1
|
Dumbuya JS, Li S, Liang L, Zeng Q. Paediatric sepsis-associated encephalopathy (SAE): a comprehensive review. Mol Med 2023; 29:27. [PMID: 36823611 PMCID: PMC9951490 DOI: 10.1186/s10020-023-00621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) is one of the most common types of organ dysfunction without overt central nervous system (CNS) infection. It is associated with higher mortality, low quality of life, and long-term neurological sequelae, its mortality in patients diagnosed with sepsis, progressing to SAE, is 9% to 76%. The pathophysiology of SAE is still unknown, but its mechanisms are well elaborated, including oxidative stress, increased cytokines and proinflammatory factors levels, disturbances in the cerebral circulation, changes in blood-brain barrier permeability, injury to the brain's vascular endothelium, altered levels of neurotransmitters, changes in amino acid levels, dysfunction of cerebral microvascular cells, mitochondria dysfunction, activation of microglia and astrocytes, and neuronal death. The diagnosis of SAE involves excluding direct CNS infection or other types of encephalopathies, which might hinder its early detection and appropriate implementation of management protocols, especially in paediatric patients where only a few cases have been reported in the literature. The most commonly applied diagnostic tools include electroencephalography, neurological imaging, and biomarker detection. SAE treatment mainly focuses on managing underlying conditions and using antibiotics and supportive therapy. In contrast, sedative medication is used judiciously to treat those showing features such as agitation. The most widely used medication is dexmedetomidine which is neuroprotective by inhibiting neuronal apoptosis and reducing a sepsis-associated inflammatory response, resulting in improved short-term mortality and shorter time on a ventilator. Other agents, such as dexamethasone, melatonin, and magnesium, are also being explored in vivo and ex vivo with encouraging results. Managing modifiable factors associated with SAE is crucial in improving generalised neurological outcomes. From those mentioned above, there are still only a few experimentation models of paediatric SAE and its treatment strategies. Extrapolation of adult SAE models is challenging because of the evolving brain and technical complexity of the model being investigated. Here, we reviewed the current understanding of paediatric SAE, its pathophysiological mechanisms, diagnostic methods, therapeutic interventions, and potential emerging neuroprotective agents.
Collapse
Affiliation(s)
- John Sieh Dumbuya
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Siqi Li
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Lili Liang
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Qiyi Zeng
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
2
|
Dominguini D, Michels M, Wessler LB, Streck EL, Barichello T, Dal-Pizzol F. Mitochondrial protective effects caused by the administration of mefenamic acid in sepsis. J Neuroinflammation 2022; 19:268. [PMID: 36333747 PMCID: PMC9636698 DOI: 10.1186/s12974-022-02616-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
The pathophysiology of sepsis may involve the activation of the NOD-type receptor containing the pyrin-3 domain (NLPR-3), mitochondrial and oxidative damages. One of the primary essential oxidation products is 8-oxoguanine (8-oxoG), and its accumulation in mitochondrial DNA (mtDNA) induces cell dysfunction and death, leading to the hypothesis that mtDNA integrity is crucial for maintaining neuronal function during sepsis. In sepsis, the modulation of NLRP-3 activation is critical, and mefenamic acid (MFA) is a potent drug that can reduce inflammasome activity, attenuating the acute cerebral inflammatory process. Thus, this study aimed to evaluate the administration of MFA and its implications for the reduction of inflammatory parameters and mitochondrial damage in animals submitted to polymicrobial sepsis. To test our hypothesis, adult male Wistar rats were submitted to the cecal ligation and perforation (CLP) model for sepsis induction and after receiving an injection of MFA (doses of 10, 30, and 50 mg/kg) or sterile saline (1 mL/kg). At 24 h after sepsis induction, the frontal cortex and hippocampus were dissected to analyze the levels of TNF-α, IL-1β, and IL-18; oxidative damage (thiobarbituric acid reactive substances (TBARS), carbonyl, and DCF-DA (oxidative parameters); protein expression (mitochondrial transcription factor A (TFAM), NLRP-3, 8-oxoG; Bax, Bcl-2 and (ionized calcium-binding adaptor molecule 1 (IBA-1)); and the activity of mitochondrial respiratory chain complexes. It was observed that the septic group in both structures studied showed an increase in proinflammatory cytokines mediated by increased activity in NLRP-3, with more significant oxidative damage and higher production of reactive oxygen species (ROS) by mitochondria. Damage to mtDNA it was also observed with an increase in 8-oxoG levels and lower levels of TFAM and NGF-1. In addition, this group had an increase in pro-apoptotic proteins and IBA-1 positive cells. However, MFA at doses of 30 and 50 mg/kg decreased inflammasome activity, reduced levels of cytokines and oxidative damage, increased bioenergetic efficacy and reduced production of ROS and 8-oxoG, and increased levels of TFAM, NGF-1, Bcl-2, reducing microglial activation. As a result, it is suggested that MFA induces protection in the central nervous system early after the onset of sepsis.
