1
|
Luo Y, Yang J, Zhang L, Tai Z, Huang H, Xu Z, Zhang H. Phosphoglycerate kinase (PGK) 1 succinylation modulates epileptic seizures and the blood-brain barrier. Exp Anim 2023; 72:475-489. [PMID: 37258131 PMCID: PMC10658094 DOI: 10.1538/expanim.23-0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023] Open
Abstract
Epilepsy is the most common chronic disorder in the nervous system, mainly characterized by recurrent, periodic, unpredictable seizures. Post-translational modifications (PTMs) are important protein functional regulators that regulate various physiological and pathological processes. It is significant for cell activity, stability, protein folding, and localization. Phosphoglycerate kinase (PGK) 1 has traditionally been studied as an important adenosine triphosphate (ATP)-generating enzyme of the glycolytic pathway. PGK1 catalyzes the reversible transfer of a phosphoryl group from 1, 3-bisphosphoglycerate (1, 3-BPG) to ADP, producing 3-phosphoglycerate (3-PG) and ATP. In addition to cell metabolism regulation, PGK1 is involved in multiple biological activities, including angiogenesis, autophagy, and DNA repair. However, the exact role of PGK1 succinylation in epilepsy has not been thoroughly investigated. The expression of PGK1 succinylation was analyzed by Immunoprecipitation. Western blots were used to assess the expression of PGK1, angiostatin, and vascular endothelial growth factor (VEGF) in a rat model of lithium-pilocarpine-induced acute epilepsy. Behavioral experiments were performed in a rat model of lithium-pilocarpine-induced acute epilepsy. ELISA method was used to measure the level of S100β in serum brain biomarkers' integrity of the blood-brain barrier. The expression of the succinylation of PGK1 was decreased in a rat model of lithium-pilocarpine-induced acute epilepsy compared with the normal rats in the hippocampus. Interestingly, the lysine 15 (K15), and the arginine (R) variants of lentivirus increased the susceptibility in a rat model of lithium-pilocarpine-induced acute epilepsy, and the K15 the glutamate (E) variants, had the opposite effect. In addition, the succinylation of PGK1 at K15 affected the expression of PGK1 succinylation but not the expression of PGK1total protein. Furthermore, the study found that the succinylation of PGK1 at K15 may affect the level of angiostatin and VEGF in the hippocampus, which also affects the level of S100β in serum. In conclusion, the mutation of the K15 site of PGK1 may alter the expression of the succinylation of PGK1 and then affect the integrity of the blood-brain barrier through the angiostatin / VEGF pathway altering the activity of epilepsy, which may be one of the new mechanisms of treatment strategies.
Collapse
Affiliation(s)
- Yuemei Luo
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou 563003, P.R. China
| | - Juan Yang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou 563003, P.R. China
| | - Lijia Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou 563003, P.R. China
| | - Zhenzhen Tai
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou 563003, P.R. China
| | - Hao Huang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou 563003, P.R. China
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou 563003, P.R. China
| | - Haiqing Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
2
|
Liu H, Shen L, Sun Z, Wu W, Xu M. Downregulated PGK1 attenuates cerebral ischemia-reperfusion injury by reversing neuroinflammation and oxidative stress through the Nrf2/ARE pathway. Neuroscience 2023:S0306-4522(23)00239-7. [PMID: 37295596 DOI: 10.1016/j.neuroscience.2023.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Understanding the role and mechanism of astrocytes in inflammation and oxidative response is crucial for developing therapeutic strategies to reduce inflammation and oxidative injury in cerebral ischemia-reperfusion injury (CIRI). In this study, we investigated the regulatory effects of phosphoglycerate kinase 1 (PGK1) on inflammation and oxidative response after CIRI in male adult Sprague-Dawley (SD) rats and using primary astrocytes obtained from neonatal SD rats, and explored its related mechanisms. We established a rat model of middle cerebral artery occlusion-reperfusion (MCAO/R) by suture occlusion, and an oxygen-glucose deprivation/reoxygenation model of astrocytes using oxygen-free, glucose-free, and serum-free cultures. AAV8-PGK1-GFP was injected into the left ventricle 24 h before modeling. Real-time quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, co-immunoprecipitation (CoIP) assay, fluorescence in situ hybridization (FISH), and western blotting were used to elucidate the in-depth mechanisms of PGK1 in CIRI. PGK1 overexpression significantly exacerbated neurological deficits, increased cerebral infarct volume, and aggravated nerve cell injury in rats after MCAO/R. Using FISH and CoIP assays, we verified the localization of PGK1 and Nrf2 in primary astrocytes. Further rescue experiments showed that Nrf2 knockdown eliminated the protective effect of CBR-470-1 (a PGK1 inhibitor) on CIRI. Lastly, we confirmed that PGK1 aggravates CIRI by inhibiting the Nrf2/ARE pathway. In conclusion, our findings suggest that inhibiting PGK1 attenuates CIRI by reducing the release of inflammatory and oxidative factors from astrocytes by activating the Nrf2/ARE signaling pathway.
Collapse
Affiliation(s)
- Hua Liu
- Department of Neurosurgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, China
| | - Likui Shen
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, 215028, China
| | - Zezhi Sun
- Department of Neurosurgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, China
| | - Wenxi Wu
- Department of Neurosurgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, China
| | - Min Xu
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, 215300, China.
