1
|
Zhang X, Valeri J, Eladawi MA, Gisabella B, Garrett MR, Vallender EJ, McCullumsmith R, Pantazopoulos H, O’Donovan SM. Differentially Altered Metabolic Pathways in the Amygdala of Subjects with Schizophrenia, Bipolar Disorder and Major Depressive Disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.17.24305854. [PMID: 38699334 PMCID: PMC11065019 DOI: 10.1101/2024.04.17.24305854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Background and hypothesis A growing number of studies implicate a key role for metabolic processes in psychiatric disorders. Recent studies suggest that ketogenic diet may be therapeutically effective for subgroups of people with schizophrenia (SCZ), bipolar disorder (BPD) and possibly major depressive disorder (MDD). Despite this promise, there is currently limited information regarding brain energy metabolism pathways across these disorders, limiting our understanding of how brain metabolic pathways are altered and who may benefit from ketogenic diets. We conducted gene expression profiling on the amygdala, a key region involved in in the regulation of mood and appetitive behaviors, to test the hypothesis that amygdala metabolic pathways are differentially altered between these disorders. Study Design We used a cohort of subjects diagnosed with SCZ, BPD or MDD, and non-psychiatrically ill control subjects (n=15/group), together with our bioinformatic 3-pod analysis consisting of full transcriptome pathway analysis, targeted pathway analysis, leading-edge gene analysis and iLINCS perturbagen analysis. Study Results We identified differential expression of metabolic pathways in each disorder. Subjects with SCZ displayed downregulation of mitochondrial respiration and nucleotide metabolism pathways. In comparison, we observed upregulation of mitochondrial respiration pathways in subjects with MDD, while subjects with BPD displayed enrichment of pathways involved in carbohydrate metabolism. Several pathways associated with brain metabolism including immune system processes and calcium ion transport were also differentially altered between diagnosis groups. Conclusion Our findings suggest metabolic pathways are differentially altered in the amygdala in these disorders, which may impact approaches for therapeutic strategies.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA
| | - Jake Valeri
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | | | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | - Michael R. Garrett
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS
| | - Eric J Vallender
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | - Robert McCullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH
- Promedica Neuroscience Institute, Toledo, OH
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | | |
Collapse
|
2
|
Leite JA, Pôças E, Maia GS, Barbosa L, Quintas LEM, Kawamoto EM, da Silva MLC, Scavone C, de Carvalho LED. Effect of ouabain on calcium signaling in rodent brain: A systematic review of in vitro studies. Front Pharmacol 2022; 13:916312. [PMID: 36105192 PMCID: PMC9465813 DOI: 10.3389/fphar.2022.916312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022] Open
Abstract
The Na+/K+-ATPase is an integral membrane ion pump, essential to maintaining osmotic balance in cells in the presence of cardiotonic steroids; more specifically, ouabain can be an endogenous modulator of the Na+/K+-ATPase. Here, we conducted a systematic review of the in vitro effects of cardiotonic steroids on Ca2+ in the brain of rats and mice. Methods: The review was carried out using the PubMed, Virtual Health Library, and EMBASE databases (between 12 June 2020 and 30 June 2020) and followed the guidelines described in the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA). Results: in total, 829 references were identified in the electronic databases; however, only 20 articles were considered, on the basis of the inclusion criteria. The studies demonstrated the effects of ouabain on Ca2+ signaling in synaptosomes, brain slices, and cultures of rat and mouse cells. In addition to the well-known cytotoxic effects of high doses of ouabain, resulting from indirect stimulation of the reverse mode of the Na+/Ca2+ exchanger and increased intracellular Ca2+, other effects have been reported. Ouabain-mediated Ca2+ signaling was able to act increasing cholinergic, noradrenergic and glutamatergic neurotransmission. Furthermore, ouabain significantly increased intracellular signaling molecules such as InsPs, IP3 and cAMP. Moreover treatment with low doses of ouabain stimulated myelin basic protein synthesis. Ouabain-induced intracellular Ca2+ increase may promote the activation of important cell signaling pathways involved in cellular homeostasis and function. Thus, the study of the application of ouabain in low doses being promising for application in neurological diseases. Systematic Review Registration:https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020204498, identifier CRD42020204498.
