1
|
Hernández-Frausto M, Galván EJ, López-Rubalcava C. Dopamine D1 receptors activation rescues hippocampal synaptic plasticity and cognitive impairments in the MK-801 neonatal schizophrenia model. Behav Brain Res 2025; 476:115250. [PMID: 39277140 DOI: 10.1016/j.bbr.2024.115250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/27/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Schizophrenia is a disorder with a higher cognitive decline in early adulthood, causing impaired retention of episodic memories. However, the physiological and behavioral functions that underlie cognitive deficits with a potential mechanism to ameliorate and improve cognitive performance are unknown. In this study, we used the MK-801 neurodevelopmental schizophrenia-like model. Rats were divided into two groups: one received MK-801, and the other received saline for five consecutive days (7-11 postnatal days, PND). We evaluated synaptic plasticity late-LTP and spatial memory consolidation in early adolescence and young adulthood using extracellular field recordings in acute hippocampal slices and the Barnes maze task. Next, we examined D1 receptor (D1R) activation as a mechanism to ameliorate cognitive impairments. Our results suggest that MK-801 neonatal treatment induces impairment in late-LTP expression and deficits in spatial memory retrieval in early adolescence that is maintained until young adulthood. Furthermore, we found that activation of dopamine D1R ameliorates the impairments and promotes a robust expression of late-LTP and an improved performance in the Barnes maze task, suggesting a novel and potential therapeutic role in treating cognitive impairments in schizophrenia.
Collapse
Affiliation(s)
- Melissa Hernández-Frausto
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico
| | - Emilio J Galván
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico
| | - Carolina López-Rubalcava
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico.
| |
Collapse
|
2
|
Xing W, Wu W, Wu J, Cai K, Wang Q, Zhang M, Lai S. The behavioral characteristics of addiction and mental disorder caused by dextromethorphan abuse were analyzed in multiple dimensions. Expert Opin Drug Saf 2025:1-6. [PMID: 39753518 DOI: 10.1080/14740338.2025.2449995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 11/08/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND The aims of this study were to promote the rational use and supervision of dextromethorphan (DM). This study analyzed serious adverse events such as addiction and mental disorders caused by DM in Shenzhen and the behavioral characteristics of people suspected of abusing DM on the Internet. METHODS Adverse drug reaction/event (ADR/E) reports from 2017 to 2023 were extracted from the National Pharmaceutical Adverse Reaction Monitoring System database. The sales data from 2017 to 2022 were extracted from an Internet platform of selling DM in Shenzhen. Various signal detection methods were used for retrospective analysis and descriptive analysis. RESULTS Signal detection results (ROR = 299830.00, 95%CI = 26475.78 -573,184.22) found a high association between DM abuse and addiction. Dextromethorphan abusers have behavioral characteristics such as low age, long duration of abuse, and withdrawal difficulties. Online sales data showed that the number of purchases (P < 0.01), total doses (P < 0.01), and duration of purchases (P < 0.01) in the suspected abuse group were significantly higher than those in the normal group. CONCLUSION The result is possible to provide more accurate portraits of individuals who were suspected of abusing dexmedetomidine and therefore has significant implications in terms of promoting practices that enable rational use of this medication.
Collapse
Affiliation(s)
- Weiqing Xing
- Department of ADR Monitoring, Shenzhen Institute of Pharmacovigilance and Risk Management, Shenzhen, Guangdong, China
| | - Wenyu Wu
- Department of ADR Monitoring, Shenzhen Institute of Pharmacovigilance and Risk Management, Shenzhen, Guangdong, China
| | - Jianru Wu
- Department of ADR Monitoring, Shenzhen Institute of Pharmacovigilance and Risk Management, Shenzhen, Guangdong, China
| | - Kangjun Cai
- Department of ADR Monitoring, Shenzhen Institute of Pharmacovigilance and Risk Management, Shenzhen, Guangdong, China
| | - Qian Wang
- Department of ADR Monitoring, Shenzhen Institute of Pharmacovigilance and Risk Management, Shenzhen, Guangdong, China
| | - Min Zhang
- Department of ADR Monitoring, Shenzhen Institute of Pharmacovigilance and Risk Management, Shenzhen, Guangdong, China
| | - Shukun Lai
- Department of ADR Monitoring, Shenzhen Institute of Pharmacovigilance and Risk Management, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Hur KH, Kim SE, Ma SX, Lee BR, Ko YH, Seo JY, Kim SK, Kim YJ, Sung SJ, Lee Y, Jung YH, Lee YS, Lee SY, Jang CG. Methoxphenidine (MXP) induced abnormalities: Addictive and schizophrenia-related behaviours based on an imbalance of neurochemicals in the brain. Br J Pharmacol 2021; 178:3869-3887. [PMID: 33987827 DOI: 10.1111/bph.15528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Methoxphenidine is a dissociative-based novel psychoactive designer drug. Although fatal accidents from methoxphenidine abuse have been reported, recreational use of the drug continues. We aim to provide scientific supportfor legal regulation of recreational abuse of methoxphenidine by demonstrating its the pharmacological action. EXPERIMENTAL APPROACH Addictive potential of methoxphenidine was examined using intravenous self-administration test with rats and conditioned place preference test with mice. Further, a series of behavioural tests (open field test, elevated plus maze test, novel object recognition test, social interaction test and tail suspension test) performed to assess whether methoxphenidine caused schizophrenia-related symptoms in mice. Additionally, neurotransmitter enzyme-linked immunosorbent assay and western blot were used to confirm methoxphenidine-induced neurochemical changes in specific brain regions related to abnormal behaviours. KEY RESULTS Methoxphenidine caused addictive behaviours via reinforcing and rewarding effects. Consistently, methoxphenidine induced over-activation of dopamine pathways in the nuclear accumbens, indicating activation of the brain reward circuit. Also, methoxphenidine caused all categories of schizophrenia-related symptoms, including positive symptoms (hyperactivity, impulsivity), negative symptoms (anxiety, social withdrawal, depression) and cognitive impairment. Consistently, methoxphenidine led to the disruption of the hippocampal-prefrontal cortex pathway that is considered to be pathological involved in schizophrenia. CONCLUSIONS AND IMPLICATIONS We demonastrate that methoxphenidine causes addictive and schizophrenia-like behaviours and induces neurochemical changes in brain regions associated with these behaviours. We propose that methoxphenidine could be used in developing useful animal disease models and that it also requires legal restrictions on its recreational use.
Collapse
Affiliation(s)
- Kwang-Hyun Hur
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Seong-Eon Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Shi-Xun Ma
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Bo-Ram Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Yong-Hyun Ko
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Jee-Yeon Seo
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Seon-Kyung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Young-Jung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Su-Jeong Sung
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Youyoung Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Young Hoon Jung
- Organic and Medicinal Chemistry Laboratory, College of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Yong-Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy and Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
4
|
Loiodice S, Drinkenburg WH, Ahnaou A, McCarthy A, Viardot G, Cayre E, Rion B, Bertaina-Anglade V, Mano M, L’Hostis P, Drieu La Rochelle C, Kas MJ, Danjou P. Mismatch negativity as EEG biomarker supporting CNS drug development: a transnosographic and translational study. Transl Psychiatry 2021; 11:253. [PMID: 33927180 PMCID: PMC8085207 DOI: 10.1038/s41398-021-01371-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/25/2021] [Accepted: 04/09/2021] [Indexed: 11/17/2022] Open
Abstract
The lack of translation from basic research into new medicines is a major challenge in CNS drug development. The need to use novel approaches relying on (i) patient clustering based on neurobiology irrespective to symptomatology and (ii) quantitative biomarkers focusing on evolutionarily preserved neurobiological systems allowing back-translation from clinical to nonclinical research has been highlighted. Here we sought to evaluate the mismatch negativity (MMN) response in schizophrenic (SZ) patients, Alzheimer's disease (AD) patients, and age-matched healthy controls. To evaluate back-translation of the MMN response, we developed EEG-based procedures allowing the measurement of MMN-like responses in a rat model of schizophrenia and a mouse model of AD. Our results indicate a significant MMN attenuation in SZ but not in AD patients. Consistently with the clinical findings, we observed a significant attenuation of deviance detection (~104.7%) in rats subchronically exposed to phencyclidine, while no change was observed in APP/PS1 transgenic mice when compared to wild type. This study provides new insight into the cross-disease evaluation of the MMN response. Our findings suggest further investigations to support the identification of neurobehavioral subtypes that may help patients clustering for precision medicine intervention. Furthermore, we provide evidence that MMN could be used as a quantitative/objective efficacy biomarker during both preclinical and clinical stages of SZ drug development.
