1
|
Mazzini L, De Marchi F, Buzanska L, Follenzi A, Glover JC, Gelati M, Lombardi I, Maioli M, Mesa-Herrera F, Mitrečić D, Olgasi C, Pivoriūnas A, Sanchez-Pernaute R, Sgromo C, Zychowicz M, Vescovi A, Ferrari D. Current status and new avenues of stem cell-based preclinical and therapeutic approaches in amyotrophic lateral sclerosis. Expert Opin Biol Ther 2024; 24:933-954. [PMID: 39162129 DOI: 10.1080/14712598.2024.2392307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
INTRODUCTION Cell therapy development represents a critical challenge in amyotrophic lateral sclerosis (ALS) research. Despite more than 20 years of basic and clinical research, no definitive safety and efficacy results of cell-based therapies for ALS have been published. AREAS COVERED This review summarizes advances using stem cells (SCs) in pre-clinical studies to promote clinical translation and in clinical trials to treat ALS. New technologies have been developed and new experimental in vitro and animal models are now available to facilitate pre-clinical research in this field and to determine the most promising approaches to pursue in patients. New clinical trial designs aimed at developing personalized SC-based treatment with biological endpoints are being defined. EXPERT OPINION Knowledge of the basic biology of ALS and on the use of SCs to study and potentially treat ALS continues to grow. However, a consensus has yet to emerge on how best to translate these results into therapeutic applications. The selection and follow-up of patients should be based on clinical, biological, and molecular criteria. Planning of SC-based clinical trials should be coordinated with patient profiling genetically and molecularly to achieve personalized treatment. Much work within basic and clinical research is still needed to successfully transition SC therapy in ALS.
Collapse
Affiliation(s)
- Letizia Mazzini
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Fabiola De Marchi
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Leonora Buzanska
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Antonia Follenzi
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Novara, Italy
- Dipartimento Attività Integrate Ricerca Innovazione, Azienda Ospedaliero-Universitaria SS. Antonio e Biagio e C. Arrigo, Alessandria, Italy
| | - Joel Clinton Glover
- Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital; Laboratory of Neural Development and Optical Recording (NDEVOR), Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maurizio Gelati
- Unità Produttiva per Terapie Avanzate (UPTA), IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Ivan Lombardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Center for Developmental Biology and Reprogramming-CEDEBIOR, University of Sassari, Sassari, Italy
| | - Fatima Mesa-Herrera
- Reprogramming and Neural Regeneration Lab, BioBizkaia Health Research Institute, Barakaldo, Spain
| | - Dinko Mitrečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research and Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Cristina Olgasi
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Rosario Sanchez-Pernaute
- Reprogramming and Neural Regeneration Lab, BioBizkaia Health Research Institute, Barakaldo, Spain
- Ikerbaske, Basque Foundation for Science, Bilbao, Spain
| | - Chiara Sgromo
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Novara, Italy
| | - Marzena Zychowicz
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Angelo Vescovi
- Unità Produttiva per Terapie Avanzate (UPTA), IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Daniela Ferrari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
2
|
Bruno A, Milillo C, Anaclerio F, Buccolini C, Dell’Elice A, Angilletta I, Gatta M, Ballerini P, Antonucci I. Perinatal Tissue-Derived Stem Cells: An Emerging Therapeutic Strategy for Challenging Neurodegenerative Diseases. Int J Mol Sci 2024; 25:976. [PMID: 38256050 PMCID: PMC10815412 DOI: 10.3390/ijms25020976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Over the past 20 years, stem cell therapy has been considered a promising option for treating numerous disorders, in particular, neurodegenerative disorders. Stem cells exert neuroprotective and neurodegenerative benefits through different mechanisms, such as the secretion of neurotrophic factors, cell replacement, the activation of endogenous stem cells, and decreased neuroinflammation. Several sources of stem cells have been proposed for transplantation and the restoration of damaged tissue. Over recent decades, intensive research has focused on gestational stem cells considered a novel resource for cell transplantation therapy. The present review provides an update on the recent preclinical/clinical applications of gestational stem cells for the treatment of protein-misfolding diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). However, further studies should be encouraged to translate this promising therapeutic approach into the clinical setting.
Collapse
Affiliation(s)
- Annalisa Bruno
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Cristina Milillo
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Federico Anaclerio
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carlotta Buccolini
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Anastasia Dell’Elice
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Ilaria Angilletta
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Gatta
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Patrizia Ballerini
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Ivana Antonucci
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
3
|
Vieira S, Strymecka P, Stanaszek L, Silva-Correia J, Drela K, Fiedorowicz M, Malysz-Cymborska I, Janowski M, Reis RL, Łukomska B, Walczak P, Oliveira JM. Mn-Based Methacrylated Gellan Gum Hydrogels for MRI-Guided Cell Delivery and Imaging. Bioengineering (Basel) 2023; 10:bioengineering10040427. [PMID: 37106614 PMCID: PMC10135712 DOI: 10.3390/bioengineering10040427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
This work aims to engineer a new stable injectable Mn-based methacrylated gellan gum (Mn/GG-MA) hydrogel for real-time monitored cell delivery into the central nervous system. To enable the hydrogel visualization under Magnetic Resonance Imaging (MRI), GG-MA solutions were supplemented with paramagnetic Mn2+ ions before its ionic crosslink with artificial cerebrospinal fluid (aCSF). The resulting formulations were stable, detectable by T1-weighted MRI scans and also injectable. Cell-laden hydrogels were prepared using the Mn/GG-MA formulations, extruded into aCSF for crosslink, and after 7 days of culture, the encapsulated human adipose-derived stem cells remained viable, as assessed by Live/Dead assay. In vivo tests, using double mutant MBPshi/shi/rag2 immunocompromised mice, showed that the injection of Mn/GG-MA solutions resulted in a continuous and traceable hydrogel, visible on MRI scans. Summing up, the developed formulations are suitable for both non-invasive cell delivery techniques and image-guided neurointerventions, paving the way for new therapeutic procedures.
Collapse
Affiliation(s)
- Sílvia Vieira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Paulina Strymecka
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Luiza Stanaszek
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Joana Silva-Correia
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Katarzyna Drela
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Michał Fiedorowicz
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Izabela Malysz-Cymborska
- Department of Neurology and Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Miroslaw Janowski
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| | - Rui Luís Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Barbara Łukomska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Piotr Walczak
- Department of Neurology and Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| | - Joaquim Miguel Oliveira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
- Correspondence: ; Tel.: +351-253510931; Fax: +351-253510909
| |
Collapse
|
4
|
Sironi F, De Marchi F, Mazzini L, Bendotti C. Cell therapy in ALS: An update on preclinical and clinical studies. Brain Res Bull 2023; 194:64-81. [PMID: 36690163 DOI: 10.1016/j.brainresbull.2023.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/08/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the loss of motor neurons and neuromuscular impairment leading to complete paralysis, respiratory failure and premature death. The pathogenesis of the disease is multifactorial and noncell-autonomous involving the central and peripheral compartments of the neuromuscular axis and the skeletal muscle. Advanced clinical trials on specific ALS-related pathways have failed to significantly slow the disease. Therapy with stem cells from different sources has provided a promising strategy to protect the motor units exerting their effect through multiple mechanisms including neurotrophic support and excitotoxicity and neuroinflammation modulation, as evidenced from preclinical studies. Several phase I and II clinical trial of ALS patients have been developed showing positive effects in terms of safety and tolerability. However, the modest results on functional improvement in ALS patients suggest that only a coordinated effort between basic and clinical researchers could solve many problems, such as selecting the ideal stem cell source, identifying their mechanism of action and expected clinical outcomes. A promising approach may be stem cells selected or engineered to deliver optimal growth factor support at multiple sites along the neuromuscular pathway. This review covers recent advances in stem cell therapies in animal models of ALS, as well as detailing the human clinical trials that have been done and are currently undergoing development.
Collapse
Affiliation(s)
- Francesca Sironi
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Fabiola De Marchi
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, Novara 28100, Italy
| | - Letizia Mazzini
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, Novara 28100, Italy.
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy.
| |
Collapse
|
5
|
Tsolakis IA, Christopoulou I, Papadopoulou E, Papaioannou W, Alexiou KE, Lyros I, Rontogianni A, Souliou CE, Tsolakis AI. Applications of Biotechnology to the Craniofacial Complex: A Critical Review. Bioengineering (Basel) 2022; 9:640. [PMID: 36354551 PMCID: PMC9687908 DOI: 10.3390/bioengineering9110640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 01/05/2025] Open
Abstract
BACKGROUND Biotechnology shows a promising future in bridging the gap between biomedical basic sciences and clinical craniofacial practice. The purpose of the present review is to investigate the applications of biotechnology in the craniofacial complex. METHODS This critical review was conducted by using the following keywords in the search strategy: "biotechnology", "bioengineering", "craniofacial", "stem cells", "scaffolds", "biomarkers", and "tissue regeneration". The databases used for the electronic search were the Cochrane Library, Medline (PubMed), and Scopus. The search was conducted for studies published before June 2022. RESULTS The applications of biotechnology are numerous and provide clinicians with the great benefit of understanding the etiology of dentofacial deformities, as well as treating the defected areas. Research has been focused on craniofacial tissue regeneration with the use of stem cells and scaffolds, as well as in bioinformatics with the investigation of growth factors and biomarkers capable of providing evidence for craniofacial growth and development. This review presents the biotechnological opportunities in the fields related to the craniofacial complex and attempts to answer a series of questions that may be of interest to the reader. CONCLUSIONS Biotechnology seems to offer a bright future ahead, improving and modernizing the clinical management of cranio-dento-facial diseases. Extensive research is needed as human studies on this subject are few and have controversial results.
Collapse
Affiliation(s)
- Ioannis A. Tsolakis
- Department of Orthodontics, School of Dentistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Isidora Christopoulou
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, 106 79 Athens, Greece
| | - Erofili Papadopoulou
- Department of Oral Medicine & Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens, 106 79 Athens, Greece
| | - William Papaioannou
- Department of Preventive & Community Dentistry, School of Dentistry, National and Kapodistrian University of Athens, 106 79 Athens, Greece
| | - Konstantina-Eleni Alexiou
- Department of Oral Diagnosis & Radiology, School of Dentistry, National and Kapodistrian University of Athens, 106 79 Athens, Greece
| | - Ioannis Lyros
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, 106 79 Athens, Greece
| | - Aliki Rontogianni
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, 106 79 Athens, Greece
| | - Christina-Efthymia Souliou
- Oral and Maxilla-Facial Surgeon, Department of Oral and Maxillofacial Surgery, Georgios Gennimatas Athens Hospital, 115 27 Athens, Greece
| | - Apostolos I. Tsolakis
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, 106 79 Athens, Greece
- Department of Orthodontics, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
6
|
Xie P, Ling H, Pang M, He L, Zhuang Z, Zhang G, Chen Z, Weng C, Cheng S, Jiao J, Zhao Z, Tang BZ, Rong L. Umbilical Cord Mesenchymal Stem Cells Promoting Spinal Cord Injury Repair Visually Monitored by AIE‐Tat Nanoparticles. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Peigen Xie
- Department of Spine Surgery The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou 510600 China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery Guangzhou 510600 China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery Guangzhou 510600 China
| | - Haiqian Ling
- Department of Spine Surgery The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou 510600 China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery Guangzhou 510600 China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery Guangzhou 510600 China
| | - Mao Pang
- Department of Spine Surgery The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou 510600 China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery Guangzhou 510600 China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery Guangzhou 510600 China
| | - Lei He
- Department of Spine Surgery The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou 510600 China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery Guangzhou 510600 China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery Guangzhou 510600 China
| | - Zeyan Zhuang
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Guiling Zhang
- Department of Nuclear Medicine The Third Affiliated Hospital of Sun Yat‐sen University 600 Tianhe Road Guangzhou Guangdong 510630 China
| | - Zihao Chen
- Department of Spine Surgery The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou 510600 China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery Guangzhou 510600 China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery Guangzhou 510600 China
| | - Chuanggui Weng
- Department of Spine Surgery The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou 510600 China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery Guangzhou 510600 China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery Guangzhou 510600 China
| | - Sijin Cheng
- Department of Spine Surgery The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou 510600 China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery Guangzhou 510600 China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery Guangzhou 510600 China
| | - Ju Jiao
- Department of Nuclear Medicine The Third Affiliated Hospital of Sun Yat‐sen University 600 Tianhe Road Guangzhou Guangdong 510630 China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
| | - Limin Rong
- Department of Spine Surgery The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou 510600 China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery Guangzhou 510600 China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery Guangzhou 510600 China
| |
Collapse
|
7
|
Ceccarelli S, Gerini G, Megiorni F, Pontecorvi P, Messina E, Camero S, Anastasiadou E, Romano E, Onesti MG, Napoli C, Marchese C. Inhibiting DNA methylation as a strategy to enhance adipose-derived stem cells differentiation: Focus on the role of Akt/mTOR and Wnt/β-catenin pathways on adipogenesis. Front Cell Dev Biol 2022; 10:926180. [PMID: 36120582 PMCID: PMC9478209 DOI: 10.3389/fcell.2022.926180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/28/2022] [Indexed: 01/10/2023] Open
Abstract
Adipose-derived mesenchymal stem cells (ASCs) represent a valid therapeutic option for clinical application in several diseases, due to their ability to repair damaged tissues and to mitigate the inflammatory/immune response. A better understanding of the underlying mechanisms regulating ASC biology might represent the chance to modulate their in vitro characteristics and differentiation potential for regenerative medicine purposes. Herein, we investigated the effects of the demethylating agent 5-azacytidine (5-aza) on proliferation, clonogenicity, migration, adipogenic differentiation and senescence of ASCs, to identify the molecular pathways involved. Through functional assays, we observed a detrimental effect of 5-aza on ASC self-renewal capacity and migration, accompanied by actin cytoskeleton reorganization, with decreased stress fibers. Conversely, 5-aza treatment enhanced ASC adipogenic differentiation, as assessed by lipid accumulation and expression of lineage-specific markers. We analyzed the involvement of the Akt/mTOR, MAPK and Wnt/β-catenin pathways in these processes. Our results indicated impairment of Akt and ERK phosphorylation, potentially explaining the reduced cell proliferation and migration. We observed a 5-aza-mediated inhibition of the Wnt signaling pathway, this potentially explaining the pro-adipogenic effect of the drug. Finally, 5-aza treatment significantly induced ASC senescence, through upregulation of the p53/p21 axis. Our data may have important translational implications, by helping in clarifying the potential risks and advantages of using epigenetic treatment to improve ASC characteristics for cell-based clinical approaches.