| |
Collapse
|
3
|
De Palma A, Agresta AM, Viglio S, Rossi R, D’Amato M, Di Silvestre D, Mauri P, Iadarola P. A Shotgun Proteomic Platform for a Global Mapping of Lymphoblastoid Cells to Gain Insight into Nasu-Hakola Disease. Int J Mol Sci 2021; 22:9959. [PMID: 34576123 PMCID: PMC8472724 DOI: 10.3390/ijms22189959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Nasu-Hakola Disease (NHD) is a recessively inherited systemic leukodystrophy disorder characterized by a combination of frontotemporal presenile dementia and lytic bone lesions. NHD is known to be genetically related to a structural defect of TREM2 and DAP12, two genes that encode for different subunits of the membrane receptor signaling complex expressed by microglia and osteoclast cells. Because of its rarity, molecular or proteomic studies on this disorder are absent or scarce, only case reports based on neuropsychological and genetic tests being reported. In light of this, the aim of this paper is to provide evidence on the potential of a label-free proteomic platform based on the Multidimensional Protein Identification Technology (MudPIT), combined with in-house software and on-line bioinformatics tools, to characterize the protein expression trends and the most involved pathways in NHD. The application of this approach on the Lymphoblastoid cells from a family composed of individuals affected by NHD, healthy carriers and control subjects allowed for the identification of about 3000 distinct proteins within the three analyzed groups, among which proteins anomalous to each category were identified. Of note, several differentially expressed proteins were associated with neurodegenerative processes. Moreover, the protein networks highlighted some molecular pathways that may be involved in the onset or progression of this rare frontotemporal disorder. Therefore, this fully automated MudPIT platform which allowed, for the first time, the generation of the whole protein profile of Lymphoblastoid cells from Nasu-Hakola subjects, could be a valid approach for the investigation of similar neurodegenerative diseases.
Collapse
Affiliation(s)
- Antonella De Palma
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), 20054 Milan, Italy; (A.M.A.); (R.R.); (D.D.S.)
| | - Anna Maria Agresta
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), 20054 Milan, Italy; (A.M.A.); (R.R.); (D.D.S.)
| | - Simona Viglio
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (S.V.); (M.D.)
| | - Rossana Rossi
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), 20054 Milan, Italy; (A.M.A.); (R.R.); (D.D.S.)
| | - Maura D’Amato
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (S.V.); (M.D.)
| | - Dario Di Silvestre
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), 20054 Milan, Italy; (A.M.A.); (R.R.); (D.D.S.)
| | - Pierluigi Mauri
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), 20054 Milan, Italy; (A.M.A.); (R.R.); (D.D.S.)
| | - Paolo Iadarola
- Biochemistry Unit, Department of Biology and Biotechnologies “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
4
|
Salazar-Coria L, Rocha-Gómez MA, Matadamas-Martínez F, Yépez-Mulia L, Vega-López A. Proteomic analysis of oxidized proteins in the brain and liver of the Nile tilapia (Oreochromis niloticus) exposed to a water-accommodated fraction of Maya crude oil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:609-620. [PMID: 30658296 DOI: 10.1016/j.ecoenv.2019.01.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/19/2018] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
Crude oil (CO) is a super mixture of chemical compounds whose toxic effects are reported in fish species according to international guidelines. In the current study a proteomic analysis of oxidized proteins (ox) was performed on the brain and liver of Nile tilapia exposed to WAF obtained from relevant environmental loads (0.01, 0.1 and 1.0 g/L) of Maya CO. Results have shown that oxidation of specific proteins was a newly discovered organ-dependent process able to disrupt key functions in Nile tilapia. In control fish, enzymes involved on aerobic metabolism (liver aldehyde dehydrogenase and brain dihydrofolate reductase) and liver tryptophan--tRNA ligase were oxidized. In WAF-treated liver specimens, fructose-bisphosphate aldolase (FBA), β-galactosidase (β-GAL) and dipeptidyl peptidase 9 (DPP-9) were detected in oxidized form. oxDPP-9 could be favorable by reducing the risk associated with altered glucose metabolism, the opposite effects elicited by oxFBA and oxβ-GAL. oxTrypsin showed a clear adverse effect by reducing probably the hepatocyte capacity to achieve proteolysis of oxidized proteins as well as for performing the proper digestive function. Additionally, enzyme implicated in purine metabolism adenosine (deaminase) was oxidized. Cerebral enzymes of mitochondrial respiratory chain complex (COX IV, COX5B), of glycosphingolipid biosynthesis (β-N-acetylhexosaminidase), involved in catecholamines degradation (catechol O-methyltransferase), and microtubule cytoskeleton (stathmin) were oxidized in WAF-treated specimens. This response suggests, in the brain, an adverse scenario for the mitochondrial respiration process and for ATP provision as for ischemia/reoxygenation challenges. Proteomic analysis of oxidized proteins is a promising tool for monitoring environmental quality influenced by hydrocarbons dissolved in water.
Collapse
Affiliation(s)
- Lucía Salazar-Coria
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, 07738 Mexico City, Mexico
| | - María Alejandra Rocha-Gómez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, 07738 Mexico City, Mexico
| | - Félix Matadamas-Martínez
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, UMAE Hospital de Pediatría, Centro Médico Siglo XXI, Instituto Mexicano del Seguro Social, 06720 Mexico City, Mexico
| | - Lilián Yépez-Mulia
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, UMAE Hospital de Pediatría, Centro Médico Siglo XXI, Instituto Mexicano del Seguro Social, 06720 Mexico City, Mexico
| | - Armando Vega-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, 07738 Mexico City, Mexico.
| |
Collapse
|
5
|
γ-Oryzanol Improves Cognitive Function and Modulates Hippocampal Proteome in Mice. Nutrients 2019; 11:nu11040753. [PMID: 30935111 PMCID: PMC6520752 DOI: 10.3390/nu11040753] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 01/18/2023] Open
Abstract
Rice (Oryza sativa L.) is the richest source of γ-oryzanol, a compound endowed with antioxidant and anti-inflammatory properties. γ-Oryzanol has been demonstrated to cross the blood-brain barrier in intact form and exert beneficial effects on brain function. This study aimed to clarify the effects of γ-oryzanol in the hippocampus in terms of cognitive function and protein expression. Adult mice were administered with γ-oryzanol 100 mg/kg or vehicle (control) once a day for 21 consecutive days following which cognitive behavior and hippocampal proteome were investigated. Cognitive tests using novel object recognition and Y-maze showed that long-term consumption of γ-oryzanol improves cognitive function in mice. To investigate the hippocampal proteome modulated by γ-oryzanol, 2D-difference gel electrophoresis (2D-DIGE) was performed. Interestingly, we found that γ-oryzanol modulates quantitative changes of proteins involved in synaptic plasticity and neuronal trafficking, neuroprotection and antioxidant activity, and mitochondria and energy metabolism. These findings suggested γ-oryzanol as a natural compound able to maintain and reinforce brain function. Although more intensive studies are needed, we propose γ-oryzanol as a putative dietary phytochemical for preserving brain reserve, the ability to tolerate age-related changes, thereby preventing clinical symptoms or signs of neurodegenerative diseases.