Collapse
Affiliation(s)
- Diogo Dominguini
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil.
| | - Monique Michels
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Leticia B Wessler
- Laboratory of Bioenergetics, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Emilio L Streck
- Laboratory of Bioenergetics, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| |
Collapse
|
3
|
Reis PA, Castro-Faria-Neto HC. Systemic Response to Infection Induces Long-Term Cognitive Decline: Neuroinflammation and Oxidative Stress as Therapeutical Targets. Front Neurosci 2022; 15:742158. [PMID: 35250433 PMCID: PMC8895724 DOI: 10.3389/fnins.2021.742158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/31/2021] [Indexed: 12/29/2022] Open
Abstract
In response to pathogens or damage signs, the immune system is activated in order to eliminate the noxious stimuli. The inflammatory response to infectious diseases induces systemic events, including cytokine storm phenomenon, vascular dysfunction, and coagulopathy, that can lead to multiple-organ dysfunction. The central nervous system (CNS) is one of the major organs affected, and symptoms such as sickness behavior (depression and fever, among others), or even delirium, can be observed due to activation of endothelial and glial cells, leading to neuroinflammation. Several reports have been shown that, due to CNS alterations caused by neuroinflammation, some sequels can be developed in special cognitive decline. There is still no any treatment to avoid cognitive impairment, especially those developed due to systemic infectious diseases, but preclinical and clinical trials have pointed out controlling neuroinflammatory events to avoid the development of this sequel. In this minireview, we point to the possible mechanisms that triggers long-term cognitive decline, proposing the acute neuroinflammatory events as a potential therapeutical target to treat this sequel that has been associated to several infectious diseases, such as malaria, sepsis, and, more recently, the new SARS-Cov2 infection.
Collapse
Affiliation(s)
- Patricia Alves Reis
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
- Biochemistry Department, Roberto Alcântara Gomes Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Brazil
- *Correspondence: Patricia Alves Reis,
| | | |
Collapse
|
4
|
Abstract
Objectives: Expound upon priorities for basic/translational science identified in a recent paper by a group of experts assigned by the Society of Critical Care Medicine and the European Society of Intensive Care Medicine. Data Sources: Original paper, search of the literature. Study Selection: By several members of the original task force with specific expertise in basic/translational science. Data Extraction: None. Data Synthesis: None. Conclusions: In the first of a series of follow-up reports to the original paper, several members of the original task force with specific expertise provided a more in-depth analysis of the five identified priorities directly related to basic/translational science. This analysis expounds on what is known about the question and what was identified as priorities for ongoing research. It is hoped that this analysis will aid the development of future research initiatives.
Collapse
|
5
|
Savi FF, de Oliveira A, de Medeiros GF, Bozza FA, Michels M, Sharshar T, Dal-Pizzol F, Ritter C. What animal models can tell us about long-term cognitive dysfunction following sepsis: A systematic review. Neurosci Biobehav Rev 2021; 124:386-404. [PMID: 33309906 DOI: 10.1016/j.neubiorev.2020.12.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 01/28/2023]
Abstract
Survivors of sepsis often develop long-term cognitive impairments. This review aimed at exploring the results of the behavioral tools and tests which have been used to evaluate cognitive dysfunction in different animal models of sepsis. Two independent investigators searched for sepsis- and cognition-related keywords. 6323 publications were found, of which 355 were selected based on their title, and 226 of these were chosen based on manuscript review. LPS was used to induce sepsis in 171 studies, while CLP was used in 55 studies. Inhibitory avoidance was the most widely used method for assessing aversive memory, followed by fear conditioning and continuous multi-trial inhibitory avoidance. With regard to non-aversive memory, most studies used the water maze, open-field, object recognition, Y-maze, plus maze, and radial maze tests. Both CLP and LPS models of sepsis were effective in inducing short- and long-term behavioral impairment. Our findings help elucidate the mechanisms involved in the pathophysiology of sepsis-induced cognitive changes, as well as the available methods and tests used to study this in animal models.