Collapse
Affiliation(s)
- S. Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- *Correspondence: S. Ceccarelli ,
| | - G. Gerini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - F. Megiorni
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - P. Pontecorvi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - E. Messina
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - S. Camero
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - E. Anastasiadou
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - E. Romano
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | - M. G. Onesti
- Department of Surgery “P. Valdoni”, Unit of Plastic Surgery “P. Valdoni”, Sapienza University of Rome, Rome, Italy
| | - C. Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - C. Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
8
|
Chiarotto GB, Cartarozzi LP, Perez M, Tomiyama ALMR, de Castro MV, Duarte ASS, Luzo ÂCM, Oliveira ALRD. Delayed onset, immunomodulation, and lifespan improvement of SOD1 G93A mice after intravenous injection of human mesenchymal stem cells derived from adipose tissue. Brain Res Bull 2022; 186:153-164. [PMID: 35718222 DOI: 10.1016/j.brainresbull.2022.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/07/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the selective and progressive loss of motor neurons from the spinal cord, brain stem, and motor cortex. Although the hallmark of ALS is motor neuron degeneration, astrocytes, microglia, and T cells actively participate. Pharmacological treatment with riluzole has little effect on the lifespan of the patient. Thus, the development of new therapeutic strategies is of utmost importance. The objective of this study was to verify whether human mesenchymal stem cells (hMSCs) from adipose tissue have therapeutic potential in SOD1G93A transgenic mice. The treatment was carried out in the asymptomatic phase of the disease (10th week) by a single systemic application of ad-hMSCs (1 ×105 cells). The animals were sacrificed at the 14th week (the initial stage of symptoms) or the end-stage (ES) of the disease. The lumbar spinal cords were dissected and processed for Nissl staining (neuronal survival), immunohistochemistry (gliosis and synaptic preservation), and gene transcript expression (qRT-PCR). Behavioral analyses considering the onset of disease and its progression, neurological score, body weight, and motor control (rotarod test) started on the 10th week and were performed every three days until the ES of the disease. The results revealed that treatment with ad-hMSCs promoted greater neuronal survival (44%) than vehicle treatment. However, no effect was seen at the ES of the disease. Better structural preservation of the ventral horn in animals treated with ad-hMSCs was observed, together with decreased gliosis and greater synapse protection. In line with this, we found that the transcript levels of Hgf1 were upregulated in ad-hMSCs-treated mice. These results corroborate the behavioral data showing that ad-hMSCs had delayed motor deficits and reduced weight loss compared to vehicle animals. Additionally, cell therapy delayed the course of the disease and significantly improved survival by 20 days. Overall, our results indicate that treatment with ad-hMSCs has beneficial effects, enhancing neuronal survival and promoting a less degenerative neuronal microenvironment. Thus, this may be a potential therapy to improve the quality of life and to extend the lifespan of ALS patients.
Collapse
Affiliation(s)
- Gabriela Bortolança Chiarotto
- Laboratory of Nerve Regeneration, University of Campinas - UNICAMP, Cidade Universitaria "Zeferino Vaz", Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil
| | - Luciana Politti Cartarozzi
- Laboratory of Nerve Regeneration, University of Campinas - UNICAMP, Cidade Universitaria "Zeferino Vaz", Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil
| | - Matheus Perez
- Laboratory of Nerve Regeneration, University of Campinas - UNICAMP, Cidade Universitaria "Zeferino Vaz", Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil; School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, 14040-907 Ribeirão Preto, SP, Brazil
| | - Ana Laura Midori Rossi Tomiyama
- Laboratory of Nerve Regeneration, University of Campinas - UNICAMP, Cidade Universitaria "Zeferino Vaz", Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil
| | - Mateus Vidigal de Castro
- Laboratory of Nerve Regeneration, University of Campinas - UNICAMP, Cidade Universitaria "Zeferino Vaz", Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil
| | - Adriana S S Duarte
- Hematology and Hemotherapy Center, University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Ângela Cristina Malheiros Luzo
- Hematology and Hemotherapy Center, University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Alexandre Leite Rodrigues de Oliveira
- Laboratory of Nerve Regeneration, University of Campinas - UNICAMP, Cidade Universitaria "Zeferino Vaz", Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil.
| |
Collapse
|
9
|
Soares MBP, Gonçalves RGJ, Vasques JF, da Silva-Junior AJ, Gubert F, Santos GC, de Santana TA, Almeida Sampaio GL, Silva DN, Dominici M, Mendez-Otero R. Current Status of Mesenchymal Stem/Stromal Cells for Treatment of Neurological Diseases. Front Mol Neurosci 2022; 15:883378. [PMID: 35782379 PMCID: PMC9244712 DOI: 10.3389/fnmol.2022.883378] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Neurological disorders include a wide spectrum of clinical conditions affecting the central and peripheral nervous systems. For these conditions, which affect hundreds of millions of people worldwide, generally limited or no treatments are available, and cell-based therapies have been intensively investigated in preclinical and clinical studies. Among the available cell types, mesenchymal stem/stromal cells (MSCs) have been widely studied but as yet no cell-based treatment exists for neurological disease. We review current knowledge of the therapeutic potential of MSC-based therapies for neurological diseases, as well as possible mechanisms of action that may be explored to hasten the development of new and effective treatments. We also discuss the challenges for culture conditions, quality control, and the development of potency tests, aiming to generate more efficient cell therapy products for neurological disorders.
Collapse
Affiliation(s)
- Milena B. P. Soares
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | - Renata G. J. Gonçalves
- Laboratório de Neurobiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Saúde no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana F. Vasques
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Almir J. da Silva-Junior
- Laboratório de Neurobiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Nanotecnologia no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Gubert
- Programa Redes de Pesquisa em Saúde no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Girlaine Café Santos
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | - Thaís Alves de Santana
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | - Gabriela Louise Almeida Sampaio
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | | | - Massimo Dominici
- Laboratory of Cellular Therapy, Division of Oncology, University of Modena and Reggio Emilia (UNIMORE), Modena, Italy
| | - Rosalia Mendez-Otero
- Laboratório de Neurobiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Saúde no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Nanotecnologia no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Transplantation of Human Glial Progenitors to Immunodeficient Neonatal Mice with Amyotrophic Lateral Sclerosis (SOD1/rag2). Antioxidants (Basel) 2022; 11:antiox11061050. [PMID: 35739947 PMCID: PMC9219833 DOI: 10.3390/antiox11061050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 02/04/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, fatal disease with no effective therapy. The neurodegenerative character of ALS was an appealing target for stem cell-based regenerative approaches. Different types of stem cells have been transplanted in both preclinical and clinical settings, but no convincing outcomes have been noted. Human glial restricted precursors (hGRPs) transplanted intraventricularly to neonatal, immunodeficient mice rescued lifespan of dysmyelinated mice. Intraspinal injection of hGRPs also provided benefits in the mouse model of ALS. Therefore, we have recently developed an immunodeficient model of ALS (double mutant SOD1/rag2), and, in this study, we tested the strategy previously used in dysmyelinated mice of intraventricular transplantation of hGRPs to immunodeficient mice. To maximize potential therapeutic benefits, the cells were implanted into neonates. We used magnetic resonance imaging to investigate the progression of neurodegeneration and therapeutic responses. A cohort of animals was devoted to survival assessment. Postmortem analysis included immunohistochemistry, Nissl staining, and Western blots. Cell transplantation was not associated with improved animal survival, slowing neurodegeneration, or accumulation of misfolded superoxide dismutase 1. Postmortem analysis did not reveal any surviving hGRPs. Grafting into neonatal immunodeficient recipients did not prevent ALS-induced cell loss, which might explain the lack of positive therapeutic effects. The results of this study are in line with the modest effects of clinical neurotransplantations. Therefore, we urge stem cell and ALS communities to develop and implement cell tracking methods to better understand cell fates in the clinic.
Collapse
|
11
|
Lin TJ, Cheng KC, Wu LY, Lai WY, Ling TY, Kuo YC, Huang YH. Potential of Cellular Therapy for ALS: Current Strategies and Future Prospects. Front Cell Dev Biol 2022; 10:851613. [PMID: 35372346 PMCID: PMC8966507 DOI: 10.3389/fcell.2022.851613] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive upper and lower motor neuron (MN) degeneration with unclear pathology. The worldwide prevalence of ALS is approximately 4.42 per 100,000 populations, and death occurs within 3-5 years after diagnosis. However, no effective therapeutic modality for ALS is currently available. In recent years, cellular therapy has shown considerable therapeutic potential because it exerts immunomodulatory effects and protects the MN circuit. However, the safety and efficacy of cellular therapy in ALS are still under debate. In this review, we summarize the current progress in cellular therapy for ALS. The underlying mechanism, current clinical trials, and the pros and cons of cellular therapy using different types of cell are discussed. In addition, clinical studies of mesenchymal stem cells (MSCs) in ALS are highlighted. The summarized findings of this review can facilitate the future clinical application of precision medicine using cellular therapy in ALS.