Collapse
Affiliation(s)
- Simon Loiodice
- Biotrial Pharmacology, 7-9 rue Jean-Louis Bertrand, 35042, Rennes, France.
| | - Wilhelmus H. Drinkenburg
- grid.419619.20000 0004 0623 0341Department of Neuroscience Discovery, Janssen Research & Development, a Division of Janssen Pharmaceutical NV, Turnhoutseweg 30, B-2340, Beerse, Belgium ,grid.4830.f0000 0004 0407 1981Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands
| | - Abdallah Ahnaou
- grid.419619.20000 0004 0623 0341Department of Neuroscience Discovery, Janssen Research & Development, a Division of Janssen Pharmaceutical NV, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Andrew McCarthy
- Lilly Research Laboratories, Windlesham, Surrey, GU20 6PH UK
| | - Geoffrey Viardot
- Biotrial Neuroscience, Avenue de Bruxelles, 68350 Didenheim, France
| | - Emilie Cayre
- Biotrial Pharmacology, 7-9 rue Jean-Louis Bertrand, 35042 Rennes, France
| | - Bertrand Rion
- Biotrial Pharmacology, 7-9 rue Jean-Louis Bertrand, 35042 Rennes, France
| | | | - Marsel Mano
- Biotrial Neuroscience, Avenue de Bruxelles, 68350 Didenheim, France
| | | | | | - Martien J. Kas
- grid.4830.f0000 0004 0407 1981Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands
| | - Philippe Danjou
- Biotrial Neuroscience, Avenue de Bruxelles, 68350 Didenheim, France
| |
Collapse
|
5
|
Bar-Yosef T, Hussein W, Yitzhaki O, Damri O, Givon L, Marom C, Gurman V, Levine J, Bersudsky Y, Agam G, Ben-Shachar D. Mitochondrial function parameters as a tool for tailored drug treatment of an individual with psychosis: a proof of concept study. Sci Rep 2020; 10:12258. [PMID: 32703977 PMCID: PMC7378204 DOI: 10.1038/s41598-020-69207-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 07/01/2020] [Indexed: 12/20/2022] Open
Abstract
Pharmacological treatment of mental disorders is currently decided based on "trial and error" strategy. Mitochondrial multifaceted dysfunction is assumed to be a major factor in the pathophysiology and treatment of schizophrenia (SZ) and bipolar disorder (BD). This study aimed to explore the feasibility of using a profile of mitochondrial function parameters as a tool to predict the optimal drug for an individual patient (personalized medicine). Healthy controls (n = 40), SZ (n = 48) and BD (n = 27) patients were recruited. Mental and global state of the subjects, six mitochondrial respiration parameters and 14 mitochondrial function-related proteins were assessed in fresh lymphocytes following in-vitro or in-vivo treatment with five antipsychotic drugs and two mood-stabilizers. In healthy controls, hierarchal clustering shows a drug-specific effect profile on the different mitochondrial parameters following in-vitro exposure. Similar changes were observed in untreated SZ and BD patients with psychosis. Following a month of treatment of the latter patients, only responders showed a significant correlation between drug-induced in-vitro effect (prior to in-vivo treatment) and short-term in-vivo treatment effect for 45% of the parameters. Long- but not short-term psychotropic treatment normalized mitochondria-related parameters in patients with psychosis. Taken together, these data substantiate mitochondria as a target for psychotropic drugs and provide a proof of concept for selective mitochondrial function-related parameters as a predictive tool for an optimized psychotropic treatment in a given patient. This, however, needs to be repeated with an expanded sample size and additional mitochondria related parameters.
Collapse
Affiliation(s)
- Tamara Bar-Yosef
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beer Sheva, Israel
| | - Wessal Hussein
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, B. Rappaport Faculty of Medicine and Rappaport Family Institute for Research in Medical Sciences, Technion IIT, 31096, Haifa, Israel
| | - Ofer Yitzhaki
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beer Sheva, Israel
| | - Odeya Damri
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beer Sheva, Israel
| | - Limor Givon
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, B. Rappaport Faculty of Medicine and Rappaport Family Institute for Research in Medical Sciences, Technion IIT, 31096, Haifa, Israel
| | | | | | - Joseph Levine
- Division of Psychiatry, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beer Sheva, Israel
| | - Yuly Bersudsky
- Division of Psychiatry, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beer Sheva, Israel.
| | - Galila Agam
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beer Sheva, Israel.
| | - Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, B. Rappaport Faculty of Medicine and Rappaport Family Institute for Research in Medical Sciences, Technion IIT, 31096, Haifa, Israel.
| |
Collapse
|
6
|
Osborne AL, Solowij N, Babic I, Lum JS, Newell KA, Huang XF, Weston-Green K. Effect of cannabidiol on endocannabinoid, glutamatergic and GABAergic signalling markers in male offspring of a maternal immune activation (poly I:C) model relevant to schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2019; 95:109666. [PMID: 31202911 DOI: 10.1016/j.pnpbp.2019.109666] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/27/2019] [Accepted: 06/05/2019] [Indexed: 12/21/2022]
Abstract
The mainstay treatment for schizophrenia is antipsychotic drugs (APDs), which are mostly effective against the positive symptoms (e.g. hallucinations), but provide minimal benefits for the negative symptoms (e.g. social withdrawal) and cognitive deficits. We have recently shown that treatment with the non-intoxicating phytocannabinoid, cannabidiol (CBD), can improve cognition and social interaction deficits in a maternal immune activation (MIA) model relevant to the aetiology of schizophrenia, however, the mechanisms underlying this effect are unknown. An imbalance in the main excitatory (glutamate) and inhibitory (GABA) neurotransmitter systems in the brain plays a role in the pathophysiology of schizophrenia. Therefore, the endocannabinoid system could represent a therapeutic target for schizophrenia as a regulator of glutamate and GABA release via the CB1 receptor (CB1R). This study investigated the effects of chronic CBD treatment on markers of glutamatergic, GABAergic and endocannabinoid signalling in brain regions implicated in social behaviour and cognitive function, including the prefrontal cortex (PFC) and hippocampus (HPC). Time-mated pregnant Sprague-Dawley rats (n = 16) were administered poly I:C (4 mg/kg, i.v.) or saline (control) on gestational day 15. Male offspring were injected with CBD (10 mg/kg, i.p.) or vehicle twice daily from postnatal day 56 for 3 weeks. The prefrontal cortex (PFC) and hippocampus (HPC) were collected for post-mortem receptor binding and Western blot analyses (n = 8 per group). CBD treatment attenuated poly I:C-induced deficits in cannabinoid CB1 receptor binding in the PFC and glutamate decarboxylase 67, the enzyme that converts glutamate to GABA, in the HPC. CBD treatment increased parvalbumin levels in the HPC, regardless of whether offspring were exposed to poly I:C in utero. Conversely, CBD did not affect N-methyl-d-aspartate receptor and gamma-aminobutyric acid (GABA) A receptor binding or protein levels of fatty acid amide hydrolase, the enzyme that degrades the endocannabinoid, anandamide. Overall, these findings show that CBD can restore cannabinoid/GABAergic signalling deficits in regions of the brain implicated in schizophrenia pathophysiology following maternal poly I:C exposure. These findings provide novel evidence for the potential mechanisms underlying the therapeutic effects of CBD treatment in the poly I:C model.