Collapse
Affiliation(s)
- Felipe Figueredo Savi
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil
| | - Alexandre de Oliveira
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil
| | | | - Fernando Augusto Bozza
- Laboratório de Medicina Intensiva, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Monique Michels
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil
| | - Tarek Sharshar
- Laboratoire de Neuropathologie Expérimentale, Institut Pasteur, Paris, France; Department of Neuro-Intensive Care Medicine, Sainte-Anne Hospital, Paris-Descartes University, Paris, France
| | - Felipe Dal-Pizzol
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil; Laboratoire de Neuropathologie Expérimentale, Institut Pasteur, Paris, France
| | - Cristiane Ritter
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil.
| |
Collapse
|
6
|
Silva I, Alípio C, Pinto R, Mateus V. Potential anti-inflammatory effect of erythropoietin in non-clinical studies in vivo: A systematic review. Biomed Pharmacother 2021; 139:111558. [PMID: 33894624 DOI: 10.1016/j.biopha.2021.111558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/19/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Erythropoietin (EPO) is a hypoxia-induced hormone produced in adult kidneys with erythropoietic and non-erythropoietic effects. In vivo studies represent an important role to comprehend the efficacy and safety in the early phase of repurposing drugs. The aim is to evaluate the potential anti-inflammatory effect of EPO observed in animal models of disease. Following PRISMA statements, electronic database Medline via PubMed platform was used to search articles with the research expression ((erythropoietin [MeSH Terms]) AND (inflammation [MeSH Terms]) AND (disease models, animal [MeSH Terms])). The inclusion criteria were original articles, studies where EPO was administered, studies where inflammation was studied and/or evaluated, non-clinical studies in vivo with rodents, and articles published in English. Thirty-six articles met the criteria for qualitative analysis. Exogenous EPO was used in models of sepsis, traumatic brain injury, and autoimmune neuritis, with an average of 3000 IU/Kg for single and multiple doses, using mice and rats. Biomarkers such as immune-related effectors, cytokines, reactive oxygen species, prostaglandins, and other biomarkers were assessed. EPO has been recognized as a multifunctional cytokine with anti-inflammatory properties, showing its significant effect both in acute and chronic models of inflammation. Further non-clinical studies are suggested for the enlightenment of anti-inflammatory mechanisms of EPO in lower doses, allowing us to understand the translational data for humans.
Collapse
Affiliation(s)
- Inês Silva
- H&TRC-Health and Technology Research Center, ESTeSL-Lisbon School of Health Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Carolina Alípio
- H&TRC-Health and Technology Research Center, ESTeSL-Lisbon School of Health Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
| | - Rui Pinto
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal; JCS, Dr. Joaquim Chaves, Laboratório de Análises Clínicas, Miraflores, 1495-069 Algés, Portugal
| | - Vanessa Mateus
- H&TRC-Health and Technology Research Center, ESTeSL-Lisbon School of Health Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
7
|
Deutschman CS, Hellman J, Roca RF, De Backer D, Coopersmith CM. The surviving sepsis campaign: basic/translational science research priorities. Intensive Care Med Exp 2020; 8:31. [PMID: 32676795 PMCID: PMC7365694 DOI: 10.1186/s40635-020-00312-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Objectives Expound upon priorities for basic/translational science identified in a recent paper by a group of experts assigned by the Society of Critical Care Medicine and the European Society of Intensive Care Medicine. Data sources Original paper, search of the literature. Study selection This study is selected by several members of the original task force with specific expertise in basic/translational science. Data extraction and data synthesis are not available. Conclusions In the first of a series of follow-up reports to the original paper, several members of the original task force with specific expertise provided a more in-depth analysis of the five identified priorities directly related to basic/translational science. This analysis expounds on what is known about the question and what was identified as priorities for ongoing research. It is hoped that this analysis will aid the development of future research initiatives.