Collapse
Affiliation(s)
- Ting-Jung Lin
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuang-Chao Cheng
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Luo-Yun Wu
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Yu Lai
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| | - Thai-Yen Ling
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Che Kuo
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Hua Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Comprehensive Cancer Center of Taipei Medical University, Taipei, Taiwan
- PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
12
|
Stanaszek L, Majchrzak M, Drela K, Rogujski P, Sanford J, Fiedorowicz M, Gewartowska M, Frontczak-Baniewicz M, Walczak P, Lukomska B, Janowski M. Myelin-Independent Therapeutic Potential of Canine Glial-Restricted Progenitors Transplanted in Mouse Model of Dysmyelinating Disease. Cells 2021; 10:2968. [PMID: 34831191 PMCID: PMC8616327 DOI: 10.3390/cells10112968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Dysfunction of glia contributes to the deterioration of the central nervous system in a wide array of neurological disorders, thus global replacement of glia is very attractive. Human glial-restricted precursors (hGRPs) transplanted intraventricularly into neonatal mice extensively migrated and rescued the lifespan in half of the studied mice, whereas mouse GRPs (mGRPs) presented no therapeutic benefit. We studied in the same experimental setting canine GRPs (cGRP) to determine whether their therapeutic potential falls between hGRPs and mGRPs. Additional motivation for the selection of cGRPs was a potential for use in veterinary medicine. METHODS cGRPs were extracted from the brain of dog fetuses. The cells were transplanted into the anterior or posterior aspect of the lateral ventricle (LV) of neonatal, immunodeficient, dysmyelinated mice (Mbpshi, Rag2 KO; shiv/rag2). Outcome measures included early cell biodistribution, animal survival and myelination assessed with MRI, immunohistochemistry and electron microscopy. RESULTS Grafting of cGRP into posterior LV significantly extended animal survival, whereas no benefit was observed after anterior LV transplantation. In contrast, myelination of the corpus callosum was more prominent in anteriorly transplanted animals. CONCLUSIONS The extended survival of animals after transplantation of cGRPs could be explained by the vicinity of the transplant near the brain stem.
Collapse
Affiliation(s)
- Luiza Stanaszek
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (L.S.); (M.M.); (P.R.); (B.L.)
| | - Malgorzata Majchrzak
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (L.S.); (M.M.); (P.R.); (B.L.)
| | | | - Piotr Rogujski
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (L.S.); (M.M.); (P.R.); (B.L.)
| | - Joanna Sanford
- Vetregen Laboratory and Stem Cell Bank for Animals, 04-687 Warsaw, Poland;
| | - Michal Fiedorowicz
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Magdalena Gewartowska
- Electron Microscopy Platform, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.G.); (M.F.-B.)
| | - Malgorzata Frontczak-Baniewicz
- Electron Microscopy Platform, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.G.); (M.F.-B.)
| | - Piotr Walczak
- Department of Diagnostic Radiology and Nuclear Medicine, Center for Advanced Imaging Research, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA;
- Department of Neurology and Neurosurgery, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (L.S.); (M.M.); (P.R.); (B.L.)
| | - Miroslaw Janowski
- Department of Diagnostic Radiology and Nuclear Medicine, Center for Advanced Imaging Research, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA;
| |
Collapse
|
13
|
Kozlowska U, Klimczak A, Bednarowicz KA, Zalewski T, Rozwadowska N, Chojnacka K, Jurga S, Barnea ER, Kurpisz MK. Assessment of Immunological Potential of Glial Restricted Progenitor Graft In Vivo-Is Immunosuppression Mandatory? Cells 2021; 10:cells10071804. [PMID: 34359973 PMCID: PMC8308088 DOI: 10.3390/cells10071804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease, causing motor neuron and skeletal muscle loss and death. One of the promising therapeutic approaches is stem cell graft application into the brain; however, an immune reaction against it creates serious limitations. This study aimed to research the efficiency of glial restricted progenitors (GRPs) grafted into murine CNS (central nervous system) in healthy models and the SOD1G93A ALS disease model. The cellular grafts were administered in semiallogenic and allogeneic settings. To investigate the models of immune reaction against grafted GRPs, we applied three immunosuppressive/immunomodulatory regimens: preimplantation factor (PiF); Tacrolimus; and CTLA-4, MR1 co-stimulatory blockade. We tracked the cells with bioluminescence imaging (BLI) in vivo to study their survival. The immune response character was evaluated with brain tissue assays and multiplex ELISA in serum and cerebrospinal fluid (CSF). The application of immunosuppressive drugs is disputable when considering cellular transplants into the immune-privileged site/brain. However, our data revealed that semiallogenic GRP graft might survive inside murine CNS without the necessity to apply any immunomodulation or immunosuppression, whereas, in the situation of allogeneic mouse setting, the combination of CTLA-4, MR1 blockade can be considered as the best immunosuppressive option.
Collapse
Affiliation(s)
- Urszula Kozlowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (U.K.); (A.K.)
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (K.A.B.); (N.R.)
| | - Aleksandra Klimczak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (U.K.); (A.K.)
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (K.A.B.); (N.R.)
| | | | - Tomasz Zalewski
- NanoBioMedical Centre, Adam Mickiewicz University, 61-614 Poznan, Poland; (T.Z.); (S.J.)
| | - Natalia Rozwadowska
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (K.A.B.); (N.R.)
| | - Katarzyna Chojnacka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland;
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University, 61-614 Poznan, Poland; (T.Z.); (S.J.)
| | - Eytan R. Barnea
- The Society for the Investigation of Early Pregnancy (SIEP), Cherry Hill, NJ 08003, USA;
- BioIncept LLC, Cherry Hill, NJ 08003, USA
| | - Maciej K. Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (K.A.B.); (N.R.)
- Correspondence: ; Tel.: +48-61-65-79-202
| |
Collapse
|
14
|
Ciervo Y, Gatto N, Allen C, Grierson A, Ferraiuolo L, Mead RJ, Shaw PJ. Adipose-derived stem cells protect motor neurons and reduce glial activation in both in vitro and in vivo models of ALS. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:413-433. [PMID: 33869658 PMCID: PMC8044387 DOI: 10.1016/j.omtm.2021.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative condition for which new therapeutic options are urgently needed. We injected GFP+ adipose-derived stem cells (EGFP-ADSCs) directly into the cerebrospinal fluid (CSF) of transgenic SOD1G93A mice, a well-characterized model of familial ALS. Despite short-term survival of the injected cells and limited engraftment efficiency, EGFP-ADSCs improved motor function and delayed disease onset by promoting motor neuron (MN) survival and reducing glial activation. We then tested the in vitro neuroprotective potential of mouse ADSCs in astrocyte/MN co-cultures where ALS astrocytes show neurotoxicity. ADSCs were able to rescue MN death caused by ALS astrocytes derived from symptomatic SOD1G93A mice. Further, ADSCs were found to reduce the inflammatory signature of ALS astrocytes by inhibiting the release of pro-inflammatory mediators and inducing the secretion of neuroprotective factors. Finally, mouse ADSCs were able to protect MNs from the neurotoxicity mediated by human induced astrocytes (iAstrocytes) derived from patients with either sporadic or familial ALS, thus for the first time showing the potential therapeutic translation of ADSCs across the spectrum of human ALS. These data in two translational models of ALS show that, through paracrine mechanisms, ADSCs support MN survival and modulate the toxic microenvironment that contributes to neurodegeneration in ALS.
Collapse
Affiliation(s)
- Yuri Ciervo
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, Faculty of Medicine, Dentistry and Health, The University of Sheffield, 385 Glossop Rd., Sheffield S10 2HQ, UK
| | - Noemi Gatto
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, Faculty of Medicine, Dentistry and Health, The University of Sheffield, 385 Glossop Rd., Sheffield S10 2HQ, UK
| | - Chloe Allen
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, Faculty of Medicine, Dentistry and Health, The University of Sheffield, 385 Glossop Rd., Sheffield S10 2HQ, UK
| | - Andrew Grierson
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, Faculty of Medicine, Dentistry and Health, The University of Sheffield, 385 Glossop Rd., Sheffield S10 2HQ, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, Faculty of Medicine, Dentistry and Health, The University of Sheffield, 385 Glossop Rd., Sheffield S10 2HQ, UK
| | - Richard J. Mead
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, Faculty of Medicine, Dentistry and Health, The University of Sheffield, 385 Glossop Rd., Sheffield S10 2HQ, UK
- Corresponding author: Richard J. Mead, PhD, Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, Faculty of Medicine, Dentistry and Health, The University of Sheffield, 385 Glossop Rd., Sheffield S10 2HQ, UK.
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, Faculty of Medicine, Dentistry and Health, The University of Sheffield, 385 Glossop Rd., Sheffield S10 2HQ, UK
- Corresponding author: Pamela J. Shaw, Professor, Dame, Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, Faculty of Medicine, Dentistry and Health, The University of Sheffield, 385 Glossop Rd., Sheffield S10 2HQ, UK.
| |
Collapse
|
15
|
Lee JY, Kim HS, Kim SH, Kim HS, Cho BP. Combination of Human Mesenchymal Stem Cells and Repetitive Transcranial Magnetic Stimulation Enhances Neurological Recovery of 6-Hydroxydopamine Model of Parkinsonian's Disease. Tissue Eng Regen Med 2020; 17:67-80. [PMID: 31970698 DOI: 10.1007/s13770-019-00233-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/23/2019] [Accepted: 11/28/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) has been in use for the treatment of various neurological diseases, including depression, anxiety, stroke and Parkinson's disease (PD), while its underlying mechanism is stills unclear. This study was undertaken to evaluate the potential synergism of rTMS treatment to the beneficial effect of human mesenchymal stem cells (hMSCs) administration for PD and to clarify the mechanism of action of this therapeutic approach. METHODS The neuroprotective effect in nigral dopamine neurons, neurotrophic/growth factors and anti-/pro-inflammatory cytokine regulation, and functional recovery were assessed in the rat 6-hydroxydopamine (6-OHDA) model of PD upon administration of hMSCs and rTMS. RESULTS Transplanted hMSCs were identified in the substantia nigra, and striatum. Enhancement of the survival of SN dopamine neurons and the expression of the tyrosine hydroxylase protein were observed in the hMSCs + rTMS compared to that of controls. Combination therapy significantly elevated the expression of several key neurotrophic factors, of which the highest expression was recorded in the rTMS + hMSC group. In addition, the combination therapy significantly upregulated IL-10 expression while decreased IFN-γ and TNF-α production in a synergistic manner. The treadmill locomotion test (TLT) revealed that motor function was improved in the rTMS + hMSC treatment with synergy. CONCLUSION Our findings demonstrate that rTMS treatment and hMSC transplantation could synergistically create a favorable microenvironment for cell survival within the PD rat brain, through alteration of soluble factors such as neurotrophic/growth factors and anti-/pro-inflammatory cytokines related to neuronal protection or repair, with preservation of DA neurons and improvement of motor functions.
Collapse
Affiliation(s)
- Ji Yong Lee
- Department of Anatomy, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do, 26426, Republic of Korea
| | - Hyun Soo Kim
- FCB-Pharmicell Co. Ltd., 520 Sicox Tower, 484 Dunchon-daero, Jungwon-gu, Seongnam-si, Gyeonggi-do, 13229, Republic of Korea
| | - Sung Hoon Kim
- Department and Rehabilitation Medicine, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do, 26426, Republic of Korea
| | - Han-Soo Kim
- Department of Biomedical Sciences, Catholic Kwandong University College of Medical Convergence, 24 Beomil-ro, 579 beon-gil, Gangneung-Si, Gangwon-do, 25601, Republic of Korea.
- Basic Research Division, Biomedical Institute of Mycological Resource, College of Medicine, Catholic Kwandong University, 24 Beomil-ro, 579 beon-gil, Gangneung-Si, Gangwon-do, 25601, Republic of Korea.
| | - Byung Pil Cho
- Department of Anatomy, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do, 26426, Republic of Korea.
- Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do, 26426, Republic of Korea.
| |
Collapse
|
16
|
Gouel F, Rolland AS, Devedjian JC, Burnouf T, Devos D. Past and Future of Neurotrophic Growth Factors Therapies in ALS: From Single Neurotrophic Growth Factor to Stem Cells and Human Platelet Lysates. Front Neurol 2019; 10:835. [PMID: 31428042 PMCID: PMC6688198 DOI: 10.3389/fneur.2019.00835] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that typically results in death within 3–5 years after diagnosis. To date, there is no curative treatment and therefore an urgent unmet need of neuroprotective and/or neurorestorative treatments. Due to their spectrum of capacities in the central nervous system—e.g., development, plasticity, maintenance, neurogenesis—neurotrophic growth factors (NTF) have been exploited for therapeutic strategies in ALS for decades. In this review we present the initial strategy of using single NTF by different routes of administration to the use of stem cells transplantation to express a multiple NTFs-rich secretome to finally focus on a new biotherapy based on the human platelet lysates, the natural healing system containing a mix of pleitropic NTF and having immunomodulatory function. This review highlights that this latter treatment may be crucial to power the neuroprotection and/or neurorestoration therapy requested in this devastating disease.
