1
|
Chaffey N, Volkmann D, Baluška F. The botanical multiverse of Peter Barlow. Commun Integr Biol 2019; 12:14-30. [PMID: 31156759 PMCID: PMC6529214 DOI: 10.1080/19420889.2019.1575788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/25/2019] [Indexed: 02/02/2023] Open
Abstract
Dr Peter Barlow, who died in 2017, was one of the most respected botanists and biologists of the latter half of the 20th Century. His interests covered a wide range of plant biological topics, e.g. root growth and development, plant cytoskeleton, effects of gravity, plant intelligence, pattern formation, and evolution of eukaryotic cells. Here we consider Peter's numerous contributions to the: elucidation of plant patterns; understanding of root biology; role of the plant cytoskeleton in growth and development; influence of the Moon on terrestrial vegetation; Cell Body concept; and plant neurobiology. In so doing we attempt not only to provide an overview of Peter's important work in many areas of plant biology, but also to place that work in the context of recent advances in plant and biological sciences.
Collapse
Affiliation(s)
- Nigel Chaffey
- College of Liberal Arts, Bath Spa University, Bath, UK
| | | | | |
Collapse
|
2
|
Baluška F, Lyons S. Energide-cell body as smallest unit of eukaryotic life. ANNALS OF BOTANY 2018; 122:741-745. [PMID: 29474513 PMCID: PMC6215040 DOI: 10.1093/aob/mcy022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
Background The evolutionary origin of the eukaryotic nucleus is obscure and controversial. Currently preferred are autogenic concepts; ideas of a symbiotic origin are mostly discarded and forgotten. Here we briefly discuss these issues and propose a new version of the symbiotic and archaeal origin of the eukaryotic nucleus. Scope and Conclusions The nucleus of eukaryotic cells forms via its perinuclear microtubules, the primary eukaryotic unit known also as the Energide-cell body. As for all other endosymbiotic organelles, new Energides are generated only from other Energides. While the Energide cannot be generated de novo, it can use its secretory apparatus to generate de novo the cell periphery apparatus. We suggest that Virchow's tenet Omnis cellula e cellula should be updated as Omnis Energide e Energide to reflect the status of the Energide as the primary unit of the eukaryotic cell, and life. In addition, the plasma membrane provides feedback to the Energide and renders it protection via the plasma membrane-derived endosomal network. New discoveries suggest archaeal origins of both the Energide and its host cell.
Collapse
|
3
|
Agnati LF, Marcoli M, Leo G, Maura G, Guidolin D. Homeostasis and the concept of 'interstitial fluids hierarchy': Relevance of cerebrospinal fluid sodium concentrations and brain temperature control (Review). Int J Mol Med 2017; 39:487-497. [PMID: 28204813 PMCID: PMC5360360 DOI: 10.3892/ijmm.2017.2874] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022] Open
Abstract
In this review, the aspects and further developments of the concept of homeostasis are discussed also in the perspective of their possible impact in the clinical practice, particularly as far as psychic homeostasis is concerned. A brief historical survey and comments on the concept of homeostasis and allostasis are presented to introduce our proposal that is based on the classical assumption of the interstitial fluid (ISF) as the internal medium for multicellular organisms. However, the new concept of a hierarchic role of ISF of the various organs is introduced. Additionally, it is suggested that particularly for some chemico‑physical parameters, oscillatory rhythms within their proper set‑ranges should be considered a fundamental component of homeostasis. Against this background, we propose that the brain ISF has the highest hierarchic role in human beings, providing the optimal environment, not simply for brain cell survival, but also for brain complex functions and the oscillatory rhythms of some parameters, such as cerebrospinal fluid sodium and brain ISF pressure waves, which may play a crucial role in brain physio‑pathological states. Thus, according to this proposal, the brain ISF represents the real internal medium since the maintenance of its dynamic intra-set-range homeostasis is the main factor for a free and independent life of higher vertebrates. Furthermore, the evolutionary links between brain and kidney and their synergistic role in H2O/Na balance and brain temperature control are discussed. Finally, it is surmised that these two interrelated parameters have deep effects on the Central Nervous System (CNS) higher integrative actions such those linked to psychic homeostasis.