Collapse
Affiliation(s)
- Ashleigh L Osborne
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Nadia Solowij
- School of Psychology, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia
| | - Ilijana Babic
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra and Shoalhaven Health District, Wollongong, NSW 2500, Australia
| | - Jeremy S Lum
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Kelly A Newell
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Xu-Feng Huang
- Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia
| | - Katrina Weston-Green
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
7
|
Osborne AL, Solowij N, Babic I, Lum JS, Huang XF, Newell KA, Weston-Green K. Cannabidiol improves behavioural and neurochemical deficits in adult female offspring of the maternal immune activation (poly I:C) model of neurodevelopmental disorders. Brain Behav Immun 2019; 81:574-587. [PMID: 31326506 DOI: 10.1016/j.bbi.2019.07.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/03/2019] [Accepted: 07/15/2019] [Indexed: 11/18/2022] Open
Abstract
Cognitive impairment is a major source of disability in schizophrenia and current antipsychotic drugs (APDs) have minimal efficacy for this symptom domain. Cannabidiol (CBD), the major non-intoxicating component of Cannabis sativa L., exhibits antipsychotic and neuroprotective properties. We recently reported the effects of CBD on cognition in male offspring of a maternal immune activation (polyinosinic-polycytidilic acid (poly I:C)) model relevant to the aetiology of schizophrenia; however, the effects of CBD treatment in females are unknown. Sex differences are observed in the onset of schizophrenia symptoms and response to APD treatment. Furthermore, the endogenous cannabinoid system, a direct target of CBD, is sexually dimorphic in humans and rodents. Therefore, the present work aimed to assess the therapeutic impact of CBD treatment on behaviour and neurochemical signalling markers in female poly I:C offspring. Time-mated pregnant Sprague-Dawley rats (n = 16) were administered poly I:C (4 mg/kg; i.v.) or saline (control) on gestational day 15. From postnatal day 56, female offspring received CBD (10 mg/kg, i.p.) or vehicle treatment for approximately 3 weeks. Following 2 weeks of CBD treatment, offspring underwent behavioural testing, including the novel object recognition, rewarded alternation T-maze and social interaction tests to assess recognition memory, working memory and sociability, respectively. After 3 weeks of CBD treatment, the prefrontal cortex (PFC) and hippocampus (HPC) were collected to assess effects on endocannabinoid, glutamatergic and gamma-aminobutyric acid (GABA) signalling markers. CBD attenuated poly I:C-induced deficits in recognition memory, social interaction and glutamatergic N-methyl-d-aspartate receptor (NMDAR) binding in the PFC of poly I:C offspring. Working memory performance was similar between treatment groups. CBD also increased glutamate decarboxylase 67, the rate-limiting enzyme that converts glutamate to GABA, and parvalbumin protein levels in the HPC. In contrast to the CBD treatment effects observed in poly I:C offspring, CBD administration to control rats reduced social interaction, cannabinoid CB1 receptor and NMDAR binding density in the PFC, suggesting that CBD administration to healthy rats may have negative consequences on social behaviour and brain maturation in adulthood. Overall, the findings of this study support the therapeutic benefits of CBD on recognition memory and sociability in female poly I:C offspring, and provide insight into the neurochemical changes that may underlie the therapeutic benefits of CBD in the poly I:C model.
Collapse
Affiliation(s)
- Ashleigh L Osborne
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Nadia Solowij
- School of Psychology, Faculty of Social Sciences, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia
| | - Ilijana Babic
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra and Shoalhaven Local Health District, Wollongong, NSW 2500, Australia
| | - Jeremy S Lum
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Xu-Feng Huang
- Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia
| | - Kelly A Newell
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Katrina Weston-Green
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
8
|
Hernández-Frausto M, López-Rubalcava C, Galván EJ. Progressive Alterations in Synaptic Transmission and Plasticity of Area CA1 Precede the Cognitive Impairment Associated with Neonatal Administration of MK-801. Neuroscience 2019; 404:205-217. [DOI: 10.1016/j.neuroscience.2019.01.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/26/2018] [Accepted: 01/21/2019] [Indexed: 11/26/2022]
|
9
|
The effects of donepezil on phencyclidine-induced cognitive deficits in a mouse model of schizophrenia. Pharmacol Biochem Behav 2018; 175:69-76. [PMID: 30218672 DOI: 10.1016/j.pbb.2018.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/09/2018] [Accepted: 09/11/2018] [Indexed: 01/19/2023]
Abstract
Donepezil is the first-line of treatment for Alzheimer's disease (AD), which improves cognitive impairment effectively, but whether it has an impact on cognitive impairment in schizophrenia remains unknown. In this study, we evaluated the effects and mechanisms of donepezil on schizophrenia-like cognitive deficits induced by phencyclidine (PCP). The cognitive deficits model of schizophrenia was established by injecting PCP into mice. Risperidone, an atypical antipsychotic drug, served as positive control drug. Three behavioral tests including novel object recognition (NOR) test, Morris Water Maze (MWM) and passive avoidance (PA) test were performed to evaluate the effect of donepezil on PCP-induced cognitive deficits. Furthermore, the content of BDNF and NGF in the hippocampus and cortex of mice was determined using ELISA. Expressions of p-GSK-3β/GSK-3β, p-Akt/Akt, Bcl-2/Bax and Caspase-3 in the hippocampus and cortex were detected by Western blot. Results revealed that donepezil has a protective effect on PCP-induced cognitive dysfunction. Moreover, donepezil can also improve PCP-induced schizophrenia-like cognitive deficits by inhibiting neuronal apoptosis and regulating synaptic plasticity, which was possible through the up-regulation of p-Akt, p-GSK-3β, Bcl-2 and the down-regulation of Bax, Caspase-3. The results indicated that donepezil might exhibit a beneficial effect on the treatment of cognitive dysfunction in schizophrenia.
Collapse
|
10
|
Male rats treated with subchronic PCP show intact olfaction and enhanced interest for a social odour in the olfactory habituation/dishabituation test. Behav Brain Res 2018; 345:13-20. [PMID: 29477413 DOI: 10.1016/j.bbr.2018.02.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/22/2018] [Accepted: 02/19/2018] [Indexed: 12/11/2022]
Abstract
The olfactory system participates in many sensory processes, and olfactory endophenotypes appear in a variety of neurological disorders such as Alzheimer's and Parkinson's disease, depression and schizophrenia. Social withdrawal is a core negative symptom of schizophrenia and animal models have proven to be invaluable for studying the neurobiological mechanisms and cognitive processes behind the formation of social relationships. The subchronic phencyclidine (PCP) rat model is a validated model for negative symptoms of schizophrenia, such as impaired sociability. However, the complete range of social behaviour and deficits in the model are still not fully understood. Intact rodent olfaction is essential for a wide range of social behaviour and disrupted olfactory function could have severe effects on social communication and recognition. In order to examine the olfactory ability of male rats treated with subchronic PCP, we conducted an olfactory habituation/dishabituation test including both non-social and social odours. The subchronic PCP-treated rats successfully recognized and discriminated among the odours, indicative of intact olfaction. Interestingly, the subchronic PCP-treated rats showed greater interest for a novel social odour compared to the saline-treated rats and the rationale remains to be elucidated. Our data indicate that subchronic PCP treatment does not disrupt olfactory function in male rats. By ruling out impaired olfaction as cause for the poor social interaction performance in subchronic PCP-treated rats, our data supports the use of NMDA receptor antagonists to model the negative symptoms of schizophrenia.