Collapse
Affiliation(s)
- Flore Gouel
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1171, University Hospital Center, LICEND COEN Center, Lille, France
| | - Anne-Sophie Rolland
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1171, University Hospital Center, LICEND COEN Center, Lille, France
| | - Jean-Christophe Devedjian
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1171, University Hospital Center, LICEND COEN Center, Lille, France
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - David Devos
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1171, University Hospital Center, LICEND COEN Center, Lille, France.,Department of Neurology, Lille University, INSERM UMRS_1171, University Hospital Center, LICEND COEN Center, Lille, France
| |
Collapse
|
17
|
Human intracerebroventricular (ICV) injection of autologous, non-engineered, adipose-derived stromal vascular fraction (ADSVF) for neurodegenerative disorders: results of a 3-year phase 1 study of 113 injections in 31 patients. Mol Biol Rep 2019; 46:5257-5272. [PMID: 31327120 DOI: 10.1007/s11033-019-04983-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022]
Abstract
We have chosen to test the safety of human intracerebroventricular (ICV) brain injections of autologous non-genetically-modified adipose-derived stromal vascular fraction (ADSVF). In this IRB-approved trial, 24 patients received ICV ADSVF via an implanted reservoir between 5/22/14 and 5/22/17. Seven others were injected via their ventriculo-peritoneal shunts. Ten patients had Alzheimer's disease (AD), 6 had amyotrophic lateral sclerosis (ALS), 6 had progressive multiple sclerosis (MS-P), 6 had Parkinson's "Plus" (PD+), 1 had spinal cord injury, 1 had traumatic brain injury, and 1 had stroke. Median age was 74 (range 41-83). Injections were planned every 2-3 months. Thirty-one patients had 113 injections. Patients received SVF injection volumes of 3.5-20 cc (median:4 cc) containing 4.05 × 105 to 6.2 × 107 cells/cc, which contained an average of 8% hematopoietic and 7.5% adipose stem cells. Follow-up ranged from 0 to 36 months (median: 9.2 months). MRIs post injection(s) were unchanged, except for one AD patient whose hippocampal volume increased from < 5th percentile to 48th percentile (NeuroQuant® volumetric MRI). Of the 10 AD patients, 8 were stable or improved in tests of cognition. Two showed improvement in P-tau and ß-amyloid levels. Of the 6 MS-P patients all are stable or improved. Four of 6 ALS patients died of disease progression. Twelve of 111 injections (11%) led to 1-4 days of transient meningismus, and mild temperature elevation, which resolved with acetaminophen and/or dexamethasone. Two (1.8% of injections) required hospitalization for these symptoms. One patient (0.9% of injections) had his reservoir removed and later replaced for presumed infection. In this Phase 1 safety trial, ADSVF was safely injected into the human brain ventricular system in patients with no other treatment options. Secondary endpoints of clinical improvement or stability were particularly promising in the AD and MS-P groups. These results will be submitted for a Phase 2 FDA-approved trial.
Collapse
|
18
|
Gubert F, Bonacossa-Pereira I, Decotelli AB, Furtado M, Vasconcelos-Dos-Santos A, Mendez-Otero R, Santiago MF. Bone-marrow mononuclear cell therapy in a mouse model of amyotrophic lateral sclerosis: Functional outcomes from different administration routes. Brain Res 2019; 1712:73-81. [PMID: 30735638 DOI: 10.1016/j.brainres.2019.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a chronic degenerative disease that mainly affects motor neurons, leading to progressive paralysis and death. Recently, cell therapy has emerged as a therapeutic alternative for several neurological diseases, including ALS, and bone-marrow cells are one of the major cell sources. Considering the importance of pre-clinical trials to determine the best therapeutic protocol and the hope of translating this protocol to the clinical setting, we tested bone-marrow mononuclear cell (BMMC) therapy administered by different routes in the SOD1G93A model of ALS. BMMCs were isolated from non-transgenic, age matched animals and administered intravenously (IV), intramuscularly (IM), and intravenously and intramuscular concomitantly (IV + IM). BMMC therapy had no significant beneficial effects when injected IV or IM, but delayed disease progression when these two routes were used concomitantly. BMMC IV + IM treatment reduced the number of microglia cells in the spinal cord and partially protected of neuromuscular-junction innervation, but had no effect in preventing motor-neuron loss. This study showed that injection of BMMC IV + IM had better results when compared to each route in isolation, highlighting the importance of targeting multiple anatomical regions in the treatment of ALS.
Collapse
Affiliation(s)
- Fernanda Gubert
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Igor Bonacossa-Pereira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Ana B Decotelli
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Michelle Furtado
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Marcelo F Santiago
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
19
|
MRI-guided intrathecal transplantation of hydrogel-embedded glial progenitors in large animals. Sci Rep 2018; 8:16490. [PMID: 30405160 PMCID: PMC6220305 DOI: 10.1038/s41598-018-34723-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022] Open
Abstract
Disseminated diseases of the central nervous system such as amyotrophic lateral sclerosis (ALS) require that therapeutic agents are delivered and distributed broadly. Intrathecal route is attractive in that respect, but to date there was no methodology available allowing for optimization of this technique to assure safety and efficacy in a clinically relevant setting. Here, we report on interventional, MRI-guided approach for delivery of hydrogel-embedded glial progenitor cells facilitating cell placement over extended surface of the spinal cord in pigs and in naturally occurring ALS-like disease in dogs. Glial progenitors used as therapeutic agent were embedded in injectable hyaluronic acid-based hydrogel to support their survival and prevent sedimentation or removal. Intrathecal space was reached through lumbar puncture and the catheter was advanced under X-ray guidance to the cervical part of the spine. Animals were then transferred to MRI suite for MRI-guided injection. Interventional and follow-up MRI as well as histopathology demonstrated successful and predictable placement of embedded cells and safety of the procedure.
Collapse
|
20
|
Liu M, Lei H, Dong P, Fu X, Yang Z, Yang Y, Ma J, Liu X, Cao Y, Xiao R. Adipose-Derived Mesenchymal Stem Cells from the Elderly Exhibit Decreased Migration and Differentiation Abilities with Senescent Properties. Cell Transplant 2018; 26:1505-1519. [PMID: 29113467 PMCID: PMC5680952 DOI: 10.1177/0963689717721221] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adipose-derived stem cells (ASCs) can be applied extensively in the clinic because they can be easily isolated and cause less donor-site morbidity; however, their application can be complicated by patient-specific factors, such as age and harvest site. In this study, we systematically evaluated the effects of age on the quantity and quality of human adipose-derived mesenchymal stem cells (hASCs) isolated from excised chest subcutaneous adipose tissue and investigated the underlying molecular mechanism. hASCs were isolated from donors of 3 different age-groups (i.e., child, young adult, and elderly). hASCs are available from individuals across all age-groups and maintain mesenchymal stem cell (MSC) characteristics. However, the increased age of the donors was found to have a significant negative effect on hASCs frequency base on colony-forming unit fibroblasts assay. Moreover, there is a decline in both stromal vascular fraction (SVF) cell yield and the proliferation rate of hASCs with increasing age, although this relationship is not significant. Aging increases cellular senescence, which is manifested as an increase in SA-β-gal-positive cells, increased mitochondrial-specific reactive oxygen species (ROS) production, and the expression of p21 in the elderly. Further, advancing age was found to have a significant negative effect on the adipogenic and osteogenic differentiation potentials of hASCs, particularly at the early and mid-stages of induction, suggesting a slower response to the inducing factors of hASCs from elderly donors. Finally, impaired migration ability was also observed in the elderly group and was determined to be associated with decreased expression of chemokine receptors, such as CXCR4 and CXCR7. Taken together, these results suggest that, while hASCs from different age populations are phenotypically similar, they present major differences at the functional level. When considering potential applications of hASCs in cell-based therapeutic strategies, the negative influence of age on hASC differentiation potential and migration abilities should be taken seriously.
Collapse
Affiliation(s)
- Meichen Liu
- 1 Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Hua Lei
- 1 Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Ping Dong
- 1 Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xin Fu
- 1 Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhigang Yang
- 1 Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Ying Yang
- 1 Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jiguang Ma
- 1 Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xia Liu
- 1 Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yilin Cao
- 1 Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Ran Xiao
- 1 Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
21
|
Zhu H, Poon W, Liu Y, Leung GKK, Wong Y, Feng Y, Ng SCP, Tsang KS, Sun DTF, Yeung DK, Shen C, Niu F, Xu Z, Tan P, Tang S, Gao H, Cha Y, So KF, Fleischaker R, Sun D, Chen J, Lai J, Cheng W, Young W. Phase I-II Clinical Trial Assessing Safety and Efficacy of Umbilical Cord Blood Mononuclear Cell Transplant Therapy of Chronic Complete Spinal Cord Injury. Cell Transplant 2018; 25:1925-1943. [PMID: 27075659 DOI: 10.3727/096368916x691411] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Umbilical cord blood-derived mononuclear cell (UCB-MNC) transplants improve recovery in animal spinal cord injury (SCI) models. We transplanted UCB-MNCs into 28 patients with chronic complete SCI in Hong Kong (HK) and Kunming (KM). Stemcyte Inc. donated UCB-MNCs isolated from human leukocyte antigen (HLA ≥4:6)-matched UCB units. In HK, four patients received four 4-μl injections (1.6 million cells) into dorsal entry zones above and below the injury site, and another four received 8-μl injections (3.2 million cells). The eight patients were an average of 13 years after C5-T10 SCI. Magnetic resonance diffusion tensor imaging of five patients showed white matter gaps at the injury site before treatment. Two patients had fiber bundles growing across the injury site by 12 months, and the rest had narrower white matter gaps. Motor, walking index of SCI (WISCI), and spinal cord independence measure (SCIM) scores did not change. In KM, five groups of four patients received four 4-μl (1.6 million cells), 8-μl (3.2 million cells), 16-μl injections (6.4 million cells), 6.4 million cells plus 30 mg/kg methylprednisolone (MP), or 6.4 million cells plus MP and a 6-week course of oral lithium carbonate (750 mg/day). KM patients averaged 7 years after C3-T11 SCI and received 3-6 months of intensive locomotor training. Before surgery, only two patients walked 10 m with assistance and did not need assistance for bladder or bowel management before surgery. The rest could not walk or do their bladder and bowel management without assistance. At about a year (41-87 weeks), WISCI and SCIM scores improved: 15/20 patients walked 10 m ( p = 0.001) and 12/20 did not need assistance for bladder management ( p = 0.001) or bowel management ( p = 0.002). Five patients converted from complete to incomplete (two sensory, three motor; p = 0.038) SCI. We conclude that UCB-MNC transplants and locomotor training improved WISCI and SCIM scores. We propose further clinical trials.