Collapse
Affiliation(s)
- Clifford S Deutschman
- Department of Pediatrics, Hofstra/Northwell School of Medicine and the Feinstein Institute for Medical Research/Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA. .,Department of Molecular Medicine, Hofstra/Northwell School of Medicine and the Feinstein Institute for Medical Research/Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA.
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Ricard Ferrer Roca
- Intensive Care Department, Vall d'Hebron University Hospital, Barcelona, Spain.,Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Daniel De Backer
- Chirec Hospitals, Université Libre de Bruxelles, Brussels, Belgium
| | - Craig M Coopersmith
- Department of Surgery and Emory Critical Care Center, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
8
|
NLRP3/Caspase-1 Pathway-Induced Pyroptosis Mediated Cognitive Deficits in a Mouse Model of Sepsis-Associated Encephalopathy. Inflammation 2019; 42:306-318. [PMID: 30276509 PMCID: PMC6394578 DOI: 10.1007/s10753-018-0894-4] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sepsis-associated encephalopathy (SAE) is a common complication that leads to long-term cognitive impairments and increased mortality in sepsis survivors. The mechanisms underlying this complication remain unclear and an effective intervention is lacking. Accumulating evidence suggests the nucleotide-binding domain-like receptor protein3 (NLRP3)/caspase-1 pathway is involved in several neurodegenerative diseases. Thus, we hypothesized that the NLRP3/caspase-1 pathway is involved in NLRP3-mediated pyroptosis, maturation and release of inflammatory cytokines, and cognitive deficits in SAE. We used the NLRP3 inhibitor MCC950 and the caspase-1 inhibitor Ac-YVAD-CMK to study the role of the NLRP3/caspase-1 pathway in pyroptosis and cognitive deficits in a mouse model of SAE. Mice were randomly assigned to one of six groups: sham+saline, sham+MCC950, sham+Ac-YVAD-CMK, cecal ligation and puncture (CLP)+saline, CLP+MCC950, and CLP+Ac-YVAD-CMK. Surviving mice underwent behavioral tests or had hippocampal tissues collected for histochemical analysis and biochemical assays. Our results show that CLP-induced hippocampus-dependent memory deficits are accompanied by increased NLRP3 and caspase-1 positive cells, and augmented protein levels of NLRP3, caspase-1, gasdermin-D, and pro-inflammatory cytokines in the hippocampus. In addition, administration of MCC950 or Ac-YVAD-CMK rescues cognitive deficits and ameliorates increased hippocampal NLRP3-mediated neuronal pyroptosis and pro-inflammatory cytokines. Our results suggest that the NLRP3/caspase-1 pathway-induced pyroptosis mediates cognitive deficits in a mouse model of SAE.
Collapse
|
9
|
Barichello T, Sayana P, Giridharan VV, Arumanayagam AS, Narendran B, Della Giustina A, Petronilho F, Quevedo J, Dal-Pizzol F. Long-Term Cognitive Outcomes After Sepsis: a Translational Systematic Review. Mol Neurobiol 2019; 56:186-251. [PMID: 29687346 DOI: 10.1007/s12035-018-1048-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/27/2018] [Indexed: 01/04/2023]
Abstract
Sepsis is systemic inflammatory response syndrome with a life-threatening organ dysfunction that is caused by an unbalanced host immune response in an attempt to eliminate invasive microorganisms. We posed questions, "Does sepsis survivor patients have increased risk of neuropsychiatric manifestations?" and "What is the mechanism by which sepsis induces long-term neurological sequelae, particularly substantial cognitive function decline in survivor patients and in pre-clinical sepsis models?" The studies were identified by searching PubMed/MEDLINE (National Library of Medicine), PsycINFO, EMBASE (Ovid), LILACS (Latin American and Caribbean Health Sciences Literature), IBECS (Bibliographical Index in Spanish in Health Sciences), and Web of Science databases for peer-reviewed journals that were published until January 2018. A total of 3555 papers were included in the primary screening. After that, 130 articles were selected for the study. A number of pre-clinical studies have shown an auto amplification of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, and IL-6 in the first few hours after sepsis induction, also increased blood-brain barrier permeability, elevated levels of matrix metalloproteinases, increased levels of damage-associated molecular patterns were demonstrated. In addition, the rodents presented long-term cognitive impairment in different behavioral tasks that were prevented by blocking the mechanism of action of these inflammatory mediators. Clinical studies have showed that sepsis survivors presented increased bodily symptoms such as fatigue, pain, visual disturbances, gastrointestinal problems, and neuropsychiatric problems compared to before sepsis. Sepsis leaves the survivors with an aftermath of physiological, neuropsychiatric, and functional impairment. Systematic review registration: CRD42017071755.