Collapse
|
11
|
Uttl L, Petrasek T, Sengul H, Svojanovska M, Lobellova V, Vales K, Radostova D, Tsenov G, Kubova H, Mikulecka A, Svoboda J, Stuchlik A. Chronic MK-801 Application in Adolescence and Early Adulthood: A Spatial Working Memory Deficit in Adult Long-Evans Rats But No Changes in the Hippocampal NMDA Receptor Subunits. Front Pharmacol 2018; 9:42. [PMID: 29487522 PMCID: PMC5816576 DOI: 10.3389/fphar.2018.00042] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/15/2018] [Indexed: 01/27/2023] Open
Abstract
The role of NMDA receptors in learning, memory and hippocampal function has long been recognized. Post-mortem studies have indicated that the expression or subunit composition of the NMDA glutamate receptor subtype might be related to the impaired cognitive functions found in schizophrenia patients. NMDA receptor antagonists have been used to develop animal models of this disorder. There is accumulating evidence showing that not only the acute but also the chronic application of NMDA receptor antagonists may induce schizophrenia-like alterations in behavior and brain functions. However, limited evidence is available regarding the consequences of NMDA receptor blockage during periods of adolescence and early adulthood. This study tested the hypothesis that a 2-week treatment of male Long-Evans and Wistar rats with dizocilpine (MK-801; 0.5 mg/kg daily) starting at postnatal days (PD) 30 and 60 would cause a long-term cognitive deficit and changes in the levels of NMDA receptor subunits. The working memory version of the Morris water maze (MWM) and active place avoidance with reversal on a rotating arena (Carousel) requiring cognitive coordination and flexibility probed cognitive functions and an elevated-plus maze (EPM) was used to measure anxiety-like behavior. The western blot method was used to determine changes in NMDA receptor subunit levels in the hippocampus. Our results showed no significant changes in behaviors in Wistar rats. Slightly elevated anxiety-like behavior was observed in the EPM in Long-Evans rats with the onset of treatment on PD 30. Furthermore, Long-Evans rats treated from PD 60 displayed impaired working memory in the MWM. There were; however, no significant changes in the levels of NMDA receptor subunits because of MK-801 administration. These findings suggest that a 2-week treatment starting on PD 60 in Long-Evans rats leads to long-term changes in working memory, but this deficit is not paralleled by changes in NMDA receptor subunits. These results support the face validity, but not construct validity of this model. We suggest that chronic treatment of adolescent and adult rats does not constitute a plausible animal model of schizophrenia.
Collapse
Affiliation(s)
- Libor Uttl
- Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia.,Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia
| | - Tomas Petrasek
- Department of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Hilal Sengul
- Department of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia.,Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, Netherlands
| | - Marketa Svojanovska
- Department of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Veronika Lobellova
- Department of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Karel Vales
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia.,Department of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Dominika Radostova
- Department of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia.,Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Grygoriy Tsenov
- Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Hana Kubova
- Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Anna Mikulecka
- Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Jan Svoboda
- Department of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Ales Stuchlik
- Department of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
12
|
Janhunen SK, Svärd H, Talpos J, Kumar G, Steckler T, Plath N, Lerdrup L, Ruby T, Haman M, Wyler R, Ballard TM. The subchronic phencyclidine rat model: relevance for the assessment of novel therapeutics for cognitive impairment associated with schizophrenia. Psychopharmacology (Berl) 2015; 232:4059-83. [PMID: 26070547 DOI: 10.1007/s00213-015-3954-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/27/2015] [Indexed: 12/26/2022]
Abstract
RATIONALE Current treatments for schizophrenia have modest, if any, efficacy on cognitive dysfunction, creating a need for novel therapies. Their development requires predictive animal models. The N-methyl-D-aspartate (NMDA) hypothesis of schizophrenia indicates the use of NMDA antagonists, like subchronic phencyclidine (scPCP) to model cognitive dysfunction in adult animals. OBJECTIVES The objective of this study was to assess the scPCP model by (1) reviewing published findings of scPCP-induced neurochemical changes and effects on cognitive tasks in adult rats and (2) comparing findings from a multi-site study to determine scPCP effects on standard and touchscreen cognitive tasks. METHODS Across four research sites, the effects of scPCP (typically 5 mg/kg twice daily for 7 days, followed by at least 7-day washout) in adult male Lister Hooded rats were studied on novel object recognition (NOR) with 1-h delay, acquisition and reversal learning in Morris water maze and touchscreen-based visual discrimination. RESULTS Literature findings showed that scPCP impaired attentional set-shifting (ASST) and NOR in several labs and induced a variety of neurochemical changes across different labs. In the multi-site study, scPCP impaired NOR, but not acquisition or reversal learning in touchscreen or water maze. Yet, this treatment regimen induced locomotor hypersensitivity to acute PCP until 13-week post-cessation. CONCLUSIONS The multi-site study confirmed that scPCP impaired NOR and ASST only and demonstrated the reproducibility and usefulness of the touchscreen approach. Our recommendation, prior to testing novel therapeutics in the scPCP model, is to be aware that further work is required to understand the neurochemical changes and specificity of the cognitive deficits.
Collapse
Affiliation(s)
- Sanna K Janhunen
- CNS Research, Research and Development, Orion Pharma, Orion Corporation, Tengstrominkatu 8, P.O. Box 425, 20101, Turku, Finland.
| | - Heta Svärd
- CNS Research, Research and Development, Orion Pharma, Orion Corporation, Tengstrominkatu 8, P.O. Box 425, 20101, Turku, Finland
| | - John Talpos
- Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Gaurav Kumar
- Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Thomas Steckler
- Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Niels Plath
- Synaptic Transmission, H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark
| | - Linda Lerdrup
- Synaptic Transmission, H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark
| | - Trine Ruby
- Synaptic Transmission, H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark
| | - Marie Haman
- Neuroscience, Ophthalmology and Rare Diseases, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Roger Wyler
- Neuroscience, Ophthalmology and Rare Diseases, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Theresa M Ballard
- Neuroscience, Ophthalmology and Rare Diseases, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| |
Collapse
|
13
|
Metaxas A, Willems R, Kooijman E, Renjaän V, Klein P, Windhorst A, Donck LV, Leysen J, Berckel BV. Subchronic treatment with phencyclidine in adolescence leads to impaired exploratory behavior in adult rats without altering social interaction orN-methyl-D-aspartate receptor binding levels. J Neurosci Res 2014; 92:1599-607. [DOI: 10.1002/jnr.23433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/02/2014] [Accepted: 05/22/2014] [Indexed: 11/08/2022]
Affiliation(s)
- A. Metaxas
- Department of Radiology & Nuclear Medicine; Neuroscience Campus Amsterdam; VU University Medical Center; Amsterdam The Netherlands
| | - R. Willems
- Neuroscience Discovery; Janssen Research and Development; a Division of Janssen Pharmaceutica NV; Beerse Belgium
| | - E.J.M. Kooijman
- Department of Radiology & Nuclear Medicine; Neuroscience Campus Amsterdam; VU University Medical Center; Amsterdam The Netherlands