Collapse
Affiliation(s)
- Hui Zhu
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China.,Kunming Tongren Hospital, Yunnan, P.R. China
| | - Waisang Poon
- Prince of Wales Hospital, Division of Neurosurgery, Department of Surgery, Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China
| | - Yansheng Liu
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China.,Kunming Tongren Hospital, Yunnan, P.R. China
| | | | - Yatwa Wong
- Queen Mary Hospital, University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Yaping Feng
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China
| | - Stephanie C P Ng
- Prince of Wales Hospital, Division of Neurosurgery, Department of Surgery, Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China
| | - Kam Sze Tsang
- Prince of Wales Hospital, Division of Neurosurgery, Department of Surgery, Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China
| | - David T F Sun
- Prince of Wales Hospital, Division of Neurosurgery, Department of Surgery, Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China
| | - David K Yeung
- Prince of Wales Hospital, Division of Neurosurgery, Department of Surgery, Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China
| | - Caihong Shen
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China.,Kunming Tongren Hospital, Yunnan, P.R. China
| | - Fang Niu
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China.,Kunming Tongren Hospital, Yunnan, P.R. China
| | - Zhexi Xu
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China.,Kunming Tongren Hospital, Yunnan, P.R. China
| | - Pengju Tan
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China.,Kunming Tongren Hospital, Yunnan, P.R. China
| | - Shaofeng Tang
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China
| | - Hongkun Gao
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China.,Kunming Tongren Hospital, Yunnan, P.R. China
| | - Yun Cha
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China
| | - Kwok-Fai So
- Department of Ophthalmology and State Key Laboratory of Brain and Cognitive Science, The University of Hong Kong, SAR, P.R. China.,GHM Institute of CNS Regeneration, and Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, P.R. China.,China Spinal Cord Injury Network, Hong Kong Science Technology Park, Hong Kong, SAR, P.R. China
| | | | - Dongming Sun
- W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - John Chen
- China Spinal Cord Injury Network, Hong Kong Science Technology Park, Hong Kong, SAR, P.R. China
| | - Jan Lai
- China Spinal Cord Injury Network, Hong Kong Science Technology Park, Hong Kong, SAR, P.R. China
| | - Wendy Cheng
- China Spinal Cord Injury Network, Hong Kong Science Technology Park, Hong Kong, SAR, P.R. China
| | - Wise Young
- China Spinal Cord Injury Network, Hong Kong Science Technology Park, Hong Kong, SAR, P.R. China.,W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
22
|
Abstract
The craniofacial complex is composed of fundamental components such as blood vessels and nerves, and also a variety of specialized tissues such as craniofacial bones, cartilages, muscles, ligaments, and the highly specialized and unique organs, the teeth. Together, these structures provide many functions including speech, mastication, and aesthetics of the craniofacial complex. Craniofacial defects not only influence the structure and function of the jaws and face, but may also result in deleterious psychosocial issues, emphasizing the need for rapid and effective, precise, and aesthetic reconstruction of craniofacial tissues. In a broad sense, craniofacial tissue reconstructions share many of the same issues as noncraniofacial tissue reconstructions. Therefore, many concepts and therapies for general tissue engineering can and have been used for craniofacial tissue regeneration. Still, repair of craniofacial defects presents unique challenges, mainly because of their complex and unique 3D geometry.
Collapse
Affiliation(s)
- Weibo Zhang
- Department of Orthodontics, School of Medicine, School of Engineering, Tufts University, Boston, Massachusetts 02111
| | - Pamela Crotty Yelick
- Department of Orthodontics, School of Medicine, School of Engineering, Tufts University, Boston, Massachusetts 02111
| |
Collapse
|
23
|
Ciervo Y, Ning K, Jun X, Shaw PJ, Mead RJ. Advances, challenges and future directions for stem cell therapy in amyotrophic lateral sclerosis. Mol Neurodegener 2017; 12:85. [PMID: 29132389 PMCID: PMC5683324 DOI: 10.1186/s13024-017-0227-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative condition where loss of motor neurons within the brain and spinal cord leads to muscle atrophy, weakness, paralysis and ultimately death within 3–5 years from onset of symptoms. The specific molecular mechanisms underlying the disease pathology are not fully understood and neuroprotective treatment options are minimally effective. In recent years, stem cell transplantation as a new therapy for ALS patients has been extensively investigated, becoming an intense and debated field of study. In several preclinical studies using the SOD1G93A mouse model of ALS, stem cells were demonstrated to be neuroprotective, effectively delayed disease onset and extended survival. Despite substantial improvements in stem cell technology and promising results in preclinical studies, several questions still remain unanswered, such as the identification of the most suitable and beneficial cell source, cell dose, route of delivery and therapeutic mechanisms. This review will cover publications in this field and comprehensively discuss advances, challenges and future direction regarding the therapeutic potential of stem cells in ALS, with a focus on mesenchymal stem cells. In summary, given their high proliferation activity, immunomodulation, multi-differentiation potential, and the capacity to secrete neuroprotective factors, adult mesenchymal stem cells represent a promising candidate for clinical translation. However, technical hurdles such as optimal dose, differentiation state, route of administration, and the underlying potential therapeutic mechanisms still need to be assessed.
Collapse
Affiliation(s)
- Yuri Ciervo
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, 385a Glossop Rd S10 2HQ, Sheffield, UK.,Tongji University School of Medicine, 1239 Siping Rd, Yangpu Qu, Shanghai, China
| | - Ke Ning
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, 385a Glossop Rd S10 2HQ, Sheffield, UK.,Tongji University School of Medicine, 1239 Siping Rd, Yangpu Qu, Shanghai, China
| | - Xu Jun
- Tongji University School of Medicine, 1239 Siping Rd, Yangpu Qu, Shanghai, China
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, 385a Glossop Rd S10 2HQ, Sheffield, UK
| | - Richard J Mead
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, 385a Glossop Rd S10 2HQ, Sheffield, UK.
| |
Collapse
|
24
|
Sironi F, Vallarola A, Violatto MB, Talamini L, Freschi M, De Gioia R, Capelli C, Agostini A, Moscatelli D, Tortarolo M, Bigini P, Introna M, Bendotti C. Multiple intracerebroventricular injections of human umbilical cord mesenchymal stem cells delay motor neurons loss but not disease progression of SOD1G93A mice. Stem Cell Res 2017; 25:166-178. [PMID: 29154076 DOI: 10.1016/j.scr.2017.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 11/02/2017] [Accepted: 11/04/2017] [Indexed: 12/13/2022] Open
Abstract
Stem cell therapy is considered a promising approach in the treatment of amyotrophic lateral sclerosis (ALS) and mesenchymal stem cells (MSCs) seem to be the most effective in ALS animal models. The umbilical cord (UC) is a source of highly proliferating fetal MSCs, more easily collectable than other MSCs. Recently we demonstrated that human (h) UC-MSCs, double labeled with fluorescent nanoparticles and Hoechst-33258 and transplanted intracerebroventricularly (ICV) into SOD1G93A transgenic mice, partially migrated into the spinal cord after a single injection. This prompted us to assess the effect of repeated ICV injections of hUC-MSCs on disease progression in SOD1G93A mice. Although no transplanted cells migrated to the spinal cord, a partial but significant protection of motor neurons (MNs) was found in the lumbar spinal cord of hUC-MSCs-treated SOD1G93A mice, accompanied by a shift from a pro-inflammatory (IL-6, IL-1β) to anti-inflammatory (IL-4, IL-10) and neuroprotective (IGF-1) environment in the lumbar spinal cord, probably linked to the activation of p-Akt survival pathway in both motor neurons and reactive astrocytes. However, this treatment neither prevented the muscle denervation nor delayed the disease progression of mice, emphasizing the growing evidence that protecting the motor neuron perikarya is not sufficient to delay the ALS progression.
Collapse
Affiliation(s)
- Francesca Sironi
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Antonio Vallarola
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Martina Bruna Violatto
- Department of Biochemistry and Molecular Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Laura Talamini
- Department of Biochemistry and Molecular Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Mattia Freschi
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Roberta De Gioia
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Chiara Capelli
- USS Center of Cellular Therapy"G. Lanzani", ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Azzurra Agostini
- Department of Chemistry, Material and Chemical Engineering "G. Natta", Politecnico di Milano, Milano, Italy
| | - Davide Moscatelli
- Department of Chemistry, Material and Chemical Engineering "G. Natta", Politecnico di Milano, Milano, Italy
| | - Massimo Tortarolo
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Paolo Bigini
- Department of Biochemistry and Molecular Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Martino Introna
- USS Center of Cellular Therapy"G. Lanzani", ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Caterina Bendotti
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy.
| |
Collapse
|
25
|
Forostyak S, Sykova E. Neuroprotective Potential of Cell-Based Therapies in ALS: From Bench to Bedside. Front Neurosci 2017; 11:591. [PMID: 29114200 PMCID: PMC5660803 DOI: 10.3389/fnins.2017.00591] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022] Open
Abstract
Motor neurons (MN) degeneration is a main feature of amyotrophic lateral sclerosis (ALS), a neurological disorder with a progressive course. The diagnosis of ALS is essentially a clinical one. Most common symptoms include a gradual neurological deterioration that reflect the impairment and subsequent loss of muscle functions. Up-to-date ALS has no therapy that would prevent or cure a disease. Modern therapeutic strategies comprise of neuroprotective treatment focused on antiglutamatergic, antioxidant, antiapoptotic, and anti-inflammatory molecules. Stem cells application and gene therapy has provided researchers with a powerful tool for discovery of new mechanisms and therapeutic agents, as well as opened new perspectives for patients and family members. Here, we review latest progress made in basic, translational and clinical stem cell research related to the ALS. We overviewed results of preclinical and clinical studies employing cell-based therapy to treat neurodegenerative disorders. A special focus has been made on the neuroprotective properties of adult mesenchymal stromal cells (MSC) application into ALS patients. Finally, we overviewed latest progress in the field of embryonic and induced pluripotent stem cells used for the modeling and application during neurodegeneration in general and in ALS in particular.
Collapse
Affiliation(s)
- Serhiy Forostyak
- Centre of Reconstructive Neuroscience, Institute of Experimental Medicine (ASCR), Czech Academy of Sciences, Prague, Czechia.,Department of Neuroscience, 2nd Faculty of Medicine, Charles University, Prague, Czechia
| | - Eva Sykova
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, Prague, Czechia.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
26
|
Ascoli BM, Colombo R, Géa LP, Terraciano PB, Pizzato SB, de Oliveira FS, Cirne-Lima E, Kapczinski F, Rosa AR. Cell therapy in the treatment of bipolar mania in an animal model: a proof of concept study. TRENDS IN PSYCHIATRY AND PSYCHOTHERAPY 2017; 39:196-201. [DOI: 10.1590/2237-6089-2016-0074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/14/2017] [Indexed: 11/22/2022]
Abstract
Abstract Introduction The rationale of mesenchymal stem cells (MSCs) as a novel therapeutic approach in certain neurodegenerative diseases is based on their ability to promote neurogenesis. Hippocampal atrophy has been related to bipolar disorder (BD) in preclinical, imaging and postmortem studies. Therefore, the development of new strategies to stimulate the neurogenesis process in BD is crucial. Objectives To investigate the behavioral and neurochemical changes induced by transplantation of MSCs in a model of mania-like behavior induced by lisdexamfetamine dimesylate (LDX). Methods Wistar rats (n=65) received one oral daily dose of LDX (10 mg/kg) or saline for 14 days. On the 8th day of treatment, the animals additionally received intrahippocampal saline or MSC (1 µL containing 25,000 cells) or lithium (47.5 mg/kg) as an internal experimental control. Two hours after the last administration, behavioral and neurochemical analyses were performed. Results LDX-treated rats had increased locomotor activity compared to saline-saline rats (p=0.004), and lithium reversed LDX-related hyperactive behavior (p<0.001). In contrast, the administration of MSCs did not change hyperlocomotion, indicating no effects of this treatment on LDX-treated rats (p=0.979). We did not find differences between groups in BDNF levels (p>0.05) in the hippocampus of rats. Conclusion Even though these results suggest that a single intrahippocampal injection of MSCs was not helpful to treat hyperactivity induced by LDX and neither influenced BDNF secretion, we cannot rule out the possible therapeutic effects of MSCs. Further research is required to determine direct effects of LDX on brain structures as well as in other pathophysiological targets related to BD.