Collapse
|
6
|
Balogh E, Veale DJ, McGarry T, Orr C, Szekanecz Z, Ng CT, Fearon U, Biniecka M. Oxidative stress impairs energy metabolism in primary cells and synovial tissue of patients with rheumatoid arthritis. Arthritis Res Ther 2018; 20:95. [PMID: 29843785 PMCID: PMC5972404 DOI: 10.1186/s13075-018-1592-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/12/2018] [Indexed: 03/18/2023] Open
Abstract
Background In this study, we examined the effect of oxidative stress on cellular energy metabolism and pro-angiogenic/pro-inflammatory mechanisms of primary rheumatoid arthritis synovial fibroblast cells (RASFC) and human umbilical vein endothelial cells (HUVEC). Methods Primary RASFC and HUVEC were cultured with the oxidative stress inducer 4-hydroxy-2-nonenal (4-HNE), and extracellular acidification rate, oxygen consumption rate, mitochondrial function and pro-angiogenic/pro-inflammatory mechanisms were assessed using the Seahorse analyser, complex I–V activity assays, random mutation mitochondrial capture assays, enzyme-linked immunosorbent assays and functional assays, including angiogenic tube formation, migration and invasion. Expression of angiogenic growth factors in synovial tissue (ST) was assessed by IHC in patients with rheumatoid arthritis (RA) undergoing arthroscopy before and after administration of tumour necrosis factor inhibitors (TNFi). Results In RASFC and HUVEC, 4-HNE-induced oxidative stress reprogrammed energy metabolism by inhibiting mitochondrial basal, maximal and adenosine triphosphate-linked respiration and reserve capacity, coupled with the reduced enzymatic activity of oxidative phosphorylation complexes III and IV. In contrast, 4-HNE elevated basal glycolysis, glycolytic capacity and glycolytic reserve, paralleled by an increase in mitochondrial DNA mutations and reactive oxygen species. 4-HNE activated pro-angiogenic responses of RASFC, which subsequently altered HUVEC invasion and migration, angiogenic tube formation and the release of pro-angiogenic mediators. In vivo markers of angiogenesis (vascular endothelial growth factor, angiopoietin 2 [Ang2], tyrosine kinase receptor [Tie2]) were significantly associated with oxidative damage and oxygen metabolism in the inflamed synovium. Significant reduction in ST vascularity and Ang2/Tie2 expression was demonstrated in patients with RA before and after administration of TNFi. Conclusions Oxidative stress promotes metabolism in favour of glycolysis, an effect that may contribute to acceleration of inflammatory mechanisms and subsequent dysfunctional angiogenesis in RA. Electronic supplementary material The online version of this article (10.1186/s13075-018-1592-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emese Balogh
- Department of Rheumatology, University of Debrecen Medical and Health Science Centre, 98. Nagyerdei krt, Debrecen, Hungary
| | - Douglas J Veale
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin, Ireland
| | - Trudy McGarry
- Molecular Rheumatology, Trinity Biomedical Sciences Institute Trinity College Dublin, Dublin, Ireland
| | - Carl Orr
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin, Ireland
| | - Zoltan Szekanecz
- Department of Rheumatology, University of Debrecen Medical and Health Science Centre, 98. Nagyerdei krt, Debrecen, Hungary
| | - Chin-Teck Ng
- Department of Rheumatology and Immunology, Singapore General Hospital, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Ursula Fearon
- Molecular Rheumatology, Trinity Biomedical Sciences Institute Trinity College Dublin, Dublin, Ireland
| | - Monika Biniecka
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin, Ireland.
| |
Collapse
|
7
|
Kudryavtseva AV, Krasnov GS, Dmitriev AA, Alekseev BY, Kardymon OL, Sadritdinova AF, Fedorova MS, Pokrovsky AV, Melnikova NV, Kaprin AD, Moskalev AA, Snezhkina AV. Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget 2018; 7:44879-44905. [PMID: 27270647 PMCID: PMC5216692 DOI: 10.18632/oncotarget.9821] [Citation(s) in RCA: 374] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/28/2016] [Indexed: 12/16/2022] Open
Abstract
Aging and cancer are the most important issues to research. The population in the world is growing older, and the incidence of cancer increases with age. There is no doubt about the linkage between aging and cancer. However, the molecular mechanisms underlying this association are still unknown. Several lines of evidence suggest that the oxidative stress as a cause and/or consequence of the mitochondrial dysfunction is one of the main drivers of these processes. Increasing ROS levels and products of the oxidative stress, which occur in aging and age-related disorders, were also found in cancer. This review focuses on the similarities between ageing-associated and cancer-associated oxidative stress and mitochondrial dysfunction as their common phenotype.
Collapse
Affiliation(s)
- Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Boris Y Alekseev
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga L Kardymon
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Asiya F Sadritdinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Maria S Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Nataliya V Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey D Kaprin
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexey A Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | |
Collapse
|
8
|
Abstract
Proteomics and lipidomics are powerful tools to the large-scale study of proteins and lipids, respectively. Several methods can be employed with particular benefits and limitations in the study of human brain. This is a review of the rationale use of current techniques with particular attention to limitations and pitfalls inherent to each one of the techniques, and more importantly, to their use in the study of post-mortem brain tissue. These aspects are cardinal to avoid false interpretations, errors and unreal expectancies. Other points are also stressed as exemplified in the analysis of human neurodegenerative diseases which are manifested by disease-, region-, and stage-specific modifications commonly in the context of aging. Information about certain altered protein clusters and proteins oxidatively damaged is summarized for Alzheimer and Parkinson diseases.