| | - V.A. Renjaän
- Department of Radiology & Nuclear Medicine; Neuroscience Campus Amsterdam; VU University Medical Center; Amsterdam The Netherlands
| | - P.J. Klein
- Department of Radiology & Nuclear Medicine; Neuroscience Campus Amsterdam; VU University Medical Center; Amsterdam The Netherlands
| | - A.D. Windhorst
- Department of Radiology & Nuclear Medicine; Neuroscience Campus Amsterdam; VU University Medical Center; Amsterdam The Netherlands
| | - L. Ver Donck
- Neuroscience Discovery; Janssen Research and Development; a Division of Janssen Pharmaceutica NV; Beerse Belgium
| | - J.E. Leysen
- Department of Radiology & Nuclear Medicine; Neuroscience Campus Amsterdam; VU University Medical Center; Amsterdam The Netherlands
| | - B.N.M. van Berckel
- Department of Radiology & Nuclear Medicine; Neuroscience Campus Amsterdam; VU University Medical Center; Amsterdam The Netherlands
| |
Collapse
|
14
|
Newell KA, Karl T, Huang XF. A neuregulin 1 transmembrane domain mutation causes imbalanced glutamatergic and dopaminergic receptor expression in mice. Neuroscience 2013; 248:670-80. [PMID: 23811072 DOI: 10.1016/j.neuroscience.2013.06.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 06/04/2013] [Accepted: 06/18/2013] [Indexed: 02/05/2023]
Abstract
The neuregulin 1 gene has repeatedly been identified as a susceptibility gene for schizophrenia, thus mice with genetic mutations in this gene offer a valuable tool for studying the role of neuregulin 1 in schizophrenia-related neurotransmission. In this study, slide-based receptor autoradiography was used to quantify glutamatergic N-methyl-d-aspartate (NMDA), dopaminergic D2, cannabinoid CB1 and acetylcholine M1/4 receptor levels in the brains of male heterozygous transmembrane domain neuregulin 1 mutant (Nrg1(+/-)) mice at two ages. Mutant mice expressed small but significant increases in NMDA receptor levels in the cingulate cortex (7%, p=0.044), sensory cortex (8%, p=0.024), and motor cortex (8%, p=0.047), effects that were independent of age. In the nucleus accumbens and thalamus Nrg1(+/-) mice exhibited age-dependent alterations in NMDA receptors. Nrg1(+/-) mice showed a statistically significant increase in NMDA receptor levels in the nucleus accumbens of 14-week-old Nrg1(+/-) mice compared to control littermates of the same age (12%, p=0.026), an effect that was not seen in 20-week-old mice. In contrast, NMDA receptor levels in the thalamus, while initially unchanged in 14-week-old mice, were then decreased in the 20-week-old Nrg1(+/-) mice compared to control littermates of the same age (14%, p=0.011). Nrg1(+/-) mutant mice expressed a significant reduction in D2 receptor levels (13-16%) in the striatum compared to controls, independent of age. While there was a borderline significant increase (6%, p=0.058) in cannabinoid CB1 receptor levels in the substantia nigra of Nrg1(+/-) mice compared to controls, CB1 as well as acetylcholine M1/4 receptors showed no change in Nrg1(+/-) mice in any other brain region examined. These data indicate that a Nrg1 transmembrane mutation produces selective imbalances in glutamatergic and dopaminergic neurotransmission, which are two key systems believed to contribute to schizophrenia pathogenesis. While the effects on these systems are subtle, they may underlie the susceptibility of these mutants to further impacts.
Collapse
Affiliation(s)
- K A Newell
- Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, School of Health Sciences, University of Wollongong, NSW 2522, Australia.
| | | | | |
Collapse
|
15
|
Zamberletti E, Piscitelli F, Cadeddu F, Rubino T, Fratta W, Fadda P, Di Marzo V, Parolaro D. Chronic blockade of CB(1) receptors reverses startle gating deficits and associated neurochemical alterations in rats reared in isolation. Br J Pharmacol 2013; 167:1652-64. [PMID: 22762735 DOI: 10.1111/j.1476-5381.2012.02095.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Pharmacological interventions aimed at restoring the endocannabinoid system functionality have been proposed as potential tools in the treatment of schizophrenia. Based on our previous results suggesting a potential antipsychotic-like profile of the CB(1) receptor inverse agonist/antagonist, AM251, here we further investigated the effect of chronic AM251 administration on the alteration of the sensorimotor gating functions and endocannabinoid levels induced by isolation rearing in rats. EXPERIMENTAL APPROACH Using the post-weaning social isolation rearing model, we studied its influence on sensorimotor gating functions through the PPI paradigm. The presence of alterations in the endocannabinoid levels as well as in dopamine and glutamate receptor densities was explored in specific brain regions following isolation rearing. The effect of chronic AM251 administration on PPI response and the associated biochemical alterations was assessed. KEY RESULTS The disrupted PPI response in isolation-reared rats was paralleled by significant alterations in 2-AG content and dopamine and glutamate receptor densities in specific brain regions. Chronic AM251 completely restored normal PPI response in isolated rats. This behavioural recovery was paralleled by the normalization of 2-AG levels in all the brain areas analysed. Furthermore, AM251 partially antagonized isolation-induced changes in dopamine and glutamate receptors. CONCLUSIONS AND IMPLICATIONS These results demonstrate the efficacy of chronic AM251 treatment in the recovery of isolation-induced disruption of PPI. Moreover, AM251 counteracted the imbalances in the endocannabinoid content, specifically 2-AG levels, and partially reversed the alterations in dopamine and glutamate systems associated with the disrupted behaviour. Together, these findings support the potential antipsychotic-like activity of CB(1) receptor blockade. LINKED ARTICLES This article is part of a themed section on Cannabinoids. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.167.issue-8.
Collapse
Affiliation(s)
- E Zamberletti
- Department of Theoretical and Applied Sciences, Biomedical Division and Center of Neuroscience, University of Insubria, Busto Arsizio (VA), Italy
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Carter LP, Reissig CJ, Johnson MW, Klinedinst MA, Griffiths RR, Mintzer MZ. Acute cognitive effects of high doses of dextromethorphan relative to triazolam in humans. Drug Alcohol Depend 2013; 128:206-13. [PMID: 22989498 PMCID: PMC3562553 DOI: 10.1016/j.drugalcdep.2012.08.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 08/21/2012] [Accepted: 08/23/2012] [Indexed: 11/20/2022]
Abstract
BACKGROUND Although concerns surrounding high-dose dextromethorphan (DXM) abuse have recently increased, few studies have examined the acute cognitive effects of high doses of DXM. The aim of this study was to compare the cognitive effects of DXM with those of triazolam and placebo. METHODS Single, acute, oral doses of DXM (100, 200, 300, 400, 500, 600, 700, 800 mg/70 kg), triazolam (0.25, 0.5mg/70 kg), and placebo were administered p.o. to twelve healthy volunteers with histories of hallucinogen use, under double-blind conditions, using an ascending dose run-up design. Effects on cognitive performance were examined at baseline and after drug administration for up to 6h. RESULTS Both triazolam and DXM produced acute impairments in attention, working memory, episodic memory, and metacognition. Impairments observed following doses of 100-300 mg/70 kg DXM were generally smaller in magnitude than those observed after 0.5mg/70 kg triazolam. Doses of DXM that impaired performance to the same extent as triazolam were in excess of 10-30 times the therapeutic dose of DXM. CONCLUSION The magnitude of the doses required for these effects and the absence of effects on some tasks within the 100-300 mg/70 kg dose range of DXM, speak to the relatively broad therapeutic window of over-the-counter DXM preparations when used appropriately. However, the administration of supratherapeutic doses of DXM resulted in acute cognitive impairments on all tasks that were examined. These findings are likely relevant to cases of high-dose DXM abuse.