Collapse
Affiliation(s)
- Tatiana Barichello
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX, 77054, USA.
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Pavani Sayana
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX, 77054, USA
| | - Vijayasree V Giridharan
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX, 77054, USA
| | | | - Boomadevi Narendran
- Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, USA
| | - Amanda Della Giustina
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX, 77054, USA
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina, Tubarao, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX, 77054, USA
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina-UNESC, Criciúma, SC, Brazil
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| |
Collapse
|
10
|
Chousterman BG, Arnaud M. Is There a Role for Hematopoietic Growth Factors During Sepsis? Front Immunol 2018; 9:1015. [PMID: 29977234 PMCID: PMC6021493 DOI: 10.3389/fimmu.2018.01015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/23/2018] [Indexed: 12/17/2022] Open
Abstract
Sepsis is a complex syndrome characterized by simultaneous activation of pro- and anti-inflammatory processes. After an inflammatory phase, patients present signs of immunosuppression and possibly persistent inflammation. Hematopoietic growth factors (HGFs) are glycoproteins that cause immune cells to mature and/or proliferate. HGFs also have a profound effect on cell functions and behavior. HGFs play crucial role in sepsis pathophysiology and were tested in several clinical trials without success to date. This review summarizes the role played by HGFs during sepsis and their potential therapeutic role in the Management of sepsis-related immune disturbances.
Collapse
Affiliation(s)
- Benjamin G Chousterman
- Département d'Anesthésie-Réanimation-SMUR, Hôpitaux Universitaires Lariboisière - Saint-Louis, AP-HP, Paris, France.,INSERM U1160, Hôpital Saint-Louis, Paris, France
| | | |
Collapse
|
11
|
Anderson ST, Commins S, Moynagh PN, Coogan AN. Lipopolysaccharide-induced sepsis induces long-lasting affective changes in the mouse. Brain Behav Immun 2015; 43:98-109. [PMID: 25063709 DOI: 10.1016/j.bbi.2014.07.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/04/2014] [Accepted: 07/10/2014] [Indexed: 12/27/2022] Open
Abstract
Post-septic encephalopathy is a poorly understood condition in survivors of sepsis that is characterised by cognitive and affective impairments. In this study we have sought to better understand this condition by undertaking a comprehensive behavioural and cognitive assessment of mice who had previously survived sepsis. Mice were treated with lipopolysaccharide (LPS; 5mg/kg) and one month after this assessed on a battery of tests. Post-septic animals were found to display significantly more immobility in the tail suspension test and show a significantly decreased sucrose preference. Acute fluoxetine treatment reversed the increase in immobility in the tail suspension test in post-septic animals. Post-septic animals also showed less overall exploratory behaviour in the novel object recognition task and also showed increased anxiety-like behaviour in the elevated plus maze. Post-septic mice did not show signs of cognitive impairment, as assessed in the Morris watermaze, the 8-arm radial maze or on preference for the novel object in the novel object recognition task. Immunohistochemical analysis revealed significant upregulation of the microglial marker CD-11b, F4/80 and IBA-1 in the hippocampus of post-septic animals, as well as significant downregulation of the plasticity-related immediate early gene products ARC and EGR1. We also observed a decrease in neural stem cell proliferation in the dentate gyrus of post-septic animals as judged by BrdU incorporation. Co-treatment with the NF-κB pathway inhibitor PDTC attenuated the long-lasting effects of LPS on most of the affected parameters, but not on neural stem cell proliferation. These results show that LPS-induced sepsis in the mouse is followed by long-lasting increases in depressive- and anxiety-like behaviours, as well as by changes in neuroinflammatory- and neural plasticity-associated factors, and that attenuation of the severity of sepsis by PDTC attenuates many of these effects.