Collapse
Affiliation(s)
- Isidro Ferrer
- Pathologic Anatomy Service, Institute of Neuropathology, Bellvitge University Hospital; Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona; and Network Center of Biomedical Research on Neurodegenerative Diseases, Institute Carlos III; Hospitalet de Llobregat, Llobregat, Spain.
| |
Collapse
|
9
|
Kulbe JR, Hall ED. Chronic traumatic encephalopathy-integration of canonical traumatic brain injury secondary injury mechanisms with tau pathology. Prog Neurobiol 2017; 158:15-44. [PMID: 28851546 PMCID: PMC5671903 DOI: 10.1016/j.pneurobio.2017.08.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/09/2017] [Accepted: 08/17/2017] [Indexed: 12/14/2022]
Abstract
In recent years, a new neurodegenerative tauopathy labeled Chronic Traumatic Encephalopathy (CTE), has been identified that is believed to be primarily a sequela of repeated mild traumatic brain injury (TBI), often referred to as concussion, that occurs in athletes participating in contact sports (e.g. boxing, American football, Australian football, rugby, soccer, ice hockey) or in military combatants, especially after blast-induced injuries. Since the identification of CTE, and its neuropathological finding of deposits of hyperphosphorylated tau protein, mechanistic attention has been on lumping the disorder together with various other non-traumatic neurodegenerative tauopathies. Indeed, brains from suspected CTE cases that have come to autopsy have been confirmed to have deposits of hyperphosphorylated tau in locations that make its anatomical distribution distinct for other tauopathies. The fact that these individuals experienced repetitive TBI episodes during their athletic or military careers suggests that the secondary injury mechanisms that have been extensively characterized in acute TBI preclinical models, and in TBI patients, including glutamate excitotoxicity, intracellular calcium overload, mitochondrial dysfunction, free radical-induced oxidative damage and neuroinflammation, may contribute to the brain damage associated with CTE. Thus, the current review begins with an in depth analysis of what is known about the tau protein and its functions and dysfunctions followed by a discussion of the major TBI secondary injury mechanisms, and how the latter have been shown to contribute to tau pathology. The value of this review is that it might lead to improved neuroprotective strategies for either prophylactically attenuating the development of CTE or slowing its progression.
Collapse
Affiliation(s)
- Jacqueline R Kulbe
- Spinal Cord & Brain Injury Research Center, University of Kentucky College of Medicine, United States; Department of Neuroscience, University of Kentucky College of Medicine, United States
| | - Edward D Hall
- Spinal Cord & Brain Injury Research Center, University of Kentucky College of Medicine, United States; Department of Neuroscience, University of Kentucky College of Medicine, United States.
| |
Collapse
|
10
|
Brody DM, Litvan I, Warner S, Riley DE, Hall DA, Kluger BM, Shprecher DR, Cunningham CR. Relationship between uric acid levels and progressive supranuclear palsy. Mov Disord 2016; 31:663-7. [PMID: 26890571 DOI: 10.1002/mds.26535] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 10/29/2015] [Accepted: 11/29/2015] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION The pathophysiology of both PD and PSP is characterized by a pro-oxidant state. Uric acid is an oxidative stress marker. High uric acid blood levels have been associated with a reduced risk of PD and a decreased rate of disease progression. We investigated whether a low serum concentration of uric acid is also associated with PSP. METHODS We measured serum uric acid concentrations in a subsample of the ENGENE PSP Cohort that included 75 cases and 75 frequency-matched-by-sex healthy controls (69 spouses, 6 in-laws) from four centers willing to participate (Case Western, Rush University, University of Utah, and University of Louisville). Case severity was characterized using the total PSP-Rating Scale, UPDRS, and Mattis Dementia Rating Scale. Unconditional logistic regression, Pearson's chi-squared test, and analysis of variance were used, as appropriate. RESULTS The mean uric acid level among cases (4.0 mg/dL) was not significantly lower than that of controls (4.1 mg/dL). When controlling for sex, there were no between-group statistical differences in uric acid levels. Uric acid levels were not correlated with disease severity. CONCLUSIONS The results of this study do not provide evidence of uric acid having a protective role in PSP, even if oxidative injury is important in the pathophysiology of this disorder. The lack of statistical significance suggests that there is no direct association between uric acid levels and PSP. However, a small inverse association cannot be excluded. © 2016 Movement Disorder Society.
Collapse
Affiliation(s)
- David M Brody
- Movement Disorder Center, Department of Neurosciences, University of California San Diego, San Diego, California, USA
| | - Irene Litvan
- Movement Disorder Center, Department of Neurosciences, University of California San Diego, San Diego, California, USA.,Division of Movement Disorders, Department of Neurology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | | | | | - Deborah A Hall
- Department of Neurology, Rush University Medical Center, Chicago, Illinois, USA
| | - Benzi M Kluger
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | - Christopher R Cunningham
- Division of Movement Disorders, Department of Neurology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
11
|
Krishnan B, Scott MT, Pollandt S, Schroeder B, Kurosky A, Shinnick-Gallagher P. Fear potentiated startle increases phospholipase D (PLD) expression/activity and PLD-linked metabotropic glutamate receptor mediated post-tetanic potentiation in rat amygdala. Neurobiol Learn Mem 2016; 128:65-79. [PMID: 26748024 PMCID: PMC4744522 DOI: 10.1016/j.nlm.2015.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/08/2015] [Accepted: 12/25/2015] [Indexed: 12/30/2022]
Abstract
Long-term memory (LTM) of fear stores activity dependent modifications that include changes in amygdala signaling. Previously, we identified an enhanced probability of release of glutamate mediated signaling to be important in rat fear potentiated startle (FPS), a well-established translational behavioral measure of fear. Here, we investigated short- and long-term synaptic plasticity in FPS involving metabotropic glutamate receptors (mGluRs) and associated downstream proteomic changes in the thalamic-lateral amygdala pathway (Th-LA). Aldolase A, an inhibitor of phospholipase D (PLD), expression was reduced, concurrent with significantly elevated PLD protein expression. Blocking the PLD-mGluR signaling significantly reduced PLD activity. While transmitter release probability increased in FPS, PLD-mGluR agonist and antagonist actions were occluded. In the unpaired group (UNP), blocking the PLD-mGluR increased while activating the receptor decreased transmitter release probability, consistent with decreased synaptic potentials during tetanic stimulation. FPS Post-tetanic potentiation (PTP) immediately following long-term potentiation (LTP) induction was significantly increased. Blocking PLD-mGluR signaling prevented PTP and reduced cumulative PTP probability but not LTP maintenance in both groups. These effects are similar to those mediated through mGluR7, which is co-immunoprecipitated with PLD in FPS. Lastly, blocking mGluR-PLD in the rat amygdala was sufficient to prevent behavioral expression of fear memory. Thus, our study in the Th-LA pathway provides the first evidence for PLD as an important target of mGluR signaling in amygdala fear-associated memory. Importantly, the PLD-mGluR provides a novel therapeutic target for treating maladaptive fear memories in posttraumatic stress and anxiety disorders.