Collapse
Affiliation(s)
- Lawrence P. Carter
- University of Arkansas for Medical Sciences, Department of Pharmacology & Toxicology, 4301 W. Markham Street, Little Rock, AR 72205
| | - Chad J. Reissig
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224-6823, USA
| | - Matthew W. Johnson
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224-6823, USA
| | - Margaret A. Klinedinst
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224-6823, USA
| | - Roland R. Griffiths
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224-6823, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224-6823, USA
| | - Miriam Z. Mintzer
- Johns Hopkins University School of Medicine, Department of Psychiatry and Behavioral Sciences, 5510 Nathan Shock Drive, Baltimore, MD 21224, , telephone: 410-550-0529, fax: 410-550-0030
| |
Collapse
|
17
|
Transmembrane domain Nrg1 mutant mice show altered susceptibility to the neurobehavioural actions of repeated THC exposure in adolescence. Int J Neuropsychopharmacol 2013; 16:163-75. [PMID: 22226049 DOI: 10.1017/s1461145711001854] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Heavy cannabis abuse increases the risk of developing schizophrenia. Adolescents appear particularly vulnerable to the development of psychosis-like symptoms after cannabis use. To test whether the schizophrenia candidate gene neuregulin 1 (NRG1) modulates the effects of cannabinoids in adolescence, we tested male adolescent heterozygous transmembrane domain Nrg1 mutant (Nrg1 TM HET) mice and wild type-like littermates (WT) for their neurobehavioural response to repeated Δ(9)-tetrahydrocannabinol (THC, 10 mg/kg i.p. for 21 d starting on post-natal day 31). During treatment and 48 h after treatment withdrawal, we assessed several behavioural parameters relevant to schizophrenia. After behavioural testing we measured autoradiographic CB(1), 5-HT(2A) and NMDA receptor binding. The hyperlocomotor phenotype typical of Nrg1 mutants emerged after drug withdrawal and was more pronounced in vehicle than THC-treated Nrg1 TM HET mice. All mice were equally sensitive to THC-induced suppression of locomotion. However, mutant mice appeared protected against inhibiting effects of repeated THC on investigative social behaviours. Neither THC nor Nrg1 genotype altered prepulse inhibition. Repeated adolescent THC promoted differential effects on CB(1) and 5-HT(2A) receptor binding in the substantia nigra and insular cortex respectively, decreasing binding in WT while increasing it in Nrg1 TM HET mice. THC also selectively affected 5-HT(2A) receptor binding in several other regions in WT mice, whereas NMDA receptor binding was only affected in mutant mice. Overall, Nrg1 mutation does not appear to increase the induction of psychotomimetic symptoms by repeated adolescent THC exposure but may attenuate some of its actions on social behaviour and schizophrenia-relevant neurotransmitter receptor profiles.
Collapse
|
18
|
Reissig CJ, Carter LP, Johnson MW, Mintzer MZ, Klinedinst MA, Griffiths RR. High doses of dextromethorphan, an NMDA antagonist, produce effects similar to classic hallucinogens. Psychopharmacology (Berl) 2012; 223:1-15. [PMID: 22526529 PMCID: PMC3652430 DOI: 10.1007/s00213-012-2680-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 02/23/2012] [Indexed: 12/23/2022]
Abstract
RATIONALE Although reports of dextromethorphan (DXM) abuse have increased recently, few studies have examined the effects of high doses of DXM. OBJECTIVE This study in humans evaluated the effects of supratherapeutic doses of DXM and triazolam. METHODS Single, acute oral doses of DXM (100, 200, 300, 400, 500, 600, 700, and 800 mg/70 kg), triazolam (0.25 and 0.5 mg/70 kg), and placebo were administered to 12 healthy volunteers with histories of hallucinogen use, under double-blind conditions, using an ascending dose run-up design. Subjective, behavioral, and physiological effects were assessed repeatedly after drug administration for 6 h. RESULTS Triazolam produced dose-related increases in subject-rated sedation, observer-rated sedation, and behavioral impairment. DXM produced a profile of dose-related physiological and subjective effects differing from triazolam. DXM effects included increases in blood pressure, heart rate, and emesis; increases in observer-rated effects typical of classic hallucinogens (e.g., distance from reality, visual effects with eyes open and closed, joy, anxiety); and participant ratings of stimulation (e.g., jittery, nervous), somatic effects (e.g., tingling, headache), perceptual changes, end-of-session drug liking, and mystical-type experience. After 400 mg/70 kg DXM, 11 of 12 participants indicated on a pharmacological class questionnaire that they thought they had received a classic hallucinogen (e.g., psilocybin). Drug effects resolved without significant adverse effects by the end of the session. In a 1-month follow-up, volunteers attributed increased spirituality and positive changes in attitudes, moods, and behavior to the session experiences. CONCLUSIONS High doses of DXM produced effects distinct from triazolam and had characteristics that were similar to the classic hallucinogen psilocybin.
Collapse
Affiliation(s)
- Chad J. Reissig
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224-6823, USA, Telephone: 716 228-5243
| | - Lawrence P. Carter
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Matthew W. Johnson
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224-6823, USA
| | - Miriam Z. Mintzer
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224-6823, USA
| | - Margaret A. Klinedinst
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224-6823, USA
| | - Roland R. Griffiths
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224-6823, USA. Department of Neuroscience, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224-6823, USA
| |
Collapse
|
19
|
Abstract
Converging evidence shows that monoamine oxidase A (MAO A), the key enzyme catalyzing serotonin (5-hydroxytryptamine; 5-HT) and norepinephrine (NE) degradation, is a primary factor in the pathophysiology of antisocial and aggressive behavior. Accordingly, male MAO A-deficient humans and mice exhibit an extreme predisposition to aggressive outbursts in response to stress. As NMDARs regulate the emotional reactivity to social and environmental stimuli, we hypothesized their involvement in the modulation of aggression mediated by MAO A. In comparison with WT male mice, MAO A KO counterparts exhibited increases in 5-HT and NE levels across all brain regions, but no difference in glutamate concentrations and NMDAR binding. Notably, the prefrontal cortex (PFC) of MAO A KO mice exhibited higher expression of NR2A and NR2B, as well as lower levels of glycosylated NR1 subunits. In line with these changes, the current amplitude and decay time of NMDARs in PFC was significantly reduced. Furthermore, the currents of these receptors were hypersensitive to the action of the antagonists of the NMDAR complex (dizocilpine), as well as NR2A (PEAQX) and NR2B (Ro 25-6981) subunits. Notably, systemic administration of these agents selectively countered the enhanced aggression in MAO A KO mice, at doses that did not inherently affect motor activity. Our findings suggest that the role of MAO A in pathological aggression may be mediated by changes in NMDAR subunit composition in the PFC, and point to a critical function of this receptor in the molecular bases of antisocial personality.
Collapse
|
20
|
Carty NC, Xu J, Kurup P, Brouillette J, Goebel-Goody SM, Austin DR, Yuan P, Chen G, Correa PR, Haroutunian V, Pittenger C, Lombroso PJ. The tyrosine phosphatase STEP: implications in schizophrenia and the molecular mechanism underlying antipsychotic medications. Transl Psychiatry 2012; 2:e137. [PMID: 22781170 PMCID: PMC3410627 DOI: 10.1038/tp.2012.63] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Glutamatergic signaling through N-methyl-D-aspartate receptors (NMDARs) is required for synaptic plasticity. Disruptions in glutamatergic signaling are proposed to contribute to the behavioral and cognitive deficits observed in schizophrenia (SZ). One possible source of compromised glutamatergic function in SZ is decreased surface expression of GluN2B-containing NMDARs. STEP(61) is a brain-enriched protein tyrosine phosphatase that dephosphorylates a regulatory tyrosine on GluN2B, thereby promoting its internalization. Here, we report that STEP(61) levels are significantly higher in the postmortem anterior cingulate cortex and dorsolateral prefrontal cortex of SZ patients, as well as in mice treated with the psychotomimetics MK-801 and phencyclidine (PCP). Accumulation of STEP(61) after MK-801 treatment is due to a disruption in the ubiquitin proteasome system that normally degrades STEP(61). STEP knockout mice are less sensitive to both the locomotor and cognitive effects of acute and chronic administration of PCP, supporting the functional relevance of increased STEP(61) levels in SZ. In addition, chronic treatment of mice with both typical and atypical antipsychotic medications results in a protein kinase A-mediated phosphorylation and inactivation of STEP(61) and, consequently, increased surface expression of GluN1/GluN2B receptors. Taken together, our findings suggest that STEP(61) accumulation may contribute to the pathophysiology of SZ. Moreover, we show a mechanistic link between neuroleptic treatment, STEP(61) inactivation and increased surface expression of NMDARs, consistent with the glutamate hypothesis of SZ.