Collapse
Affiliation(s)
- Luigi F Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Manuela Marcoli
- Department of Pharmacy, Unit of Pharmacology and Toxicology, and Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy
| | - Giuseppina Leo
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Guido Maura
- Department of Pharmacy, Unit of Pharmacology and Toxicology, and Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy
| | - Diego Guidolin
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy
| |
Collapse
|
4
|
|
5
|
In vitro effects of cocaine on tunneling nanotube formation and extracellular vesicle release in glioblastoma cell cultures. J Mol Neurosci 2014; 55:42-50. [PMID: 24996625 DOI: 10.1007/s12031-014-0365-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 06/26/2014] [Indexed: 12/15/2022]
Abstract
The effects of cocaine (150 nM, 300 nM, and 150 μM) on human glioblastoma cell cultures were studied on tunneling nanotube formation (1-h cocaine treatment) and extracellular vesicle release (1-, 3-, and 8-h cocaine treatment). Cocaine significantly increased the number of tunneling nanotubes only at the lowest concentration used. The release of extracellular vesicles (mainly exosomes) into the medium was stimulated by cocaine at each concentration used with a maximum effect at the highest concentration tested (150 μM). Moreover, cocaine (150 nM) significantly increased the number of vesicles with 61-80 nm diameter while at concentrations of 300 nM and 150 μM, and the smaller vesicles (30-40 nm diameter) were significantly increased with a reduction of the larger vesicles (41-60 nm diameter). A time dependence in the release of extracellular vesicles was observed. In view of the proposed role of these novel intercellular communication modes in the glial-neuronal plasticity, it seems possible that they can participate in the processes leading to cocaine addiction. The molecular target/s involved in these cocaine effects could be specific molecular components of plasma membrane lipid rafts and/or cocaine-induced modifications in cytoplasmic lipid composition.
Collapse
|
6
|
Baluška F, Volkmann D, Menzel D, Barlow P. Strasburger's legacy to mitosis and cytokinesis and its relevance for the Cell Theory. PROTOPLASMA 2012; 249:1151-1162. [PMID: 22526203 DOI: 10.1007/s00709-012-0404-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 03/22/2012] [Indexed: 05/31/2023]
Abstract
Eduard Strasburger was one of the most prominent biologists contributing to the development of the Cell Theory during the nineteenth century. His major contribution related to the characterization of mitosis and cytokinesis and especially to the discovery of the discrete stages of mitosis, which he termed prophase, metaphase and anaphase. Besides his observations on uninucleate plant and animal cells, he also investigated division processes in multinucleate cells. Here, he emphasised the independent nature of mitosis and cytokinesis. We discuss these issues from the perspective of new discoveries in the field of cell division and conclude that Strasburger's legacy will in the future lead to a reformulation of the Cell Theory and that this will accommodate the independent and primary nature of the nucleus, together with its complement of perinuclear microtubules, for the organisation of the eukaryotic cell.
Collapse
|
7
|
Agnati LF, Guidolin D, Cortelli P, Genedani S, Cela-Conde C, Fuxe K. Neuronal correlates to consciousness. The "Hall of Mirrors" metaphor describing consciousness as an epiphenomenon of multiple dynamic mosaics of cortical functional modules. Brain Res 2012; 1476:3-21. [PMID: 22322150 DOI: 10.1016/j.brainres.2012.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/02/2012] [Accepted: 01/04/2012] [Indexed: 12/20/2022]
Abstract
Humans share the common intuition of a self that has access to an inner 'theater of mind' (Baars, 2003). The problem is how this internal theater is formed. Moving from Cook's view (Cook, 2008), we propose that the 'sentience' present in single excitable cells is integrated into units of neurons and glial cells transiently assembled into "functional modules" (FMs) organized as systems of encased networks (from cell networks to molecular networks). In line with Hebb's proposal of 'cell assemblies', FMs can be linked to form higher-order mosaics by means of reverberating circuits. Brain-level subjective awareness results from the binding phenomenon that coordinates several FM mosaics. Thus, consciousness may be thought as the global result of integrative processes taking place at different levels of miniaturization in plastic mosaics. On the basis of these neurobiological data and speculations and of the evidence of 'mirror neurons' the 'Hall of Mirrors' is proposed as a significant metaphor of consciousness. This article is part of a Special Issue entitled: Brain Integration.