Collapse
MESH Headings
- Amygdala/enzymology
- Amygdala/physiology
- Animals
- Conditioning, Classical/drug effects
- Conditioning, Classical/physiology
- Cyclopropanes/pharmacology
- Electric Stimulation
- Excitatory Postsynaptic Potentials/drug effects
- Fear/drug effects
- Fear/physiology
- Fructose-Bisphosphate Aldolase/metabolism
- Glycine/analogs & derivatives
- Glycine/pharmacology
- Long-Term Potentiation/drug effects
- Male
- Memory, Long-Term/drug effects
- Memory, Long-Term/physiology
- Neural Pathways/drug effects
- Neural Pathways/physiology
- Phospholipase D/antagonists & inhibitors
- Phospholipase D/metabolism
- Phospholipase D/physiology
- Rats
- Rats, Sprague-Dawley
- Receptors, Metabotropic Glutamate/agonists
- Receptors, Metabotropic Glutamate/antagonists & inhibitors
- Receptors, Metabotropic Glutamate/physiology
- Reflex, Startle/drug effects
- Reflex, Startle/physiology
- Thalamus/physiology
Collapse
Affiliation(s)
- Balaji Krishnan
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, United States; UTMB Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States.
| | - Michael T Scott
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Sebastian Pollandt
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Bradley Schroeder
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Alexander Kurosky
- UTMB NHLBI Proteomics Center, Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | | |
Collapse
|
12
|
Agresta AM, De Palma A, Bardoni A, Salvini R, Iadarola P, Mauri PL. Proteomics as an innovative tool to investigate frontotemporal disorders. Proteomics Clin Appl 2015; 10:457-69. [DOI: 10.1002/prca.201500090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/14/2015] [Accepted: 10/28/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Anna Maria Agresta
- Proteomics and Metabolomics Unit; Institute for Biomedical Technologies (ITB-CNR); Segrate (MI) Italy
- Department of Biology and Biotechnologies; Biochemistry Unit; University of Pavia; Pavia Italy
- Doctorate School of Molecular and Translational Medicine; University of Milan; Segrate (MI) Italy
| | - Antonella De Palma
- Proteomics and Metabolomics Unit; Institute for Biomedical Technologies (ITB-CNR); Segrate (MI) Italy
| | - Anna Bardoni
- Biochemistry Unit; Department of Molecular Medicine; University of Pavia; Pavia Italy
| | - Roberta Salvini
- Biochemistry Unit; Department of Molecular Medicine; University of Pavia; Pavia Italy
| | - Paolo Iadarola
- Department of Biology and Biotechnologies; Biochemistry Unit; University of Pavia; Pavia Italy
| | - Pier Luigi Mauri
- Proteomics and Metabolomics Unit; Institute for Biomedical Technologies (ITB-CNR); Segrate (MI) Italy
| |
Collapse
|
13
|
Lin X, Shi M, Masilamoni JG, Dator R, Movius J, Aro P, Smith Y, Zhang J. Proteomic profiling in MPTP monkey model for early Parkinson disease biomarker discovery. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:779-87. [PMID: 25617661 DOI: 10.1016/j.bbapap.2015.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/09/2015] [Accepted: 01/16/2015] [Indexed: 01/02/2023]
Abstract
Identification of reliable and robust biomarkers is crucial to enable early diagnosis of Parkinson disease (PD) and monitoring disease progression. While imperfect, the slow, chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced non-human primate animal model system of parkinsonism is an abundant source of pre-motor or early stage PD biomarker discovery. Here, we present a study of a MPTP rhesus monkey model of PD that utilizes complementary quantitative iTRAQ-based proteomic, glycoproteomics and phosphoproteomics approaches. We compared the glycoprotein, non-glycoprotein, and phosphoprotein profiles in the putamen of asymptomatic and symptomatic MPTP-treated monkeys as well as saline injected controls. We identified 86 glycoproteins, 163 non-glycoproteins, and 71 phosphoproteins differentially expressed in the MPTP-treated groups. Functional analysis of the data sets inferred the biological processes and pathways that link to neurodegeneration in PD and related disorders. Several potential biomarkers identified in this study have already been translated for their usefulness in PD diagnosis in human subjects and further validation investigations are currently under way. In addition to providing potential early PD biomarkers, this comprehensive quantitative proteomic study may also shed insights regarding the mechanisms underlying early PD development. This article is part of a Special Issue entitled: Neuroproteomics: Applications in neuroscience and neurology.
Collapse
Affiliation(s)
- Xiangmin Lin
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA; School of Life Sciences, Fujian Agricultural and Forestry University, Fuzhou, Fujian, China
| | - Min Shi
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Romel Dator
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - James Movius
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Patrick Aro
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Department of Neurology, Emory University, Atlanta, GA, USA
| | - Jing Zhang
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
14
|
Giuliano S, Agresta AM, De Palma A, Viglio S, Mauri P, Fumagalli M, Iadarola P, Montalbetti L, Salvini R, Bardoni A. Proteomic analysis of lymphoblastoid cells from Nasu-Hakola patients: a step forward in our understanding of this neurodegenerative disorder. PLoS One 2014; 9:e110073. [PMID: 25470616 PMCID: PMC4254282 DOI: 10.1371/journal.pone.0110073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/05/2014] [Indexed: 12/31/2022] Open
Abstract
Nasu-Hakola disease (NHD) is a recessively inherited rare disorder characterized by a combination of neuropsychiatric and bone symptoms which, while being unique to this disease, do not provide a rationale for the unambiguous identification of patients. These individuals, in fact, are likely to go unrecognized either because they are considered to be affected by other kinds of dementia or by fibrous dysplasia of bone. Given that dementia in NHD has much in common with Alzheimer’s disease and other neurodegenerative disorders, it cannot be expected to achieve the differential diagnosis of this disease without performing a genetic analysis. Under this scenario, the availability of protein biomarkers would indeed provide a novel context to facilitate interpretation of symptoms and to make the precise identification of this disease possible. The work here reported was designed to generate, for the first time, protein profiles of lymphoblastoid cells from NHD patients. Two-dimensional electrophoresis (2-DE) and nano liquid chromatography-tandem mass spectrometry (nLC-MS/MS) have been applied to all components of an Italian family (seven subjects) and to five healthy subjects included as controls. Comparative analyses revealed differences in the expression profile of 21 proteins involved in glucose metabolism and information pathways as well as in stress responses.