Collapse
Affiliation(s)
- Bruna M. Ascoli
- Hospital de Clínicas de Porto Alegre, Brazil; Universidade Federal do Rio Grande do Sul, Brazil
| | - Rafael Colombo
- Hospital de Clínicas de Porto Alegre, Brazil; Universidade de Caxias do Sul, Brazil
| | - Luiza P. Géa
- Hospital de Clínicas de Porto Alegre, Brazil; UFRGS, Brazil
| | | | | | | | | | - Flávio Kapczinski
- Hospital de Clínicas de Porto Alegre, Brazil; Universidade Federal do Rio Grande do Sul, Brazil; UFRGS, Brazil
| | - Adriane R. Rosa
- Hospital de Clínicas de Porto Alegre, Brazil; Universidade Federal do Rio Grande do Sul, Brazil; UFRGS, Brazil; UFRGS, Brazil
| |
Collapse
|
27
|
Garbuzova-Davis S, Ehrhart J, Sanberg PR. Cord blood as a potential therapeutic for amyotrophic lateral sclerosis. Expert Opin Biol Ther 2017; 17:837-851. [DOI: 10.1080/14712598.2017.1323862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Svitlana Garbuzova-Davis
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Jared Ehrhart
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Paul R. Sanberg
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Psychiatry, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
28
|
Cu, Zn-Superoxide Dismutase Increases the Therapeutic Potential of Adipose-derived Mesenchymal Stem Cells by Maintaining Antioxidant Enzyme Levels. Neurochem Res 2016; 41:3300-3307. [PMID: 27743287 DOI: 10.1007/s11064-016-2062-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/23/2016] [Accepted: 09/08/2016] [Indexed: 01/30/2023]
Abstract
In the present study, we investigated the ability of Cu, Zn-superoxide dismutase (SOD1) to improve the therapeutic potential of adipose tissue-derived mesenchymal stem cells (Ad-MSCs) against ischemic damage in the spinal cord. Animals were divided into four groups: the control group, vehicle (PEP-1 peptide and artificial cerebrospinal fluid)-treated group, Ad-MSC alone group, and Ad-MSC-treated group with PEP-1-SOD1. The abdominal aorta of the rabbit was occluded for 30 min in the subrenal region to induce ischemic damage, and immediately after reperfusion, artificial cerebrospinal fluid or Ad-MSCs (2 × 105) were administered intrathecally. In addition, PEP-1 or 0.5 mg/kg PEP-1-SOD1 was administered intraperitoneally to the Ad-MSC-treated rabbits. Motor behaviors and NeuN-immunoreactive neurons were significantly decreased in the vehicle-treated group after ischemia/reperfusion. Administration of Ad-MSCs significantly ameliorated the changes in motor behavior and NeuN-immunoreactive neuronal survival. In addition, the combination of PEP-1-SOD1 and Ad-MSCs further increased the ameliorative effects of Ad-MSCs in the spinal cord after ischemia. Furthermore, the administration of Ad-MSCs with PEP-1-SOD1 decreased lipid peroxidation and maintained levels of antioxidants such as SOD1 and glutathione peroxidase compared to the Ad-MSC alone group. These results suggest that combination therapy using Ad-MSCs and PEP-1-SOD1 strongly protects neurons from ischemic damage by modulating the balance of lipid peroxidation and antioxidants.
Collapse
|
29
|
Genetic Engineering of Mesenchymal Stem Cells to Induce Their Migration and Survival. Stem Cells Int 2016; 2016:4956063. [PMID: 27242906 PMCID: PMC4868914 DOI: 10.1155/2016/4956063] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/22/2016] [Accepted: 03/14/2016] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are very attractive for regenerative medicine due to their relatively easy derivation and broad range of differentiation capabilities, either naturally or induced through cell engineering. However, efficient methods of delivery to diseased tissues and the long-term survival of grafted cells still need improvement. Here, we review genetic engineering approaches designed to enhance the migratory capacities of MSCs, as well as extend their survival after transplantation by the modulation of prosurvival approaches, including prevention of senescence and apoptosis. We highlight some of the latest examples that explore these pivotal points, which have great relevance in cell-based therapies.
Collapse
|
30
|
Stem Cells for Amyotrophic Lateral Sclerosis. Transl Neurosci 2016. [DOI: 10.1007/978-1-4899-7654-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
31
|
Spinal Cord Cellular Therapeutics Delivery: Device Design Considerations. REGENERATIVE MEDICINE FOR DEGENERATIVE MUSCLE DISEASES 2016. [DOI: 10.1007/978-1-4939-3228-3_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Forostyak S, Homola A, Turnovcova K, Svitil P, Jendelova P, Sykova E. Intrathecal delivery of mesenchymal stromal cells protects the structure of altered perineuronal nets in SOD1 rats and amends the course of ALS. Stem Cells 2015; 32:3163-72. [PMID: 25113670 PMCID: PMC4321196 DOI: 10.1002/stem.1812] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/29/2014] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder resulting in a lethal outcome. We studied changes in ventral horn perineuronal nets (PNNs) of superoxide dismutase 1 (SOD1) rats during the normal disease course and after the intrathecal application (5 × 105 cells) of human bone marrow mesenchymal stromal cells (MSCs) postsymptom manifestation. We found that MSCs ameliorated disease progression, significantly improved motor activity, and prolonged survival. For the first time, we report that SOD1 rats have an abnormal disorganized PNN structure around the spinal motoneurons and give different expression profiles of chondroitin sulfate proteoglycans (CSPGs), such as versican, aggrecan, and phosphacan, but not link protein-1. Additionally, SOD1 rats had different profiles for CSPG gene expression (Versican, Hapln1, Neurocan, and Tenascin-R), whereas Aggrecan and Brevican profiles remained unchanged. The application of MSCs preserved PNN structure, accompanied by better survival of motorneurons. We measured the concentration of cytokines (IL-1α, MCP-1, TNF-α, GM-CSF, IL-4, and IFN-γ) in the rats' cerebrospinal fluid and found significantly higher concentrations of IL-1α and MCP-1. Our results show that PNN and cytokine homeostasis are altered in the SOD1 rat model of ALS. These changes could potentially serve as biological markers for the diagnosis, assessment of treatment efficacy, and prognosis of ALS. We also show that the administration of human MSCs is a safe procedure that delays the loss of motor function and increases the overall survival of symptomatic ALS animals, by remodeling the recipients' pattern of gene expression and having neuroprotective and immunomodulatory effects. Stem Cells2014;32:3163–3172
Collapse
Affiliation(s)
- Serhiy Forostyak
- Institute of Experimental Medicine, Academy of Science of the Czech Republic, Prague, Czech Republic; Department of Neuroscience, 2nd Medical Faculty, Charles University, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
33
|
Use of a Human Artificial Chromosome for Delivering Trophic Factors in a Rodent Model of Amyotrophic Lateral Sclerosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2015; 4:e253. [PMID: 26440597 PMCID: PMC4881756 DOI: 10.1038/mtna.2015.28] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 08/17/2015] [Indexed: 12/13/2022]
Abstract
A human artificial chromosome (HAC) is maintained as an episome within a cell and avoids random integration into the host genome. It can transfer multiple and/or large transgenes along with their regulatory elements thereby resembling native chromosomes. Using this HAC system, we established mesenchymal stem cells (MSCs) that simultaneously expressed hepatocyte growth factor, glial cell line-derived neurotrophic factor, and insulin-like growth factor 1, termed HAC-MSCs. This cell line provides an opportunity for stable transplantation and thorough analyses. We then introduced the cells for the treatment of a neurodegenerative disorder, amyotrophic lateral sclerosis. The HAC-MSCs were transplanted via the fourth cerebral ventricle (CV) or intravenous (i.v.) infusion at various ages of recipient mice. Littermate- and sex-matched mice underwent a sham procedure. Compared to the controls, there was an encouraging trend of increased life span via CV transplantation and delayed onset in i.v. infusion 60 days after transplantation. Further, we confirmed a statistically significant increase in life span via CV transplantation at 100 days. This effect was not seen in mice transplanted with MSCs lacking the HAC. We successfully enhanced the trophic potential of the MSCs using the HAC. This strategy could be a promising direction for the treatment of neurodegenerative disorders.
Collapse
|
34
|
Kim HY, Kim H, Oh KW, Oh SI, Koh SH, Baik W, Noh MY, Kim KS, Kim SH. Biological markers of mesenchymal stromal cells as predictors of response to autologous stem cell transplantation in patients with amyotrophic lateral sclerosis: an investigator-initiated trial and in vivo study. Stem Cells 2015; 32:2724-31. [PMID: 24966156 DOI: 10.1002/stem.1770] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 05/06/2014] [Accepted: 05/30/2014] [Indexed: 12/12/2022]
Abstract
Bone marrow mesenchymal stromal cells (MSCs) can modify disease progression in amyotrophic lateral sclerosis (ALS) model. However, there are currently no accurate biological markers for predicting the efficacy of autologous MSC transplants in ALS patients. This open-label, single-arm, investigator-initiated clinical study was designed to identify markers of MSCs that could be used as potential predictors of response to autologous MSC therapy in patients with ALS. We enrolled 37 patients with ALS who received autologous MSCs via intrathecal injection in two monthly doses. After a 6-month follow-up period, the patients were categorized as responders and non-responders based on their scores on the revised ALS Functional Rating Scale (ALSFRS-R). Biological markers including β-fibroblast growth factor-2, stromal cell-derived factor-1α, vascular endothelial growth factor (VEGF), insulin-like growth factor-1, brain-derived neurotrophic factor, angiogenin (ANG), interleukin (IL)-4, IL-10, and transforming growth factor-β (TGF-β) were measured in the MSC cultures and their levels were compared between the responders and nonresponders. To confirm the markers' predictive ability, MSCs isolated from one patient in each group were transplanted into the cisterna magna of mutant SOD1(G93A) transgenic mice to measure their lifespans, locomotor activity, and motor neuron numbers. The levels of VEGF, ANG, and TGF-β were significantly higher in responders than in nonresponders. In the mouse model, the recipients of responder MSCs had a significantly slower onset of symptoms and a significantly longer lifespan than the recipients of nonresponders or controls. Our data suggest that VEGF, ANG, and TGF-β levels in MSCs could be used as potential biological markers to predict the effectiveness of autologous MSC therapy and to identify those patients who could optimally benefit from MSC treatment.
Collapse
Affiliation(s)
- Hyun Young Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Goutman SA, Chen KS, Feldman EL. Recent Advances and the Future of Stem Cell Therapies in Amyotrophic Lateral Sclerosis. Neurotherapeutics 2015; 12:428-48. [PMID: 25776222 PMCID: PMC4404436 DOI: 10.1007/s13311-015-0339-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis is a progressive neurodegenerative disease of the motor neurons without a known cure. Based on the possibility of cellular neuroprotection and early preclinical results, stem cells have gained widespread enthusiasm as a potential treatment strategy. Preclinical models demonstrate a protective role of engrafted stem cells and provided the basis for human trials carried out using various types of stem cells, as well as a range of cell delivery methods. To date, no trial has demonstrated a clear therapeutic benefit; however, results remain encouraging and are the basis for ongoing studies. In addition, stem cell technology continues to improve, and induced pluripotent stem cells may offer additional therapeutic options in the future. Improved disease models and clinical trials will be essential in order to validate stem cells as a beneficial therapy.
Collapse
Affiliation(s)
- Stephen A Goutman
- Department of Neurology, University of Michigan, F2647 UH South, SPC 5223, 1500 East Medical Center Drive, Ann Arbor, MI, 48109-5036, USA,
| | | | | |
Collapse
|
36
|
Nicaise C, Mitrecic D, Falnikar A, Lepore AC. Transplantation of stem cell-derived astrocytes for the treatment of amyotrophic lateral sclerosis and spinal cord injury. World J Stem Cells 2015; 7:380-398. [PMID: 25815122 PMCID: PMC4369494 DOI: 10.4252/wjsc.v7.i2.380] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/07/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
Neglected for years, astrocytes are now recognized to fulfill and support many, if not all, homeostatic functions of the healthy central nervous system (CNS). During neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and spinal cord injury (SCI), astrocytes in the vicinity of degenerating areas undergo both morphological and functional changes that might compromise their intrinsic properties. Evidence from human and animal studies show that deficient astrocyte functions or loss-of-astrocytes largely contribute to increased susceptibility to cell death for neurons, oligodendrocytes and axons during ALS and SCI disease progression. Despite exciting advances in experimental CNS repair, most of current approaches that are translated into clinical trials focus on the replacement or support of spinal neurons through stem cell transplantation, while none focus on the specific replacement of astroglial populations. Knowing the important functions carried out by astrocytes in the CNS, astrocyte replacement-based therapies might be a promising approach to alleviate overall astrocyte dysfunction, deliver neurotrophic support to degenerating spinal tissue and stimulate endogenous CNS repair abilities. Enclosed in this review, we gathered experimental evidence that argue in favor of astrocyte transplantation during ALS and SCI. Based on their intrinsic properties and according to the cell type transplanted, astrocyte precursors or stem cell-derived astrocytes promote axonal growth, support mechanisms and cells involved in myelination, are able to modulate the host immune response, deliver neurotrophic factors and provide protective molecules against oxidative or excitotoxic insults, amongst many possible benefits. Embryonic or adult stem cells can even be genetically engineered in order to deliver missing gene products and therefore maximize the chance of neuroprotection and functional recovery. However, before broad clinical translation, further preclinical data on safety, reliability and therapeutic efficiency should be collected. Although several technical challenges need to be overcome, we discuss the major hurdles that have already been met or solved by targeting the astrocyte population in experimental ALS and SCI models and we discuss avenues for future directions based on latest molecular findings regarding astrocyte biology.