Collapse
Affiliation(s)
- Jacqueline Alves Leite
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Elisa Pôças
- Campus Realengo, Instituto Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gisele Silva Maia
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, São Paulo, Brazil
| | - Leandro Barbosa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, São Paulo, Brazil
| | - Luis Eduardo M. Quintas
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elisa Mitiko Kawamoto
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Cristoforo Scavone
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Luciana E. Drumond de Carvalho
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, São Paulo, Brazil
- *Correspondence: Luciana E. Drumond de Carvalho,
| |
Collapse
|
3
|
Lei W, Xiao Q, Wang C, Gao W, Xiao Y, Dai Y, Lu G, Su L, Zhong Y. Cell-type-specific genes associated with cortical structural abnormalities in pediatric bipolar disorder. PSYCHORADIOLOGY 2022; 2:56-65. [PMID: 38665968 PMCID: PMC11044809 DOI: 10.1093/psyrad/kkac009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/06/2022] [Accepted: 08/19/2022] [Indexed: 04/28/2024]
Abstract
Background Pediatric bipolar disorder (PBD) has been proven to be related to abnormal brain structural connectivity, but how the abnormalities in PBD correlate with gene expression is debated. Objective This study aims at identification of cell-type-specific gene modules based on cortical structural differences in PBD. Methods Morphometric similarity networks (MSN) were computed as a marker of interareal cortical connectivity based on MRI data from 102 participants (59 patients and 43 controls). Partial least squares (PLS) regression was used to calculate MSN differences related to transcriptomic data in AHBA. The biological processes and cortical cell types associated with this gene expression profile were determined by gene enrichment tools. Results MSN analysis results demonstrated differences of cortical structure between individuals diagnosed with PBD and healthy control participants. MSN differences were spatially correlated with the PBD-related weighted genes. The weighted genes were enriched for "trans-synaptic signaling" and "regulation of ion transport", and showed significant specific expression in excitatory and inhibitory neurons. Conclusions This study identified the genes that contributed to structural network aberrations in PBD. It was found that transcriptional changes of excitatory and inhibitory neurons might be associated with abnormal brain structural connectivity in PBD.
Collapse
Affiliation(s)
- Wenkun Lei
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu 210097, China
- Nanjing Normal University, Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing, Jiangsu 210097, China
| | - Qian Xiao
- The Mental Health Centre of Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Chun Wang
- The Department of Psychiatry, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Weijia Gao
- The Children's Hospital affiliated to the Medical College of Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Yiwen Xiao
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu 210097, China
- Nanjing Normal University, Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing, Jiangsu 210097, China
| | - Yingliang Dai
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu 210097, China
- Nanjing Normal University, Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing, Jiangsu 210097, China
| | - Guangming Lu
- The Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Linyan Su
- The Second Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Yuan Zhong
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu 210097, China
- Nanjing Normal University, Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing, Jiangsu 210097, China
| |
Collapse
|
4
|
Na +, K +-ATPase inhibition causes hyperactivity and impulsivity in mice via dopamine D2 receptor-mediated mechanism. Neurosci Res 2018; 146:54-64. [PMID: 30296459 DOI: 10.1016/j.neures.2018.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 11/20/2022]
Abstract
Hyperactivity and impulsivity are common symptoms in several psychiatric disorders. Although dysfunction of Na+, K+-ATPase has been reported to be associated with the psychiatric disorders, it is not clear whether inhibition of Na+, K+-ATPase causes behavioral effects, including hyperactivity and impulsivity, in mice. Here, we evaluated the effect of intracerebroventricular (icv) injection of ouabain, an inhibitor of Na+, K+-ATPase, on hyperactivity and impulsivity in mice. At seven days after icv injection, ouabain-injected mice displayed the increase in the distance traveled in the open field arena in the open field test and the increase in the number of head-dipping behavior in the cliff avoidance test. Chlorpromazine or haloperidol, typical antipsychotics, reduced the hyperactivity and impulsivity in ouabain-injected mice. On the other hand, neither lithium carbonate nor valproate, established mood-stabilizing drugs, improved hyperactivity and impulsivity in our mouse model. Furthermore, ouabain-injected mice exhibited the increase in the number of c-fos-positive cells in the nucleus accumbens and the prefrontal cortex but not in the ventral tegmental area, which was reduced by haloperidol. These results suggest that the dysfunction of Na+, K+-ATPase causes hyperactivity and impulsivity via hyperactivation of dopamine D2 receptor-mediated signaling pathway, causing disturbed neuronal circuits in mice.