Collapse
Affiliation(s)
- Serena Giuliano
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy; Laboratoire d'excellence-Ion channel science and therapeutics, UMR, CNRS, Nice, France
| | - Anna Maria Agresta
- Institute for Biochemical Technologies, Proteomics and Metabolomics Unit, National Research Council, Segrate (Milano), Italy
| | - Antonella De Palma
- Institute for Biochemical Technologies, Proteomics and Metabolomics Unit, National Research Council, Segrate (Milano), Italy
| | - Simona Viglio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Pierluigi Mauri
- Institute for Biochemical Technologies, Proteomics and Metabolomics Unit, National Research Council, Segrate (Milano), Italy
| | - Marco Fumagalli
- Department of Biology and Biotechnologies, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Paolo Iadarola
- Department of Biology and Biotechnologies, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Lorenza Montalbetti
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Roberta Salvini
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Anna Bardoni
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| |
Collapse
|
15
|
Andreazza AC. Combining redox-proteomics and epigenomics to explain the involvement of oxidative stress in psychiatric disorders. MOLECULAR BIOSYSTEMS 2013; 8:2503-12. [PMID: 22710408 DOI: 10.1039/c2mb25118c] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Psychiatric disorders affect approximately 10% of adults in North-America. The complex nature of these illnesses makes the search for their pathophysiology a challenge. However, studies have consistently shown that mitochondrial dysfunction and oxidative stress are common features across major psychiatric disorders, including bipolar disorder and schizophrenia. Nevertheless, little is known about specific targets of oxidation in the brain. The search for redox sensors (protein targets for oxidation) will offer information about which pathways are regulated by oxidation in psychiatric disorders. Additionally, DNA is also a target for oxidative damage and recently, studies have suggested that oxidation of cytosine and guanosine can serve as an epigenetic modulator by decreasing or preventing further DNA methylation. Therefore, this review aims to discuss how we can use redox-proteomics and epigenomics to help explain the role of oxidative damage in major psychiatric disorders, which may ultimately lead to the identification of targets for development of new medications.
Collapse
Affiliation(s)
- Ana Cristina Andreazza
- Department of Psychiatry, University of Toronto, Medical Science Building, Room 4204, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
16
|
Magherini F, Abruzzo PM, Puglia M, Bini L, Gamberi T, Esposito F, Veicsteinas A, Marini M, Fiorillo C, Gulisano M, Modesti A. Proteomic analysis and protein carbonylation profile in trained and untrained rat muscles. J Proteomics 2011; 75:978-92. [PMID: 22062160 DOI: 10.1016/j.jprot.2011.10.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/27/2011] [Accepted: 10/21/2011] [Indexed: 11/25/2022]
Abstract
Understanding the relationship between physical exercise, reactive oxygen species and skeletal muscle modification is important in order to better identify the benefits or the damages that appropriate or inappropriate exercise can induce. Unbalanced ROS levels can lead to oxidation of cellular macromolecules and a major class of protein oxidative modification is carbonylation. The aim of this investigation was to study muscle protein expression and carbonylation patterns in trained and untrained animal models. We analyzed two muscles characterized by different metabolisms: tibialis anterior and soleus. Whilst tibialis anterior is mostly composed of fast-twitch fibers, the soleus muscle is mostly composed of slow-twitch fibers. By a proteomic approach we identified 15 protein spots whose expression is influenced by training. Among them in tibialis anterior we observed a down-regulation of several glycolitic enzymes. Concerning carbonylation, we observed the existence of a high basal level of protein carbonylation. Although this level shows some variation among individual animals, several proteins (mostly involved in energy metabolism, muscle contraction, and stress response) appear carbonylated in all animals and in both types of skeletal muscle. Moreover we identified 13 spots whose carbonylation increases after training.
Collapse
|
17
|
Aguilar-Melero P, Ferrín G, Muntané J. Effects of nitric oxide synthase-3 overexpression on post-translational modifications and cell survival in HepG2 cells. J Proteomics 2011; 75:740-55. [PMID: 21968428 DOI: 10.1016/j.jprot.2011.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/01/2011] [Accepted: 09/17/2011] [Indexed: 12/01/2022]
Abstract
Hepatocarcinoma is the fifth most common neoplasm and the third cause of cancer-related death. The development of genetic- and/or molecular-based therapies is urgently required. The administration of high doses of nitric oxide (NO) promotes cell death in hepatocytes. NO contributes to cell signaling by inducing oxidative/nitrosative-dependent post-translational modifications. The aim of the present study was to investigate protein modifications and its relation with alteration of cell proliferation and death in hepatoma cells. Increased intracellular NO production was achieved by stable nitric oxide synthase-3 (NOS-3) overexpression in HepG2 cells. We assessed the pattern of nitration, nitrosylation and carbonylation of proteins by proteomic analysis. The results showed that NOS-3 cell overexpression increased oxidative stress, which affected proteins mainly involved in cell protein folding. Carbonylation also altered metabolism, as well as immune and antioxidant responses. The interaction of nitrosative and oxidative stress generated tyrosine nitration, which affected the tumor marker Serpin B3, ATP synthesis and cytoskeleton. All these effects were associated with a decrease in chaperone activity, a reduction in cell proliferation and an increased cell death. Our study showed that alteration of nitration, nitrosylation and carbonylation pattern of proteins by NO-dependent oxidative/nitrosative stress was related to a reduction of cell survival in a hepatoma cell line.