Collapse
|
37
|
Knippenberg S, Rath KJ, Böselt S, Thau-Habermann N, Schwarz SC, Dengler R, Wegner F, Petri S. Intraspinal administration of human spinal cord-derived neural progenitor cells in the G93A-SOD1 mouse model of ALS delays symptom progression, prolongs survival and increases expression of endogenous neurotrophic factors. J Tissue Eng Regen Med 2015; 11:751-764. [PMID: 25641599 DOI: 10.1002/term.1972] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 08/15/2014] [Accepted: 10/28/2014] [Indexed: 12/14/2022]
Abstract
Neural stem or progenitor cells are considered to be a novel therapeutic strategy for amyotrophic lateral sclerosis (ALS), based on their potential to generate a protective environment rather than to replace degenerating motor neurons. Following local injection to the spinal cord, neural progenitor cells may generate glial cells and release neurotrophic factors. In the present study, human spinal cord-derived neural progenitor cells (hscNPCs) were injected into the lumbar spinal cord of G93A-SOD1 ALS transgenic mice. We evaluated the potential effect of hscNPC treatment by survival analysis and behavioural/phenotypic assessments. Immunohistological and real-time PCR experiments were performed at a defined time point to study the underlying mechanisms. Symptom progression in hscNPC-injected mice was significantly delayed at the late stage of disease. On average, survival was only prolonged for 5 days. Animals treated with hscNPCs performed significantly better in motor function tests between weeks 18 and 19. Increased production of GDNF and IGF-1 mRNA was detectable in spinal cord tissue of hscNPC-treated mice. In summary, treatment with hscNPCs led to increased endogenous production of several growth factors and increased the preservation of innervated motor neurons but had only a small effect on overall survival. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Klaus Jan Rath
- Department of Neurology, Hannover Medical School, Germany.,Integriertes Forschungs- und Behandlungszentrum Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| | - Sebastian Böselt
- Department of Neurology, Hannover Medical School, Germany.,Integriertes Forschungs- und Behandlungszentrum Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| | - Nadine Thau-Habermann
- Department of Neurology, Hannover Medical School, Germany.,Centre for Systems Neuroscience, Hannover, Germany
| | - Sigrid C Schwarz
- German Centre for Neurodegenerative Diseases (DZNE), Technical University of Munich, Germany
| | - Reinhard Dengler
- Department of Neurology, Hannover Medical School, Germany.,Centre for Systems Neuroscience, Hannover, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Germany.,Centre for Systems Neuroscience, Hannover, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Germany.,Centre for Systems Neuroscience, Hannover, Germany.,Integriertes Forschungs- und Behandlungszentrum Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| |
Collapse
|
38
|
Calió ML, Marinho DS, Ko GM, Ribeiro RR, Carbonel AF, Oyama LM, Ormanji M, Guirao TP, Calió PL, Reis LA, Simões MDJ, Lisbôa-Nascimento T, Ferreira AT, Bertoncini CRA. Transplantation of bone marrow mesenchymal stem cells decreases oxidative stress, apoptosis, and hippocampal damage in brain of a spontaneous stroke model. Free Radic Biol Med 2014; 70:141-54. [PMID: 24525001 DOI: 10.1016/j.freeradbiomed.2014.01.024] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 12/21/2022]
Abstract
Stroke is the most common cause of motor disabilities and is a major cause of mortality worldwide. Adult stem cells have been shown to be effective against neuronal degeneration through mechanisms that include both the recovery of neurotransmitter activity and a decrease in apoptosis and oxidative stress. We chose the lineage stroke-prone spontaneously hypertensive rat (SHRSP) as a model for stem cell therapy. SHRSP rats can develop such severe hypertension that they generally suffer a stroke at approximately 1 year of age. The aim of this study was to evaluate whether mesenchymal stem cells (MSCs) decrease apoptotic death and oxidative stress in existing SHRSP brain tissue. The results of qRT-PCR assays showed higher levels of the antiapoptotic Bcl-2 gene in the MSC-treated animals, compared with untreated. Our study also showed that superoxide, apoptotic cells, and by-products of lipid peroxidation decreased in MSC-treated SHRSP to levels similar those found in the animal controls, Wistar Kyoto rats. In addition, we saw a repair of morphological damage at the hippocampal region after MSC transplantation. These data suggest that MSCs have neuroprotective and antioxidant potential in stroke-prone spontaneously hypertensive rats.
Collapse
Affiliation(s)
- Michele Longoni Calió
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil
| | - Darci Sousa Marinho
- Centro de Desenvolvimento de Modelos Experimentais para Medicina e Biologia, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil
| | - Gui Mi Ko
- Centro de Desenvolvimento de Modelos Experimentais para Medicina e Biologia, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil
| | | | - Adriana Ferraz Carbonel
- Departamento de Morfologia, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil
| | - Lila Missae Oyama
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil
| | - Milene Ormanji
- Centro de Desenvolvimento de Modelos Experimentais para Medicina e Biologia, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil
| | - Tatiana Pinoti Guirao
- Centro de Desenvolvimento de Modelos Experimentais para Medicina e Biologia, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil
| | - Pedro Luiz Calió
- Departamento de Odontologia, Universidade Santa Cecília, Santos, SP, Brazil
| | - Luciana Aparecida Reis
- Departamento de Nefrologia, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil
| | - Manuel de Jesus Simões
- Departamento de Morfologia, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil
| | - Telma Lisbôa-Nascimento
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil
| | - Alice Teixeira Ferreira
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil
| | - Clélia Rejane Antônio Bertoncini
- Centro de Desenvolvimento de Modelos Experimentais para Medicina e Biologia, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil.
| |
Collapse
|
39
|
Boido M, Piras A, Valsecchi V, Spigolon G, Mareschi K, Ferrero I, Vizzini A, Temi S, Mazzini L, Fagioli F, Vercelli A. Human mesenchymal stromal cell transplantation modulates neuroinflammatory milieu in a mouse model of amyotrophic lateral sclerosis. Cytotherapy 2014; 16:1059-72. [PMID: 24794182 DOI: 10.1016/j.jcyt.2014.02.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/03/2014] [Accepted: 02/09/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs), after intraparenchymal, intrathecal and endovenous administration, have been previously tested for cell therapy in amyotrophic lateral sclerosis in the SOD1 (superoxide dismutase 1) mouse. However, every administration route has specific pros and cons. METHODS We administrated human MSCs (hMSCs) in the cisterna lumbaris, which is easily accessible and could be used in outpatient surgery, in the SOD1 G93A mouse, at the earliest onset of symptoms. Control animals received saline injections. Motor behavior was checked starting from 2 months of age until the mice were killed. Animals were killed 2 weeks after transplantation; lumbar motoneurons were stereologically counted, astrocytes and microglia were analyzed and quantified after immunohistochemistry and cytokine expression was assayed by means of real-time polymerase chain reaction. RESULTS We provide evidence that this route of administration can exert strongly positive effects. Motoneuron death and motor decay were delayed, astrogliosis was reduced and microglial activation was modulated. In addition, hMSC transplantation prevented the downregulation of the anti-inflammatory interleukin-10, as well as that of vascular endothelial growth factor observed in saline-treated transgenic mice compared with wild type, and resulted in a dramatic increase in the expression of the anti-inflammatory interleukin-13. CONCLUSIONS Our results suggest that hMSCs, when intracisternally administered, can exert their paracrine potential, influencing the inflammatory response of the host.
Collapse
Affiliation(s)
- Marina Boido
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Torino, Torino, Italy.
| | - Antonio Piras
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Torino, Torino, Italy
| | - Valeria Valsecchi
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Torino, Torino, Italy
| | - Giada Spigolon
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Torino, Torino, Italy
| | - Katia Mareschi
- Paediatric Onco-Haematology, Stem Cell Transplantation and Cellular Therapy Division, City of Science and Health of Turin, Regina Margherita Children's Hospital, Department of Public Health and Paediatrics, University of Torino, Torino, Italy
| | - Ivana Ferrero
- Paediatric Onco-Haematology, Stem Cell Transplantation and Cellular Therapy Division, City of Science and Health of Turin, Regina Margherita Children's Hospital, Department of Public Health and Paediatrics, University of Torino, Torino, Italy
| | - Andrea Vizzini
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Torino, Torino, Italy
| | - Santa Temi
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Torino, Torino, Italy
| | - Letizia Mazzini
- ALS Centre Department of Neurology, University of Eastern Piedmont, Novara, Italy
| | - Franca Fagioli
- Paediatric Onco-Haematology, Stem Cell Transplantation and Cellular Therapy Division, City of Science and Health of Turin, Regina Margherita Children's Hospital, Department of Public Health and Paediatrics, University of Torino, Torino, Italy
| | - Alessandro Vercelli
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Torino, Torino, Italy
| |
Collapse
|
40
|
Neuroprotective effects of adipose-derived stem cells are maintained for 3 weeks against ischemic damage in the rabbit spinal cord. BIOMED RESEARCH INTERNATIONAL 2014; 2014:539051. [PMID: 24592394 PMCID: PMC3925622 DOI: 10.1155/2014/539051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 12/16/2013] [Indexed: 11/17/2022]
Abstract
In the previous study, we demonstrated that adipose-derived stem cells (ASCs) have neuroprotective effects against ischemic damage in the ventral horn of L5-6 levels at 3 days after ischemia/reperfusion. In the present study, we expanded our observations for 3 weeks after ischemia/reperfusion to rule out the possibility of delayed neuronal death in several days after ischemia/reperfusion. Transient spinal cord ischemia was induced by a 15 min aortic artery occlusion in the subrenal region and rabbit ASCs were administered intrathecally into recipient rabbits (2 × 105) immediately after reperfusion. Transplantation of ASCs improved the neurological motor functions of the hindlimb 3 weeks after ischemia/reperfusion. Similarly, the cresyl violet-positive neurons were significantly increased at 3 weeks after ischemia/reperfusion compared to that in the vehicle (artificial cerebrospinal fluid)-treated group. The transplantation of ASCs significantly reduced reactive microglia induced by ischemia at 3 weeks after ischemia/reperfusion. In addition, transplantation of ASCs maintained the brain-derived neurotrophic factor (BDNF) levels 3 weeks after ischemia/reperfusion. These results suggest that the neuroprotective effects of ASCs are maintained 3 weeks after ischemia/reperfusion by modulating microgliosis and BDNF levels in the spinal cord.
Collapse
|
41
|
Achyut BR, Varma NRS, Arbab AS. Application of Umbilical Cord Blood Derived Stem Cells in Diseases of the Nervous System. ACTA ACUST UNITED AC 2014; 4. [PMID: 25599002 DOI: 10.4172/2157-7633.1000202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Umbilical cord blood (UCB) derived multipotent stem cells are capable of giving rise hematopoietic, epithelial, endothelial and neural progenitor cells. Thus suggested to significantly improve graft-versus-host disease and represent the distinctive therapeutic option for several malignant and non-malignant diseases. Recent advances in strategies to isolate, expand and shorten the timing of UCB stem cells engraftment have tremendously improved the efficacy of transplantations. Nervous system has limited regenerative potential in disease conditions such as cancer, neurodegeneration, stroke, and several neural injuries. This review focuses on application of UCB derived stem/progenitor cells in aforementioned pathological conditions. We have discussed the possible attempts to make use of UCB therapies to generate neural cells and tissues with developmental and functional similarities to neuronal cells. In addition, emerging applications of UCB derived AC133+ (CD133+) endothelial progenitor cells (EPCs) as imaging probe, regenerative agent, and gene delivery vehicle are mentioned that will further improve the understanding of use of UCB cells in therapeutic modalities. However, safe and effective protocols for cell transplantations are still required for therapeutic efficacy.