Collapse
|
5
|
Dal-Pont GC, Resende WR, Varela RB, Menegas S, Trajano KS, Peterle BR, Quevedo J, Valvassori SS. Inhibition of GSK-3β on Behavioral Changes and Oxidative Stress in an Animal Model of Mania. Mol Neurobiol 2018; 56:2379-2393. [DOI: 10.1007/s12035-018-1226-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/05/2018] [Indexed: 12/27/2022]
|
6
|
Hodes A, Lifschytz T, Rosen H, Cohen Ben-Ami H, Lichtstein D. Reduction in endogenous cardiac steroids protects the brain from oxidative stress in a mouse model of mania induced by amphetamine. Brain Res Bull 2018; 137:356-362. [PMID: 29374602 DOI: 10.1016/j.brainresbull.2018.01.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/10/2018] [Accepted: 01/19/2018] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Bipolar disorder (BD) is a severe mental illness characterized by episodes of mania and depression. Numerous studies have implicated the involvement of endogenous cardiac steroids (CS), and their receptor, Na+, K+ -ATPase, in BD. The aim of the present study was to examine the role of brain oxidative stress in the CS-induced behavioral effects in mice. METHODS Amphetamine (AMPH)-induced hyperactivity, assessed in the open-field test, served as a model for manic-like behavior in mice. A reduction in brain CS was obtained by specific and sensitive anti-ouabain antibodies. The level of oxidative stress was tested in the hippocampus and frontal cortex by measuring the activity of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), as well as the levels of antioxidant non-protein thiols (NPSH) and oxidative damage biomarkers thiobarbituric acid reactive substances (TBARS) and protein carbonyl (PC). RESULTS AMPH administration resulted in a marked hyperactivity and increased oxidative stress, as manifested by increased SOD activity, decreased activities of CAT and GPx, reduced levels of NPSH and increased levels of TBARS and PC. The administration of anti-ouabain antibodies, which reduced the AMPH-induced hyperactivity, protected against the concomitant oxidative stress in the brain. CONCLUSIONS Our results demonstrate that oxidative stress participates in the effects of endogenous CS on manic-like behavior induced by AMPH. These finding support the notion that CS and oxidative stress may be associated with the pathophysiology of mania and BD.
Collapse
Affiliation(s)
- Anastasia Hodes
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Tzuri Lifschytz
- Department of Psychiatry, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Haim Rosen
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Hagit Cohen Ben-Ami
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - David Lichtstein
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
7
|
Valvassori SS, Dal-Pont GC, Resende WR, Jornada LK, Peterle BR, Machado AG, Farias HR, de Souza CT, Carvalho AF, Quevedo J. Lithium and valproate act on the GSK-3β signaling pathway to reverse manic-like behavior in an animal model of mania induced by ouabain. Neuropharmacology 2017; 117:447-459. [DOI: 10.1016/j.neuropharm.2016.10.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 10/04/2016] [Accepted: 10/13/2016] [Indexed: 11/28/2022]
|
8
|
Amodeo DA, Grospe G, Zang H, Dwivedi Y, Ragozzino ME. Cognitive flexibility impairment and reduced frontal cortex BDNF expression in the ouabain model of mania. Neuroscience 2017; 345:229-242. [PMID: 27267245 PMCID: PMC5136525 DOI: 10.1016/j.neuroscience.2016.05.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 11/26/2022]
Abstract
Central infusion of the Na+/K+-ATPase inhibitor, ouabain in rats serves as an animal model of mania because it leads to hyperactivity, as well as reproduces ion dysregulation and reduced brain-derived neurotrophic factor (BDNF) levels similar to that observed in bipolar disorder. Bipolar disorder is also associated with cognitive inflexibility and working memory deficits. It is unknown whether ouabain treatment in rats leads to similar cognitive flexibility and working memory deficits. The present study examined the effects of an intracerebral ventricular infusion of ouabain in rats on spontaneous alternation, probabilistic reversal learning and BDNF expression levels in the frontal cortex. Ouabain treatment significantly increased locomotor activity, but did not affect alternation performance in a Y-maze. Ouabain treatment selectively impaired reversal learning in a spatial discrimination task using an 80/20 probabilistic reinforcement procedure. The reversal learning deficit in ouabain-treated rats resulted from an impaired ability to maintain a new choice pattern (increased regressive errors). Ouabain treatment also decreased sensitivity to negative feedback during the initial phase of reversal learning. Expression of BDNF mRNA and protein levels was downregulated in the frontal cortex which also negatively correlated with regressive errors. These findings suggest that the ouabain model of mania may be useful in understanding the neuropathophysiology that contributes to cognitive flexibility deficits and test potential treatments to alleviate cognitive deficits in bipolar disorder.