Collapse
Affiliation(s)
- P Aguilar-Melero
- Liver Research Unit, IMIBIC (Instituto Maimónides para la Investigación Biomédica de Córdoba), Reina Sofia University Hospital, Córdoba, Spain.
| | | | | |
Collapse
|
18
|
Abstract
Aerobic life requires organisms to resist the damaging effects of ROS (reactive oxygen species), particularly during stress. Extensive research has established a detailed picture of how cells respond to oxidative stress. Attention is now focusing on identifying the key molecular targets of ROS, which cause killing when resistance is overwhelmed. Experimental criteria used to establish such targets have differing merits. Depending on the nature of the stress, ROS cause loss of essential cellular functions or gain of toxic functions. Essential targets on which life pivots during ROS stress include membrane lipid integrity and activity of ROS-susceptible proteins, including proteins required for faithful translation of mRNA. Protein oxidation also triggers accumulation of toxic protein aggregates or induction of apoptotic cell death. This burgeoning understanding of the principal ROS targets will offer new possibilities for therapy of ROS related diseases.
Collapse
|
19
|
Chavez J, Chung WG, Miranda CL, Singhal M, Stevens JF, Maier CS. Site-specific protein adducts of 4-hydroxy-2(E)-nonenal in human THP-1 monocytic cells: protein carbonylation is diminished by ascorbic acid. Chem Res Toxicol 2010; 23:37-47. [PMID: 20043646 DOI: 10.1021/tx9002462] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The protein targets and sites of modification by 4-hydroxy-2(E)-nonenal (HNE) in human monocytic THP-1 cells after exogenous exposure to HNE were examined using a multipronged proteomic approach involving electrophoretic, immunoblotting, and mass spectrometric methods. Immunoblot analysis using monoclonal anti-HNE antibodies showed several proteins as targets of HNE adduction. Pretreatment of THP-1 cells with ascorbic acid resulted in reduced levels of HNE-protein adducts. Biotinylation of Michael-type HNE adducts using an aldehyde-reactive hydroxylamine-functionalized probe (aldehyde-reactive probe, ARP) and subsequent enrichment facilitated the identification and site-specific assignment of the modifications by LC-MS/MS analysis. Sixteen proteins were unequivocally identified as targets of HNE adduction, and eighteen sites of HNE modification at Cys and His residues were assigned. HNE exposure of THP-1 cells resulted in the modification of proteins involved in cytoskeleton organization and regulation, proteins associated with stress responses, and enzymes of the glycolytic and other metabolic pathways. This study yielded the first evidence of site-specific adduction of HNE to Cys-295 in tubulin alpha-1B chain, Cys-351 and Cys-499 in alpha-actinin-4, Cys-328 in vimentin, Cys-369 in D-3-phosphoglycerate dehydrogenase, and His-246 in aldolase A.
Collapse
Affiliation(s)
- Juan Chavez
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Neurodegenerative diseases are characterized by progressive dysfunction of specific populations of neurons, determining clinical presentation. Neuronal loss is associated with extra and intracellular accumulation of misfolded proteins, the hallmarks of many neurodegenerative proteinopathies. Major basic processes include abnormal protein dynamics due to deficiency of the ubiquitin-proteosome-autophagy system, oxidative stress and free radical formation, mitochondrial dysfunction, impaired bioenergetics, dysfunction of neurotrophins, 'neuroinflammatory' processes and (secondary) disruptions of neuronal Golgi apparatus and axonal transport. These interrelated mechanisms lead to programmed cell death is a long run over many years. Neurodegenerative disorders are classified according to known genetic mechanisms or to major components of protein deposits, but recent studies showed both overlap and intraindividual diversities between different phenotypes. Synergistic mechanisms between pathological proteins suggest common pathogenic mechanisms. Animal models and other studies have provided insight into the basic neurodegeneration and cell death programs, offering new ways for future prevention/treatment strategies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Kenyongasse, Vienna, Austria.
| |
Collapse
|
21
|
Martínez A, Portero-Otin M, Pamplona R, Ferrer I. Protein targets of oxidative damage in human neurodegenerative diseases with abnormal protein aggregates. Brain Pathol 2010; 20:281-97. [PMID: 19725834 PMCID: PMC8094880 DOI: 10.1111/j.1750-3639.2009.00326.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 07/17/2009] [Indexed: 11/30/2022] Open
Abstract
Human neurodegenerative diseases with abnormal protein aggregates are associated with aberrant post-translational modifications, solubility, aggregation and fibril formation of selected proteins which cannot be degraded by cytosolic proteases, ubiquitin-protesome system and autophagy, and, therefore, accumulate in cells and extracellular compartments as residual debris. In addition to the accumulation of "primary" proteins, several other mechanisms are involved in the degenerative process and probably may explain crucial aspects such as the timing, selective cellular vulnerability and progression of the disease in particular individuals. One of these mechanisms is oxidative stress, which occurs in the vast majority of, if not all, degenerative diseases of the nervous system. The present review covers most of the protein targets that have been recognized as modified proteins mainly using bidimensional gel electrophoresis, Western blotting with oxidative and nitrosative markers, and identified by mass spectrometry in Alzheimer disease; certain tauopathies such as progressive supranuclear palsy, Pick disease, argyrophilic grain disease and frontotemporal lobar degeneration linked to mutations in tau protein, for example, FTLD-tau, Parkinson disease and related alpha-synucleinopathies; Huntington disease; and amyotrophic lateral sclerosis, together with related animal and cellular models. Vulnerable proteins can be mostly grouped in defined metabolic pathways covering glycolysis and energy metabolism, cytoskeletal, chaperoning, cellular stress responses, and members of the ubiquitin-proteasome system. Available information points to the fact that vital metabolic pathways are hampered by protein oxidative damage in several human degenerative diseases and that oxidative damage occurs at very early stages of the disease. Yet parallel functional studies are limited and further work is needed to document whether protein oxidation results in loss of activity and impaired performance. A better understanding of proteins susceptible to oxidation and nitration may serve to define damaged metabolic networks at early stages of disease and to advance therapeutic interventions to attenuate disease progression.
