Zeni G. Synthesis of pharmacologically active 1-amino-isoquinolines prepared via silver triflate-catalyzed cyclization of o-alkynylbenzaldoximes with isocyanates. Eur J Pharm Sci 2014; 51:196-203. [DOI: 10.1016/j.ejps.2013.09.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 02/02/2023]
|
13
|
Asymmetric metal complex hydrogenation of 1-methyl-3,4-dihydroisoquinoline in the presence of amidophosphite ligand. Russ Chem Bull 2013. [DOI: 10.1007/s11172-012-0326-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
1-Methyl-1,2,3,4-tetrahydroisoquinoline, an endogenous amine with unexpected mechanism of action: new vistas of therapeutic application. Neurotox Res 2013; 25:1-12. [PMID: 23719903 PMCID: PMC3889699 DOI: 10.1007/s12640-013-9402-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 05/06/2013] [Indexed: 12/21/2022]
Abstract
This review outlines the effects of 1,2,3,4-tetrahydroisoquinoline (TIQ) and its derivative, 1-methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ), endogenous substances imbued with high pharmacological potential and broad spectrum of action in brain. 1MeTIQ has gained special interest as a neuroprotectant, and its ability to antagonize the behavioral syndrome produced by well-known neurotoxins (e.g., MPTP; rotenone). This review is thus focused on mechanisms of action of 1MeTIQ in behavioral, neurochemical, and molecular studies in rodents; also, effects of TIQ and 1MeTIQ on dopamine metabolism; and neuroprotective properties of TIQ and 1MeTIQ in vitro and in vivo. Finally, antiaddictive properties of 1MeTIQ will be described in cocaine self-administered rats. Findings implicate TIQ and especially its methyl derivative 1MeTIQ in unique and complex mechanisms of neuroprotection in various neurodegenerative illnesses of the central nervous system. We believe that MAO inhibition, free radicals scavenging properties, and antagonism to the glutamatergic system may play an essential role in neuroprotection. In addition, the results strongly support the view that 1MeTIQ has a considerable potential as a drug for combating substance abuse, through the attenuation of craving.
Collapse
|
15
|
Wąsik A, Możdżeń E, Romańska I, Michaluk J, Antkiewicz-Michaluk L. Antidepressant-like activity of the endogenous amine, 1-methyl-1,2,3,4-tetrahydroisoquinoline in the behavioral despair test in the rat, and its neurochemical correlates: A comparison with the classical antidepressant, imipramine. Eur J Pharmacol 2013; 700:110-7. [DOI: 10.1016/j.ejphar.2012.11.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 11/26/2012] [Accepted: 11/28/2012] [Indexed: 12/01/2022]
|
16
|
Wąsik A, Romańska I, Michaluk J, Antkiewicz-Michaluk L. Comparative behavioral and neurochemical studies of R- and S-1-methyl-1,2,3,4-tetrahydroisoquinoline stereoisomers in the rat. Pharmacol Rep 2012; 64:857-69. [DOI: 10.1016/s1734-1140(12)70880-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 05/08/2012] [Indexed: 12/01/2022]
|
17
|
Antkiewicz-Michaluk L, Wąsik A, Romańska I, Bojarski A, Michaluk J. Both stereoselective (R)- and (S)-1-Methyl-1,2,3,4-tetrahydroisoquinoline enantiomers protect striatal terminals against rotenone-induced suppression of dopamine release. Neurotox Res 2010; 20:134-49. [PMID: 21069490 PMCID: PMC3110269 DOI: 10.1007/s12640-010-9228-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 10/15/2010] [Accepted: 10/15/2010] [Indexed: 12/21/2022]
Abstract
1-Methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ) is present in the human and rodent brain as a mixture of stereospecific (R)- and (S)-1MeTIQ enantiomers. The racemate, (R,S)-1MeTIQ, exhibits neuroprotective activity as shown in the earlier study by the authors, and In addition, it was suggested to play a crucial physiological role in the mammalian brain as an endogenous regulator of dopaminergic activity. In this article, we investigated the influence of stereospecific enantiomers of 1MeTIQ, (R)- and (S)-1MeTIQ (50 mg/kg i.p.) on rotenone-induced (3 mg/kg s.c.) behavioral and neurochemical changes in the rat. In behavioral study, in order to record dynamic motor