Collapse
Affiliation(s)
- N C Carty
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - J Xu
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - P Kurup
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - J Brouillette
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - S M Goebel-Goody
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - D R Austin
- Laboratory of Molecular Pathophysiology, Mood and Anxiety Disorders Research Program, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - P Yuan
- Laboratory of Molecular Pathophysiology, Mood and Anxiety Disorders Research Program, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - G Chen
- Laboratory of Molecular Pathophysiology, Mood and Anxiety Disorders Research Program, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - P R Correa
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - V Haroutunian
- Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY, USA
| | - C Pittenger
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Department of Psychology, Yale University School of Medicine, New Haven, CT, USA
| | - P J Lombroso
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA,Child Study Center, Yale University School of Medicine, P.O. Box 207900, New Haven, CT 06520-7900, USA. E-mail:
| |
Collapse
|
21
|
Long LE, Chesworth R, Huang XF, Wong A, Spiro A, McGregor IS, Arnold JC, Karl T. Distinct neurobehavioural effects of cannabidiol in transmembrane domain neuregulin 1 mutant mice. PLoS One 2012; 7:e34129. [PMID: 22509273 PMCID: PMC3317922 DOI: 10.1371/journal.pone.0034129] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 02/22/2012] [Indexed: 12/04/2022] Open
Abstract
The cannabis constituent cannabidiol (CBD) possesses anxiolytic and antipsychotic properties. We have previously shown that transmembrane domain neuregulin 1 mutant (Nrg1 TM HET) mice display altered neurobehavioural responses to the main psychoactive constituent of cannabis, Δ9-tetrahydrocannabinol. Here we investigated whether Nrg1 TM HET mice respond differently to CBD and whether CBD reverses schizophrenia-related phenotypes expressed by these mice. Adult male Nrg1 TM HET and wild type-like littermates (WT) received vehicle or CBD (1, 50 or 100 mg/kg i.p.) for 21 days. During treatment and 48 h after withdrawal we measured behaviour, whole blood CBD concentrations and autoradiographic receptor binding. Nrg1 HET mice displayed locomotor hyperactivity, PPI deficits and reduced 5-HT2A receptor binding density in the substantia nigra, but these phenotypes were not reversed by CBD. However, long-term CBD (50 and 100 mg/kg) selectively enhanced social interaction in Nrg1 TM HET mice. Furthermore, acute CBD (100 mg/kg) selectively increased PPI in Nrg1 TM HET mice, although tolerance to this effect was manifest upon repeated CBD administration. Long-term CBD (50 mg/kg) also selectively increased GABAA receptor binding in the granular retrosplenial cortex in Nrg1 TM HET mice and reduced 5-HT2A binding in the substantia nigra in WT mice. Nrg1 appears necessary for CBD-induced anxiolysis since only WT mice developed decreased anxiety-related behaviour with repeated CBD treatment. Altered pharmacokinetics in mutant mice could not explain our findings since no genotype differences existed in CBD blood concentrations. Here we demonstrate that Nrg1 modulates acute and long-term neurobehavioural effects of CBD, which does not reverse the schizophrenia-relevant phenotypes.
Collapse
Affiliation(s)
- Leonora E. Long
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Rose Chesworth
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- Neuroscience Research Australia, Randwick, New South Wales, Australia
| | - Xu-Feng Huang
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- Centre for Translational Neuroscience, School of Health Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Alexander Wong
- Department of Pharmacology, University of Sydney, Sydney, New South Wales, Australia
| | - Adena Spiro
- Department of Pharmacology, University of Sydney, Sydney, New South Wales, Australia
| | - Iain S. McGregor
- Brain and Mind Research Institute, Sydney, New South Wales, Australia
- School of Psychology, University of Sydney, Sydney, New South Wales, Australia
| | - Jonathon C. Arnold
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- Department of Pharmacology, University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Research Institute, Sydney, New South Wales, Australia
- * E-mail: (JCA); (TK)
| | - Tim Karl
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
- * E-mail: (JCA); (TK)
| |
Collapse
|
22
|
Gender-dependent behavioral and biochemical effects of adolescent delta-9-tetrahydrocannabinol in adult maternally deprived rats. Neuroscience 2012; 204:245-57. [DOI: 10.1016/j.neuroscience.2011.11.038] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 11/15/2011] [Accepted: 11/17/2011] [Indexed: 01/06/2023]
|
23
|
Dizocilpine (MK-801) induces distinct changes of N-methyl-D-aspartic acid receptor subunits in parvalbumin-containing interneurons in young adult rat prefrontal cortex. Int J Neuropsychopharmacol 2009; 12:1395-408. [PMID: 19435549 PMCID: PMC2859425 DOI: 10.1017/s146114570900042x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
N-methyl-D-aspartic acid receptor (NMDAR) hypofunction has long been implicated in schizophrenia and NMDARs on gamma-aminobutyric acid (GABA)ergic interneurons are proposed to play an essential role in the pathogenesis. However, controversial results have been reported regarding the regulation of NMDAR expression, and direct evidence of how NMDAR antagonists act on specific subpopulations of prefrontal interneurons is missing. We investigated the effects of the NMDAR antagonist dizocilpine (MK-801) on the expression of NMDAR subtypes in the identified interneurons in young adult rat prefrontal cortex (PFC) by using laser microdissection and real-time polymerase chain reaction, combined with Western blotting and immunofluorescent staining. We found that MK-801 induced distinct changes of NMDAR subunits in the parvalbumin-immunoreactive (PV-ir) interneurons vs. pyramidal neurons in the PFC circuitry. The messenger RNA (mRNA) expression of all NMDAR subtypes, including NR1 and NR2A to 2D, exhibited inverted-U dose-dependent changes in response to MK-801 treatment in the PFC. In contrast, subunit mRNAs of NMDARs in PV-ir interneurons were significantly down-regulated at low doses, unaltered at medium doses, and significantly decreased again at high doses, suggesting a biphasic dose response to MK-801. The differential effects of MK-801 in mRNA expression of NMDAR subunits were consistent with the protein expression of NR2A and NR2B subunits revealed with Western blotting and double immunofluorescent staining. These results suggest that PV-containing interneurons in the PFC exhibit a distinct responsiveness to NMDAR antagonism and that NMDA antagonist can differentially and dose-dependently regulate the functions of pyramidal neurons and GABAergic interneurons in the prefrontal cortical circuitry.
Collapse
|
24
|
Rubino T, Realini N, Braida D, Guidi S, Capurro V, Viganò D, Guidali C, Pinter M, Sala M, Bartesaghi R, Parolaro D. Changes in hippocampal morphology and neuroplasticity induced by adolescent THC treatment are associated with cognitive impairment in adulthood. Hippocampus 2009; 19:763-72. [PMID: 19156848 DOI: 10.1002/hipo.20554] [Citation(s) in RCA: 215] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Marijuana and hashish are the illicit drugs most frequently used by human adolescents. Given the continued neurodevelopment throughout adolescence, adolescents may be more vulnerable than adults to certain neural consequences of heavy marijuana use. This study aimed to assess whether an experimental model of adolescent chronic exposure to Delta9-tetrahydrocannabinol (THC), may induce lasting effects on learning and memory. Adolescent rats have been treated with THC or its vehicle from 35 to 45 postnatal days (PND) and left undisturbed until their adulthood (75 PND) when aversive and spatial memory was assessed using the passive avoidance and radial maze tasks. No alteration was found in aversive memory, but in the radial maze THC pretreated animals exhibited a worse performance than vehicles, suggesting a deficit in spatial working memory. To correlate memory impairment to altered neuroplasticity, level of marker proteins was investigated in the hippocampus, the most relevant area mediating spatial memory. A significant decrease in the astroglial marker glial fibrillar acid protein was found as well as in pre- and postsynaptic protein expression (VAMP2, PSD95) and NMDA receptor levels in pretreated rats. To parallel these changes to alteration in dendritic morphology, Golgi-Cox staining was performed in the hippocampal dentate gyrus. Pretreated rats had a significantly lower total dendritic length and number than vehicles, as well as reduced spine density. Our data suggest that THC pretreated rats may establish less synaptic contacts and/or less efficient synaptic connections throughout the hippocampus and this could represent the molecular underpinning of the cognitive deficit induced by adolescent THC treatment.