Collapse
|
8
|
Agnati LF, Barlow PW, Baldelli E, Baluska F. Are maternal mitochondria the selfish entities that are masters of the cells of eukaryotic multicellular organisms? Commun Integr Biol 2011; 2:194-200. [PMID: 19513277 DOI: 10.4161/cib.8320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 02/19/2009] [Indexed: 01/01/2023] Open
Abstract
The Energide concept, as well as the endosymbiotic theory of eukaryotic cell organization and evolution, proposes that present-day cells of eukaryotic organisms are mosaics of specialized and cooperating units, or organelles. Some of these units were originally free-living prokaryotes, which were engulfed during evolutionary time. Mitochondria represent one of these types of previously independent organisms, the Energide, is another type. This new perspective on the organization of the cell has been further expanded to reveal the concept of a public milieu, the cytosol, in which Energides and mitochondria live, each with their own private internal milieu. The present paper discusses how the endosymbiotic theory implicates a new hypothesis about the hierarchical and communicational organization of the integrated prokaryotic components of the eukaryotic cell and provides a new angle from which to consider the theory of evolution and its bearing upon cellular complexity. Thus, it is proposed that the "selfish gene" hypothesis of Dawkins1 is not the only possible perspective for comprehending genomic and cellular evolution. Our proposal is that maternal mitochondria are the selfish "master" entities of the eukaryotic cell with respect not only to their propagation from cell-to-cell and from generation-to-generation but also to their regulation of all other cellular functions. However, it should be recognized that the concept of "master" and "servant" cell components is a metaphor; in present-day living organisms their organellar components are considered to be interdependent and inseparable.
Collapse
Affiliation(s)
- Luigi F Agnati
- Department of BioMedical Sciences; University of Modena and IRRCS Lido VE; Modena, Italy
| | | | | | | |
Collapse
|
9
|
Agnati LF, Baluska F, Barlow PW, Guidolin D. Mosaic, self-similarity logic, and biological attraction principles: three explanatory instruments in biology. Commun Integr Biol 2010; 2:552-63. [PMID: 20195461 DOI: 10.4161/cib.2.6.9644] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 07/27/2009] [Accepted: 07/27/2009] [Indexed: 11/19/2022] Open
Abstract
From a structural standpoint, living organisms are organized like a nest of Russian matryoshka dolls, in which structures are buried within one another. From a temporal point of view, this type of organization is the result of a history comprised of a set of time backcloths which have accompanied the passage of living matter from its origins up to the present day. The aim of the present paper is to indicate a possible course of this 'passage through time, and suggest how today's complexity has been reached by living organisms. This investigation will employ three conceptual tools, namely the Mosaic, Self-Similarity Logic, and the Biological Attraction principles. Self-Similarity Logic indicates the self-consistency by which elements of a living system interact, irrespective of the spatiotemporal level under consideration. The term Mosaic indicates how, from the same set of elements assembled according to different patterns, it is possible to arrive at completely different constructions: hence, each system becomes endowed with different emergent properties. The Biological Attraction principle states that there is an inherent drive for association and merging of compatible elements at all levels of biological complexity. By analogy with the gravitation law in physics, biological attraction is based on the evidence that each living organism creates an attractive field around itself. This field acts as a sphere of influence that actively attracts similar fields of other biological systems, thereby modifying salient features of the interacting organisms. Three specific organizational levels of living matter, namely the molecular, cellular, and supracellular levels, have been considered in order to analyse and illustrate the interpretative as well as the predictive roles of each of these three explanatory principles.
Collapse
Affiliation(s)
- Luigi F Agnati
- Department of BioMedical Sciences, University of Modena and IRCCS Lido, Venezia, Italy.
| | | | | | | |
Collapse
|
10
|
The discovery of central monoamine neurons gave volume transmission to the wired brain. Prog Neurobiol 2010; 90:82-100. [PMID: 19853007 DOI: 10.1016/j.pneurobio.2009.10.012] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 05/11/2009] [Accepted: 10/09/2009] [Indexed: 12/19/2022]
|
11
|
Baluska F. Cell-cell channels, viruses, and evolution: via infection, parasitism, and symbiosis toward higher levels of biological complexity. Ann N Y Acad Sci 2009; 1178:106-19. [PMID: 19845631 DOI: 10.1111/j.1749-6632.2009.04995.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Between prokaryotic cells and eukaryotic cells there is dramatic difference in complexity which represents a problem for the current version of the cell theory, as well as for the current version of evolution theory. In the past few decades, the serial endosymbiotic theory of Lynn Margulis has been confirmed. This results in a radical departure from our understanding of living systems: the eukaryotic cell represents de facto"cells-within-cell." Higher order "cells-within-cell" situations are obvious at the eukaryotic cell level in the form of secondary and tertiary endosymbiosis, or in the male and female gametophytes of higher plants. The next challenge of the current version of the cell theory is represented by the fact that the multicellular fungi and plants are, in fact, supracellular assemblies as their cells are not physically separated from each other. Moreover, there are also examples of alliances and mergings between multicellular organisms. Infection, especially the viral one, but also bacterial and fungal infections, followed by symbiosis, is proposed to act as the major force that drives the biological evolution toward higher complexity.
Collapse
|