function of rats, we measured locomotor activity using automated locomotor activity boxes. In biochemical studies, we analyzed in rat striatum the concentration of dopamine (DA) and its metabolites: intraneuronal DOPAC, extraneuronal 3-MT, and final HVA using HPLC with electrochemical detection. Otherwise, DA release was estimated by in vivo microdialysis study. The behavioral study has demonstrated that both acute and repeated (3 times) rotenone administration unimportantly depressed a basic locomotor activity in rat. (R)- and (S)-1MeTIQ stereoisomers (50 mg/kg i.p.) produced a modest behavioral activation both in naïve and rotenone-treated rats. The data from ex vivo neurochemical experiments have shown stereospecificity of 1MeTIQ enantiomers in respect of their effects on DA catabolism. (R)-1MeTIQ significantly increased both the level of the final DA metabolite, HVA (by about 70%), and the rate of DA metabolism (by 50%). In contrast to that, (S)-1MeTIQ significantly depressed DOPAC, HVA levels (by 60 and 40%, respectively), and attenuated the rate of DA metabolism (by about 60%). On the other hand, both the enantiomers increased the concentrations of DA and its extraneuronal metabolite, 3-MT in rat striatum. In vivo microdialysis study has shown that repeated but not acute administration of rotenone produced a deep and significant functional impairment of striatal DA release. Both (R)- and (S)- stereospecific enantiomers of 1MeTIQ antagonized rotenone-induced suppression of DA release; however, the effect of (R)-1MeTIQ was more strongly expressed in microdialysis study. In conclusion, we suggest that both chiral isomers of 1MeTIQ offer neuroprotection against rotenone-induced disturbances in the function of dopaminergic neurons and (R,S)-1MeTIQ will be useful as a drug with marked neuroprotective activity in the brain.
Collapse
Affiliation(s)
- Lucyna Antkiewicz-Michaluk
- Department of Neurochemistry, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland.
| | | | | | | | | |
Collapse
|
18
|
Important role of 3-methoxytyramine in the inhibition of cocaine sensitization by 1-methyl-1,2,3,4-tetrahydroisoquinoline: an in vivo microdialysis study. Pharmacol Rep 2010; 62:983-97. [DOI: 10.1016/s1734-1140(10)70360-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 06/21/2010] [Indexed: 11/22/2022]
|
19
|
Anti-relapse medications: preclinical models for drug addiction treatment. Pharmacol Ther 2009; 124:235-47. [PMID: 19683019 DOI: 10.1016/j.pharmthera.2009.06.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 06/12/2009] [Indexed: 12/15/2022]
Abstract
Addiction is a chronic relapsing brain disease and treatment of relapse to drug-seeking is considered the most challenging part of treating addictive disorders. Relapse can be modeled in laboratory animals using reinstatement paradigms, whereby behavioral responding for a drug is extinguished and then reinstated by different trigger factors, such as environmental cues or stress. In this review, we first describe currently used animal models of relapse, different relapse triggering factors, and the validity of this model to assess relapse in humans. We further summarize the growing body of pharmacological interventions that have shown some promise in treating relapse to psychostimulant addiction. Moreover, we present an overview on the drugs tested in cocaine or methamphetamine addicts and examine the overlap of existing preclinical and clinical data. Finally, based on recent advances in our understanding of the neurobiology of relapse and published preclinical data, we highlight the most promising areas for future anti-relapse medication development.
Collapse
|
20
|
1-Methyl-1,2,3,4-tetrahydroisoquinoline Antagonizes a Rise in Brain Dopamine Metabolism, Glutamate Release in Frontal Cortex and Locomotor Hyperactivity Produced by MK-801 but not the Disruptions of Prepulse Inhibition, and Impairment of Working Memory in Rat. Neurotox Res 2009; 16:390-407. [DOI: 10.1007/s12640-009-9097-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 02/10/2009] [Accepted: 02/10/2009] [Indexed: 10/20/2022]
|