Collapse
Affiliation(s)
- Anna Martínez
- Institut de Neuropatologia, Institut d'Investigacio de Bellvitge-Hospital Universitari de Bellvitge, Universitat de Barcelona, Centro de Inbvestigación Biomédica en Red de Enfermedades Neurodegenerativas, Spain
| | | | | | | |
Collapse
|
22
|
Villani GRD, Di Domenico C, Musella A, Cecere F, Di Napoli D, Di Natale P. Mucopolysaccharidosis IIIB: oxidative damage and cytotoxic cell involvement in the neuronal pathogenesis. Brain Res 2009; 1279:99-108. [PMID: 19409882 DOI: 10.1016/j.brainres.2009.03.071] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 03/13/2009] [Accepted: 03/13/2009] [Indexed: 11/25/2022]
Abstract
Sanfilippo B syndrome (Mucopolysaccharidosis IIIB, MPS IIIB) is a lysosomal storage disease due to mutations in the gene encoding alpha-N-acetylglucosaminidase and is characterized by a severe neurological disorder. Although several studies have been reported for the murine model of the disease, the molecular basis and the sequence of events leading to neurodegeneration remain to be clarified. We previously suggested the possible involvement of the reactive oxygen species in the disease pathogenesis. In the present paper we extended the analysis of oxidative stress by evaluating the production of superoxide ions throughout the CNS and by evaluating the effect of the stress on the cellular macromolecules. These approaches applied to one-month-old, three-month-old and six-month-old mice revealed that oxidative stress is present in the affected cerebrum and cerebellum tissues from one month from birth, and that it results primarily in protein oxidation, both in the cerebrum and cerebellum, with lipid peroxidation, and especially DNA oxidation, appearing milder and restricted essentially to the cerebellum. We also identified additional genes possibly associated with the neuropathology of MPS IIIB disease. Real time RT-PCR analysis revealed an altered expression of the Sod1, Ret, Bmp4, Tgfb, Gzmb and Prf1 genes. Since Gzmb and Prf1 are proteins secreted by NK/cytotoxic T-cells, these data suggest the involvement of cytotoxic cells in the neuronal pathogenesis. Extending our previous study, findings reported in the present paper show that oxidative stress and all the analyzed stress-related pathological changes occur very early in the disease course, most likely before one month of age.
Collapse
Affiliation(s)
- Guglielmo R D Villani
- Department of Biochemistry and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.
| | | | | | | | | | | |
Collapse
|
23
|
Jellinger KA. Recent advances in our understanding of neurodegeneration. J Neural Transm (Vienna) 2009; 116:1111-62. [DOI: 10.1007/s00702-009-0240-y] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 05/05/2009] [Indexed: 12/12/2022]
|
24
|
Gómez A, Ferrer I. Increased oxidation of certain glycolysis and energy metabolism enzymes in the frontal cortex in Lewy body diseases. J Neurosci Res 2009; 87:1002-13. [PMID: 18855937 DOI: 10.1002/jnr.21904] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Lipoxidative damage of aldolase A, enolase 1, and glyceraldehyde dehydrogenase (GAPDH) was found in the frontal cortex in a percentage of aged controls by bidimensional gel electrophoresis, Western blot test, in-gel digestion, and mass spectrometry. Aldolase A and enolase 1 were altered in 12 of 19 cases, whereas oxidation of GAPDH was found in 6 of 19 controls. The three enzymes were oxidized in the frontal cortex in the majority of cases of incidental Parkinson's disease (iPD), PD, and dementia with Lewy bodies (DLB). Differences were statistically significant (chi(2) test) for GAPDH in PD and DLB. Densitometric studies have shown that the ratio of oxidized protein per spot is higher in iPD, PD, and DLB compared with controls. These findings show oxidation of three enzymes linked with glycolysis and energy metabolism in the adult human brain as well as increased oxidation of aldolase A, enolase 1, and GAPDH in the frontal cortex in Lewy body diseases. Modifications of these enzymes may result in decreased activity and may partly account for impaired metabolism and function of the frontal lobe in PD.
Collapse
Affiliation(s)
- Anna Gómez
- Institut Neuropatologia, Servei Anatomia Patològica, Idibell-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Spain
| | | |
Collapse
|
25
|
Santpere G, Ferrer I. Delineation of early changes in cases with progressive supranuclear palsy-like pathology. Astrocytes in striatum are primary targets of tau phosphorylation and GFAP oxidation. Brain Pathol 2009; 19:177-87. [PMID: 18462470 PMCID: PMC8094872 DOI: 10.1111/j.1750-3639.2008.00173.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Accepted: 02/19/2008] [Indexed: 11/30/2022] Open
Abstract
Progressive supranuclear palsy (PSP) is a complex tauopathy usually confirmed at post-mortem in advanced stages of the disease. Early PSP-like changes that may outline the course of the disease are not known. Since PSP is not rarely associated with argyrophilic grain disease (AGD) of varible intensity, the present study was focused on AGD cases with associated PSP-like changes in an attempt to delineate early PSP-like pathology in this category of cases. Three were typical clinical and pathological PSP. Another case presented with cognitive impairment, abnormal behavior and two falls in the last three months. One case suffered from mild cognitive impairment, and two had no evidence of neurological abnormality. Neuropathological study revealed, in addition to AGD, increased intensity and extent of lesion in three groups of regions, striatum, pallidus/subthalamus and selected nuclei of the brain stem, correlating with neurological impairment. Biochemical studies disclosed oxidative damage in the striatum and amygdala. Together the present observations suggest (i) early PSP-like lesions in the striatum, followed by the globus pallidus/subthalamus and selected nuclei of the brain stem; (ii) early involvement of neurons and astrocytes, but late appearance of tufted astrocytes; and (iii) oxidative damage of glial acidic protein in the striatum.
Collapse
Affiliation(s)
- Gabriel Santpere
- Institut de Neuropatologia, Servei Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, carrer Feixa Llarga s/n, Hospitalet de Llobregat, Spain.
| | | |
Collapse
|
26
|
Type-Dependent Oxidative Damage in Frontotemporal Lobar Degeneration: Cortical Astrocytes Are Targets of Oxidative Damage. J Neuropathol Exp Neurol 2008; 67:1122-36. [DOI: 10.1097/nen.0b013e31818e06f3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|