Collapse
Affiliation(s)
- Tiziana Rubino
- DBSF and Neuroscience Center, University of Insubria, Busto Arsizio, VA, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wang Q, Zengin A, Deng C, Li Y, Newell KA, Yang GY, Lu Y, Wilder-Smith EP, Zhao H, Huang XF. High dose of simvastatin induces hyperlocomotive and anxiolytic-like activities: The association with the up-regulation of NMDA receptor binding in the rat brain. Exp Neurol 2008; 216:132-8. [PMID: 19100736 DOI: 10.1016/j.expneurol.2008.11.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 11/07/2008] [Accepted: 11/19/2008] [Indexed: 11/28/2022]
Abstract
Statins are widely being used for the treatment of a variety of conditions beyond their original indication for lowering cholesterol. We have previously reported that simvastatin affected the dopaminergic system in the rat brain. This study aims to investigate locomotor and anxiety effects along with the regional changes of N-methyl-d-aspartate (NMDA) receptors in the rat brain after 4-week administration of simvastatin. Hyperlocomotive and anxiolytic-like activities in the rat were observed after chronic administration of high dose simvastatin (10 mg/kg/day). Distributions and alterations of NMDA receptors in the post-mortem rat brain were detected by [(3)H] MK-801 binding autoradiography. Simvastatin increased [(3)H] MK-801 binding, predominantly in the prefrontal cortex (20%, p=0.003), primary motor cortex (20%, p<0.001), cingulate cortex (28%, p<0.001), hippocampus (41%, p<0.001), caudate putamen (30%, p=0.029), nucleus accumbens (27%, p=0.035) and amygdala (45%, p<0.001) compared to controls. Significant positive correlations were identified between hyperlocomotive as well as anxiolytic-like activities and the upregulation of NMDA receptors in different brain regions. Our results also provide strong evidence that chronic high dose simvastatin administration is to exhibit NMDA antagonist-like effects, which would partially explain the anxiolytic and hyperlocomotor activities. These findings contribute to a better understanding of the critical roles of simvastatin in modulating psycho-neurodegenerative disorders, via NMDA receptors.
Collapse
Affiliation(s)
- Qing Wang
- Centre for Translational Neuroscience, School of Health Sciences, University of Wollongong, NSW, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cano-Europa E, López-Galindo GE, Hernández-García A, Blas-Valdivia V, Gallardo-Casas CA, Vargas-Lascari M, Ortiz-Butrón R. Lidocaine affects the redox environment and the antioxidant enzymatic system causing oxidative stress in the hippocampus and amygdala of adult rats. Life Sci 2008; 83:681-5. [DOI: 10.1016/j.lfs.2008.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 09/06/2008] [Accepted: 09/12/2008] [Indexed: 11/28/2022]
|
27
|
Zavitsanou K, Nguyen V, Newell K, Ballantyne P, Huang XF. Rapid cortico-limbic alterations in AMPA receptor densities after administration of PCP: Implications for schizophrenia. J Chem Neuroanat 2008; 36:71-6. [DOI: 10.1016/j.jchemneu.2008.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 06/24/2008] [Accepted: 06/24/2008] [Indexed: 11/17/2022]
|
28
|
Manahan-Vaughan D, Wildförster V, Thomsen C. Rescue of hippocampal LTP and learning deficits in a rat model of psychosis by inhibition of glycine transporter-1 (GlyT1). Eur J Neurosci 2008; 28:1342-50. [DOI: 10.1111/j.1460-9568.2008.06433.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Modelling prefrontal cortex deficits in schizophrenia: implications for treatment. Br J Pharmacol 2008; 153 Suppl 1:S465-70. [PMID: 18311160 DOI: 10.1038/bjp.2008.24] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Current treatments of schizophrenia are compromised by their inability to treat all symptoms of the disease and their side-effects. Whilst existing antipsychotic drugs are effective against positive symptoms, they have negligible efficacy against the prefrontal cortex (PFC)-associated cognitive deficits and negative symptoms. New models that reproduce core pathophysiological features of schizophrenia are more likely to have improved predictive validity in identifying new treatments. We have developed a NMDA receptor antagonist model that reproduces core PFC deficits of schizophrenia and discuss this in relation to pathophysiology and treatments. Subchronic and chronic intermittent PCP (2.6 mg/kg i.p.) was administered to rats. PFC activity was assessed by 2-deoxyglucose imaging, parvalbumin and Kv3.1 mRNA expression, and the attentional set-shifting test (ASST) of executive function. Affymetrix gene array technology was employed to examine gene expression profile patterns. PCP treatment reduced glucose utilization in the PFC (hypofrontality). This was accompanied by a reduction in markers of GABAergic interneurones (parvalbumin and Kv3.1 mRNA expression) and deficits in the extradimensional shift dimension of the ASST. Consistent with their clinical profile, the hypofrontality was not reversed by clozapine or haloperidol. Transcriptional analysis revealed patterns of change consistent with current neurobiological theories of schizophrenia. This model mirrors core neurobiological deficits of schizophrenia; hypofrontality, altered markers of GABAergic interneurone activity and deficits in executive function. As such it is likely to be a valuable translational model for understanding the neurobiological mechanisms underlying hypofrontality and for identifying and validating novel drug targets that may restore PFC deficits in schizophrenia.
Collapse
|
30
|
Manahan-Vaughan D, von Haebler D, Winter C, Juckel G, Heinemann U. A single application of MK801 causes symptoms of acute psychosis, deficits in spatial memory, and impairment of synaptic plasticity in rats. Hippocampus 2008; 18:125-34. [PMID: 17924525 DOI: 10.1002/hipo.20367] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Schizophrenia is mostly a progressive psychiatric illness. Although cognitive changes in chronic schizophrenia have been investigated, little is known about the consequences of a single psychotic episode on memory mechanisms and formation. We investigated changes in hippocampal long-term potentiation (LTP) and spatial memory in a rat model of an acute psychotic episode. Application of NMDA receptor antagonists, such as MK801 (dizolcilpine) in rats, have been shown to give rise to an acute and short-lasting behavioral state, which mirrors many symptoms of schizophrenia. Furthermore, NMDA antagonist-intake in humans elicits symptoms of schizophrenia such as hallucinations, delusions, and affective blunting. We therefore treated animals with a single systemic injection of MK801 (5 mg/kg). Increased stereotypy, locomotion, and ataxia were evident immediately after MK801-treatment, with effects disappearing within 24 h. MK801-treatment caused a disruption of prepulse inhibition of the acoustic startle reflex, 1 day but not 7 or 28 days after treatment. These effects were consistent with the occurrence of an acute psychotic episode. LTP was profoundly impaired in freely moving rats 7 days after MK801 application. Four weeks after treatment, a slight recovery of LTP was seen, however marked deficits in long-term spatial memory were evident. These data suggest that treatment with MK801 to generate an acute psychotic episode in rats, gives rise to grave disturbances in synaptic plasticity and is associated with lasting impairments with the ability to form spatial memory.
Collapse
|