Collapse
Affiliation(s)
- Dionisio A Amodeo
- Department of Psychology, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Gena Grospe
- Department of Psychology, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Hui Zang
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60608, United States
| | - Yogesh Dwivedi
- Department of Psychiatry, University of Alabama at Birmingham, Birmingham, AL 35209, United States
| | - Michael E Ragozzino
- Department of Psychology, University of Illinois at Chicago, Chicago, IL 60607, United States.
| |
Collapse
|
9
|
Lopachev AV, Lopacheva OM, Osipova EA, Vladychenskaya EA, Smolyaninova LV, Fedorova TN, Koroleva OV, Akkuratov EE. Ouabain-induced changes in MAP kinase phosphorylation in primary culture of rat cerebellar cells. Cell Biochem Funct 2017; 34:367-77. [PMID: 27338714 DOI: 10.1002/cbf.3199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 05/21/2016] [Accepted: 05/23/2016] [Indexed: 02/06/2023]
Abstract
Cardiotonic steroid (CTS) ouabain is a well-established inhibitor of Na,K-ATPase capable of inducing signalling processes including changes in the activity of the mitogen activated protein kinases (MAPK) in various cell types. With increasing evidence of endogenous CTS in the blood and cerebrospinal fluid, it is of particular interest to study ouabain-induced signalling in neurons, especially the activation of MAPK, because they are the key kinases activated in response to extracellular signals and regulating cell survival, proliferation and apoptosis. In this study we investigated the effect of ouabain on the level of phosphorylation of three MAPK (ERK1/2, JNK and p38) and on cell survival in the primary culture of rat cerebellar cells. Using Western blotting we described the time course and concentration dependence of phosphorylation for ERK1/2, JNK and p38 in response to ouabain. We discovered that ouabain at a concentration of 1 μM does not cause cell death in cultured neurons while it changes the phosphorylation level of the three MAPK: ERK1/2 is phosphorylated transiently, p38 shows sustained phosphorylation, and JNK is dephosphorylated after a long-term incubation. We showed that ERK1/2 phosphorylation increase does not depend on ouabain-induced calcium increase and p38 activation. Changes in p38 phosphorylation, which is independent from ERK1/2 activation, are calcium dependent. Changes in JNK phosphorylation are calcium dependent and also depend on ERK1/2 and p38 activation. Ten-micromolar ouabain leads to cell death, and we conclude that different effects of 1-μM and 10-μM ouabain depend on different ERK1/2 and p38 phosphorylation profiles. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Alexander V Lopachev
- Research Center of Neurology, Moscow, Russia.,Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Olga M Lopacheva
- Research Center of Neurology, Moscow, Russia.,Lomonosov Moscow State University, International Biotechnological Center, Moscow, Russia
| | - Ekaterina A Osipova
- Lomonosov Moscow State University, International Biotechnological Center, Moscow, Russia.,Lomonosov Moscow State University, Faculty of Chemistry, Department of Chemical Enzymology, Moscow, Russia
| | | | - Larisa V Smolyaninova
- Lomonosov Moscow State University, International Biotechnological Center, Moscow, Russia.,Lomonosov Moscow State University, Faculty of Biology, Department of Biochemistry, Moscow, Russia
| | | | - Olga V Koroleva
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Evgeny E Akkuratov
- St. Petersburg State University, Institute of Translational Biomedicine, St. Petersburg, Russia
| |
Collapse
|
10
|
Sharma AN, Fries GR, Galvez JF, Valvassori SS, Soares JC, Carvalho AF, Quevedo J. Modeling mania in preclinical settings: A comprehensive review. Prog Neuropsychopharmacol Biol Psychiatry 2016; 66:22-34. [PMID: 26545487 PMCID: PMC4728043 DOI: 10.1016/j.pnpbp.2015.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/29/2015] [Accepted: 11/03/2015] [Indexed: 12/17/2022]
Abstract
The current pathophysiological understanding of mechanisms leading to onset and progression of bipolar manic episodes remains limited. At the same time, available animal models for mania have limited face, construct, and predictive validities. Additionally, these models fail to encompass recent pathophysiological frameworks of bipolar disorder (BD), e.g. neuroprogression. Therefore, there is a need to search for novel preclinical models for mania that could comprehensively address these limitations. Herein we review the history, validity, and caveats of currently available animal models for mania. We also review new genetic models for mania, namely knockout mice for genes involved in neurotransmission, synapse formation, and intracellular signaling pathways. Furthermore, we review recent trends in preclinical models for mania that may aid in the comprehension of mechanisms underlying the neuroprogressive and recurring nature of BD. In conclusion, the validity of animal models for mania remains limited. Nevertheless, novel (e.g. genetic) animal models as well as adaptation of existing paradigms hold promise.