Collapse
Affiliation(s)
- Seán T Anderson
- Department of Psychology, National University of Ireland Maynooth, County Kildare, Ireland
| | - Seán Commins
- Department of Psychology, National University of Ireland Maynooth, County Kildare, Ireland
| | - Paul N Moynagh
- Institute of Immunology, National University of Ireland Maynooth, County Kildare, Ireland
| | - Andrew N Coogan
- Department of Psychology, National University of Ireland Maynooth, County Kildare, Ireland.
| |
Collapse
|
12
|
Barichello T, Collodel A, Generoso JS, Simões LR, Moreira AP, Ceretta RA, Petronilho F, Quevedo J. Targets for adjunctive therapy in pneumococcal meningitis. J Neuroimmunol 2015; 278:262-70. [DOI: 10.1016/j.jneuroim.2014.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/10/2014] [Accepted: 11/13/2014] [Indexed: 01/08/2023]
|
13
|
Bond WS, Rex TS. Evidence That Erythropoietin Modulates Neuroinflammation through Differential Action on Neurons, Astrocytes, and Microglia. Front Immunol 2014; 5:523. [PMID: 25374571 PMCID: PMC4205853 DOI: 10.3389/fimmu.2014.00523] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/06/2014] [Indexed: 12/15/2022] Open
Abstract
Neuroinflammation is a normal and healthy response to neuronal damage. However, excessive or chronic neuroinflammation exacerbates neurodegeneration after trauma and in progressive diseases such as Alzheimer’s, Parkinson’s, age-related macular degeneration, and glaucoma. Therefore, molecules that modulate neuroinflammation are candidates as neuroprotective agents. Erythropoietin (EPO) is a known neuroprotective agent that indirectly attenuates neuroinflammation, in part, by inhibiting neuronal apoptosis. In this review, we provide evidence that EPO also modulates neuroinflammation upstream of apoptosis by acting directly on glia. Further, the signaling induced by EPO may differ depending on cell type and context possibly as a result of activation of different receptors. While significant progress has been made in our understanding of EPO signaling, this review also identifies areas for future study in terms of the role of EPO in modulating neuroinflammation.
Collapse
Affiliation(s)
- Wesley S Bond
- Vanderbilt Eye Institute, Vanderbilt University Medical Center , Nashville, TN , USA ; Vanderbilt Brain Institute, Vanderbilt University Medical Center , Nashville, TN , USA
| | - Tonia S Rex
- Vanderbilt Eye Institute, Vanderbilt University Medical Center , Nashville, TN , USA ; Vanderbilt Brain Institute, Vanderbilt University Medical Center , Nashville, TN , USA
| |
Collapse
|
14
|
Barichello T, Simões LR, Generoso JS, Sangiogo G, Danielski LG, Florentino D, Dominguini D, Comim CM, Petronilho F, Quevedo J. Erythropoietin prevents cognitive impairment and oxidative parameters in Wistar rats subjected to pneumococcal meningitis. Transl Res 2014; 163:503-13. [PMID: 24440628 DOI: 10.1016/j.trsl.2013.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/19/2013] [Accepted: 12/21/2013] [Indexed: 01/29/2023]
Abstract
Pneumococcal meningitis is characterized by a severe inflammatory reaction in the subarachnoid and ventricular space of the brain, disruption of the blood-brain barrier, hearing loss, and neurologic sequelae in as many as 27% of surviving patients. Several experimental studies have shown that erythropoietin (EPO) and its receptor are expressed in the central nervous system and have neuroprotective properties through the inhibition of apoptosis, as well as anti-inflammatory, antioxidant, angiogenic, and neurotrophic effects. In the current study, we demonstrated the effect of erythropoietin (EPO) on lipid peroxidation, protein carbonylation, superoxide dismutase (SOD), catalase (CAT), myeloperoxidase (MPO), and behavioral parameters in rats with pneumococcal meningitis. EPO decreased lipid peroxidation and protein carbonylation, and it prevented protein degradation in the hippocampus and frontal cortex. MPO activity was decreased, and both SOD and CAT activity were increased in the first 6 hours after pneumococcal meningitis induction. Novel object recognition memory was impaired in the meningitis group; however, adjuvant treatment with EPO prevented memory impairment during both the short- and long-term retention tests. The meningitis group showed no difference in motor and exploratory activity between training and test sessions in the open-field task, which indicates that habituation memory was impaired; however, adjuvant treatment with EPO prevented habituation memory impairment. Although there are some limitations with respect to the animal model of pneumococcal meningitis, this study suggests that adjuvant treatment with EPO contributed to decreased oxidative stress and prevented cognitive impairment.