Collapse
Affiliation(s)
- Bhagelu R Achyut
- Tumor Angiogenesis Lab, Cancer Center, Georgia Regents University, Augusta, GA 30912, USA
| | | | - Ali S Arbab
- Tumor Angiogenesis Lab, Cancer Center, Georgia Regents University, Augusta, GA 30912, USA
| |
Collapse
|
42
|
Chan-Il C, Young-Don L, Heejaung K, Kim SH, Suh-Kim H, Kim SS. Neural induction with neurogenin 1 enhances the therapeutic potential of mesenchymal stem cells in an amyotrophic lateral sclerosis mouse model. Cell Transplant 2013; 22:855-70. [PMID: 22472631 DOI: 10.3727/096368912x637019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by progressive dysfunction and degeneration of motor neurons in the central nervous system (CNS). In the absence of effective drug treatments for ALS, stem cell treatment has emerged as a candidate therapy for this disease. To date, however, there is no consensus protocol that stipulates stem cell types, transplantation timing, or frequency. Using an ALS mouse model carrying a high copy number of a mutant human superoxide dismutase-1 (SOD1)(G93A) transgene, we investigated the effect of neural induction on the innate therapeutic potential of mesenchymal stem cells (MSCs) in relation to preclinical transplantation parameters. In our study, the expression of monocyte chemoattractant protein-1 (MCP-1) was elevated in the ALS mouse spinal cord. Neural induction of MSCs with neurogenin 1 (Ngn1) upregulated the expression level of the MCP-1 receptor, CCR2, and enhanced the migration activity toward MCP-1 in vitro. Ngn1-expressing MSCs (MSCs-Ngn1) showed a corresponding increase in tropism to the CNS after systemic transplantation in ALS mice. Notably, MSCs-Ngn1 delayed disease onset if transplanted during preonset ages,whereas unprocessed MSCs failed to do so. If transplanted near the onset ages, a single treatment with MSCs-Ngn1 was sufficient to enhance motor functions during the symptomatic period (15–17 weeks), whereas unprocessed MSCs required repeated transplantation to achieve similar levels of motor function improvement. Our data indicate that systemically transplanted MSCs-Ngn1 can migrate to the CNS and exert beneficial effects on host neural cells for an extended period of time through paracrine functions, suggesting a potential benefit of neural induction of transplanted MSCs in long-term treatment of ALS.
Collapse
Affiliation(s)
- Choi Chan-Il
- Department of Anatomy, Ajou University School of Medicine, Suwon, South Korea
| | | | | | | | | | | |
Collapse
|
43
|
Cellular therapeutics delivery to the spinal cord: technical considerations for clinical application. Ther Deliv 2013; 4:1397-410. [DOI: 10.4155/tde.13.111] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Current literature demonstrates the efficacy of cell-based therapeutics in small animal models of varied spinal cord diseases. However, logistic challenges remain towards development of an optimized delivery approach to the human spinal cord. Clinical trials utilize a variety of methods to achieve this aim. In this article, the authors review currently employed delivery methods, compare the merits of alternate delivery paradigms, introduce their implementation in completed and ongoing clinical trials, and discuss promising near-term advances in image-guided delivery and in vivo graft tracking.
Collapse
|
44
|
Li Y, Chen L, Zhao Y, Bao J, Xiao J, Liu J, Jiang X, Zhou C, Wang H, Huang H. Intracranial transplant of olfactory ensheathing cells can protect both upper and lower motor neurons in amyotrophic lateral sclerosis. Cell Transplant 2013; 22 Suppl 1:S51-65. [PMID: 23993044 DOI: 10.3727/096368913x672208] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease that involves the degeneration of cortical and spinal motor neurons. Mutant SOD1(G93A) rats constitute a good animal model for this pathological condition. We have previously demonstrated that transplantation of neonatal olfactory ensheathing cells (OECs) into the dorsal funiculus of the spinal cord of mutant SOD1(G93A) transgenic rats increases the survival of spinal motor neurons and remyelinates the impaired axons through the pyramidal tract. In the present study, we examine whether intracranial cell implantation could also exert a similar effect on cortical motor neurons and on the lower motor neurons in the spinal cord. We injected OECs from the bulb of 7-day-old GFP green rats into the corona radiata of adult SOD1 mutant rats stereotaxically to observe any changes of the upper motor neurons as well as the lower motor neurons. We found that more motor neurons at both the motor cortices and ventral horns of the spinal cord survived in grafted ALS rats than in control rats. Prolonged survival and behavioral tests including a screen test, hind limb extension, rotarod, and gait control showed that the treated animals were better than the control group. This manuscript is published as part of the International Association of Neurorestoratology (IANR) supplement issue of Cell Transplantation.
Collapse
|
45
|
Abdanipour A, Tiraihi T, Mirnajafi-Zadeh J. Improvement of the pilocarpine epilepsy model in rat using bone marrow stromal cell therapy. Neurol Res 2013; 33:625-32. [DOI: 10.1179/1743132810y.0000000018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
46
|
Human marrow stromal cells reduce microglial activation to protect motor neurons in a transgenic mouse model of amyotrophic lateral sclerosis. J Neuroinflammation 2013; 10:52. [PMID: 23631660 PMCID: PMC3651332 DOI: 10.1186/1742-2094-10-52] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/19/2013] [Indexed: 12/13/2022] Open
Abstract
Background Human marrow stromal cells (hMSCs) injected intrathecally can effectively increase the lifespan and protect motor neurons in a transgenic mouse model of amyotrophic lateral sclerosis. However, how the transplanted cells exert a neuroprotective effect is still unclear. More recently, the anti-inflammation effect of marrow stromal cells has generated a great deal of interest. In the present study, we sought to investigate whether intrathecally injected hMSCs protect motor neurons through attenuating microglial activation and the secretion of inflammatory factors in Cu/Zn superoxide dismutase 1 (SOD1) transgenic mice. In addition, we also focused on the mode of hMSCs inhibiting microglial activation. Methods We transplanted hMSCs into the cisterna magna of SOD1 mice at the age of 8, 10 and 12 weeks. At sacrifice, tissues were harvested for analysis of neuron counts, microglial activation, TNFα secretion and inducible nitric oxide synthase (iNOS) protein expression. In vitro, microglial cells were treated with hMSC co-culture, hMSC transwell culture or hMSC conditioned medium to investigate the mode of hMSCs exerting an anti-inflammation effect. Results Intrathecally transplanted hMSCs inhibited inflammatory response in SOD1 transgenic mice, which was evidenced by the decreases in microglial activation, TNFα secretion and iNOS protein expression. In addition, the inhibitory effect on microglial activation of hMSCs was through secretion of diffusible molecules adjusted to environmental cues. Conclusion Intrathecally injected hMSCs can attenuate microglial activation through secretion of diffusible molecules to exert a therapeutic effect in SOD1 transgenic mice. Further studies are needed to explore the exact mechanisms by which hMSCs inhibit inflammation for facilitating the therapeutic effect.
Collapse
|
47
|
Repairing neural injuries using human umbilical cord blood. Mol Neurobiol 2012; 47:938-45. [PMID: 23275174 DOI: 10.1007/s12035-012-8388-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/13/2012] [Indexed: 01/14/2023]
Abstract
Stem cells are promising sources for repairing damaged neurons and glial cells in neural injuries and for replacing dead cells in neurodegenerative diseases. An essential step for stem cell-based therapy is to generate large quantities of stem cells and develop reliable culture conditions to direct efficient differentiation of specific neuronal and glial subtypes. The human umbilical cord and umbilical cord blood (UCB) are rich sources of multiple stem cells, including hematopoietic stem cells, mesenchymal stem cells, unrestricted somatic stem cells, and embryonic-like stem cells. Human UC/UCB-derived cells are able to give rise to multiple cell types of neural lineages. Studies have shown that UCB and UCB-derived cells can survive in injured sites in animal models of ischemic brain damage and spinal cord injuries, and promote survival and prevent cell death of local neurons and glia. Human UCB is easy to harvest and purify. Moreover, unlike embryonic stem cells, the use of human UCB is not limited by ethical quandaries. Therefore, human UCB is an attractive source of stem cells for repairing neural injuries.
Collapse
|
48
|
Minguell JJ, Allers C, Lasala GP. Mesenchymal stem cells and the treatment of conditions and diseases: the less glittering side of a conspicuous stem cell for basic research. Stem Cells Dev 2012; 22:193-203. [PMID: 23025629 DOI: 10.1089/scd.2012.0417] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Not too long ago, several motivated and forward-looking articles were published describing the cellular and molecular properties of mesenchymal stem cells (MSCs), specially highlighting their potential for self-renewal, commitment, differentiation, and maturation into specific mesoderm-derived lineages. A very influential publication of that period entitled "Mesenchymal stem cells: No longer second class marrow citizens" [1] raised the point of view that "…challenges to harness MSC cell therapy to treat diseases … need to wait for the full comprehension that marrow is a rich source of mesenchyme-derived cells whose potential is still far from fully appreciated." Whether or not the prophecy of Gerson was fulfilled, in the last 8 years it has become evident that infusing MSCs into patients suffering a variety of disorders represents a viable option for medical treatment. Accordingly, a vast number of articles have explored the privileged cellular and molecular features of MSCs prepared from sources other than the canonical, represented by the bone marrow. This review will provide more information neither related to the biological attractiveness of MSCs nor to the success after their clinical use. Rather, we would like to underscore several "critical and tangential" issues, not always discussed in biomedical publications, but relevant to the clinical utilization of bone-marrow-derived MSCs.
Collapse
Affiliation(s)
- Jose J Minguell
- TCA Cellular Therapy, 101 Judge Tanner Boulevard, Covington, LA 70433, USA.
| | | | | |
Collapse
|
49
|
Teng YD, Yu D, Ropper AE, Li J, Kabatas S, Wakeman DR, Wang J, Sullivan MP, Redmond DE, Langer R, Snyder EY, Sidman RL. Functional multipotency of stem cells: a conceptual review of neurotrophic factor-based evidence and its role in translational research. Curr Neuropharmacol 2012; 9:574-85. [PMID: 22654717 PMCID: PMC3263453 DOI: 10.2174/157015911798376299] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/28/2010] [Accepted: 09/28/2010] [Indexed: 12/14/2022] Open
Abstract
We here propose an updated concept of stem cells (SCs), with an emphasis on neural stem cells (NSCs). The conventional view, which has touched principally on the essential property of lineage multipotency (e.g., the ability of NSCs to differentiate into all neural cells), should be broadened to include the emerging recognition of biofunctional multipotency of SCs to mediate systemic homeostasis, evidenced in NSCs in particular by the secretion of neurotrophic factors. Under this new conceptual context and taking the NSC as a leading example, one may begin to appreciate and seek the “logic” behind the wide range of molecular tactics the NSC appears to serve at successive developmental stages as it integrates into and prepares, modifies, and guides the surrounding CNS micro- and macro-environment towards the formation and self-maintenance of a functioning adult nervous system. We suggest that embracing this view of the “multipotency” of the SCs is pivotal for correctly, efficiently, and optimally exploiting stem cell biology for therapeutic applications, including reconstitution of a dysfunctional CNS.
Collapse
Affiliation(s)
- Yang D Teng
- Division of SCI Research, Veterans Affairs Boston Healthcare System, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Defective neuromuscular transmission in the SOD1 G93A transgenic mouse improves after administration of human umbilical cord blood cells. Stem Cell Rev Rep 2012; 8:224-8. [PMID: 21678037 DOI: 10.1007/s12015-011-9281-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To assess the effect of human umbilical cord blood (hUCB) transplantation on neuromuscular transmission in SOD1(G93A) transgenic mice, we studied the probability of neuromuscular transmission (PNMT), a relevant physiological indicator of motor nerve function, in 3 SOD1(G93A) mice transplanted with hUCB and compared to PNMT in 4 SOD1(G93A) mice without cell transplantation and 3 non-mutant SOD1 transgenic mice. For preparations isolated from non-mutant SOD1 transgenic mice, PNMT was 0.93 and 0.84 during the first 5 s of 70 and 90 Hz trains, respectively. PNMT gradually declined to 0.77 and 0.42 at the end of the trains. In striking contrast, PNMT for preparations from non-treated mutant SOD1(G93A) mice was 0.52 and 0.36 in the first 5 s of 70 and 90 Hz trains, respectively (p<0.05). Treatment with hUCB significantly (p<0.05) improved PNMT in SOD1(G93A) preparations. That is, the initial 5 s PNMT was 0.88 and 0.68 for the 70 and 90 Hz stimuli, respectively. We concluded that hUCB transplantation significantly improved PNMT for muscles removed from SOD1(G93A) mice. Testing PNMT in the SOD1(G93A) mouse model could be used as a simple in vitro protocol to detect a positive cellular response to therapeutic interventions in ALS.
Collapse
|