Collapse
Affiliation(s)
- Ajaykumar N Sharma
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Gabriel R Fries
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Juan F Galvez
- Department of Psychiatry, Pontificia Universidad Javeriana School of Medicine, Bogotá, Colombia
| | - Samira S Valvassori
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Jair C Soares
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - André F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Joao Quevedo
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil.
| |
Collapse
|
11
|
Varela RB, Valvassori SS, Lopes-Borges J, Mariot E, Dal-Pont GC, Amboni RT, Bianchini G, Quevedo J. Sodium butyrate and mood stabilizers block ouabain-induced hyperlocomotion and increase BDNF, NGF and GDNF levels in brain of Wistar rats. J Psychiatr Res 2015; 61:114-21. [PMID: 25467060 DOI: 10.1016/j.jpsychires.2014.11.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/14/2014] [Accepted: 11/13/2014] [Indexed: 02/07/2023]
Abstract
Bipolar Disorder (BD) is one of the most severe psychiatric disorders. Despite adequate treatment, patients continue to have recurrent mood episodes, residual symptoms, and functional impairment. Some preclinical studies have shown that histone deacetylase inhibitors may act on manic-like behaviors. Neurotrophins have been considered important mediators in the pathophysiology of BD. The present study aims to investigate the effects of lithium (Li), valproate (VPA), and sodium butyrate (SB), an HDAC inhibitor, on BDNF, NGF and GDNF in the brain of rats subjected to an animal model of mania induced by ouabain. Wistar rats received a single ICV injection of ouabain or artificial cerebrospinal fluid. From the day following ICV injection, the rats were treated for 6 days with intraperitoneal injections of saline, Li, VPA or SB twice a day. In the 7th day after ouabain injection, locomotor activity was measured using the open-field test. The BDNF, NGF and GDNF levels were measured in the hippocampus and frontal cortex by sandwich-ELISA. Li, VPA or SB treatments reversed ouabain-related manic-like behavior. Ouabain decreased BDNF, NGF and GDNF levels in hippocampus and frontal cortex of rats. The treatment with Li, VPA or SB reversed these impairment induced by ouabain. In addition, Li, VPA and SB per se increased NGF and GDNF levels in hippocampus of rats. Our data support the notion that neurotrophic factors play a role in BD and in the mechanisms of the action of Li, VPA and SB.
Collapse
Affiliation(s)
- Roger B Varela
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil
| | - Samira S Valvassori
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil.
| | - Jéssica Lopes-Borges
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil
| | - Edemilson Mariot
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil
| | - Gustavo C Dal-Pont
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil
| | - Rafaela T Amboni
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil
| | - Guilherme Bianchini
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil
| | - João Quevedo
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| |
Collapse
|
12
|
Valvassori SS, Budni J, Varela RB, Quevedo J. Contributions of animal models to the study of mood disorders. BRAZILIAN JOURNAL OF PSYCHIATRY 2013; 35 Suppl 2:S121-31. [DOI: 10.1590/1516-4446-2013-1168] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|