Collapse
Affiliation(s)
- Tatiana Barichello
- Laboratório de Microbiologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA.
| | - Lutiana R Simões
- Laboratório de Microbiologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Jaqueline S Generoso
- Laboratório de Microbiologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gustavo Sangiogo
- Laboratório de Microbiologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Lucineia Gainski Danielski
- Laboratório de Fisiopatologia Clínica e Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Drielly Florentino
- Laboratório de Fisiopatologia Clínica e Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Diogo Dominguini
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Clarissa M Comim
- Laboratório de Neurociências Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Palhoça, SC, Brazil
| | - Fabricia Petronilho
- Laboratório de Fisiopatologia Clínica e Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - João Quevedo
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| |
Collapse
|
15
|
Floyd RA, Castro Faria Neto HC, Zimmerman GA, Hensley K, Towner RA. Nitrone-based therapeutics for neurodegenerative diseases: their use alone or in combination with lanthionines. Free Radic Biol Med 2013; 62:145-156. [PMID: 23419732 PMCID: PMC3715559 DOI: 10.1016/j.freeradbiomed.2013.01.033] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 01/25/2013] [Accepted: 01/29/2013] [Indexed: 01/12/2023]
Abstract
The possibility of free radical reactions occurring in biological processes led to the development and employment of novel methods and techniques focused on determining their existence and importance in normal and pathological conditions. For this reason the use of nitrones for spin trapping free radicals became widespread in the 1970s and 1980s, when surprisingly the first evidence of their potent biological properties was noted. Since then widespread exploration and demonstration of the potent biological properties of phenyl-tert-butylnitrone (PBN) and its derivatives took place in preclinical models of septic shock and then in experimental stroke. The most extensive commercial effort made to capitalize on the potent properties of the PBN-nitrones was for acute ischemic stroke. This occurred during 1993-2006, when the 2,4-disulfonylphenyl PBN derivative, called NXY-059 in the stroke studies, was shown to be safe in humans and was taken all the way through clinical phase 3 trials and then was deemed to be ineffective. As summarized in this review, because of its excellent human safety profile, 2,4-disulfonylphenyl PBN, now called OKN-007 in the cancer studies, was tested as an anti-cancer agent in several preclinical glioma models and shown to be very effective. Based on these studies this compound is now scheduled to enter into early clinical trials for astrocytoma/glioblastoma multiforme this year. The potential use of OKN-007 in combination with neurotropic compounds such as the lanthionine ketamine esters is discussed for glioblastoma multiforme as well as for various other indications leading to dementia, such as aging, septic shock, and malaria infections. There is much more research and development activity ongoing for various indications with the nitrones, alone or in combination with other active compounds, as briefly noted in this review.
Collapse
Affiliation(s)
- Robert A Floyd
- Experimental Therapeutics, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | | | - Guy A Zimmerman
- Laboratorio de Immunofarmacologia, Instituto Oswaldo Cruz, IOC, Fiocruz, Rio de Janeiro, Brazil; Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Kenneth Hensley
- Department of Pathology and Department of Neurosciences, University of Toledo Medical Center, Toledo, OH
| | - Rheal A Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| |
Collapse
|
16
|
Importance of erythropoietin in septic encephalopathy. J Surg Res 2013; 185:e29-30. [PMID: 23465390 DOI: 10.1016/j.jss.2013.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 11/20/2022]
|